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1. Introduction  

Addiction of cancer cells to survival pathways has been well documented in most of the 
cancer models including the pancreatic cancer. Pancreatic cancer is one of the most 
aggressive tumors with an average five year survival rate of less than 5% (Jemal A et al., 
2010). It is associated with high expression levels of various survival pathways, such as 
KRAS, STAT3, AKT, NFkB, HDAC etc. Furthermore, pancreatic cancer acquires resistance to 
various apoptosis signals such as FasL, TRAIL. In addition, pancreatic cancer gets resistance 
to various chemo-drugs including gemcitibine by altering survival pathways.   

Currently, there is no effective treatment for pancreatic cancer because conventional 
chemotherapy including the gemcitabine and 5-FU, and radiation treatment has shown very 
limited success in improving the patient survival. Therefore, the development of novel 
approaches to prevent and treat pancreatic cancer is an important mission. 

Evidence from epidemiological, pharmacological, and case-control studies continue to 
support the notion that isothiocyanates (ITCs) present in cruciferous vegetables may have 
substantial chemopreventive activity against various human malignancies including 
pancreatic cancer (Zhang Y et al., 1992); Stoner GD & Morse MA, 1997). Benzyl 
isothiocyanate (BITC), an agent that is present in cruciferous vegetables such as, watercress, 
cabbage, cauliflower, mustard, and horseradish, is widely consumed as part of a routine 
diet. BITC has been reported to inhibit initiation, growth, and metastasis of human cancers 
in rodents (Batra S et al., 2010; Boreddy SR et al., 2011a; Boreddy SR etal., 2011b; Kim EJ et 
al., 2011; Sahu RP & Srivastava SK, 2009; Zhang Y et al., 1992). The structure of BITC is 
shown in Fig.1. 

 

Fig. 1. Chemical structure of BITC 
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Our laboratory has shown that BITC potentially suppresses the growth and induces 
apoptosis in pancreatic cancer cells by targeting various key survival molecules (Batra S et 
al., 2010; Boreddy SR et al., 2011a; Sahu RP & Srivastava SK, 2009). In the present chapter, 
we discuss the current understanding of BITC, its targets and mechanism of action in 
pancreatic cancer.  

2. Effect of BITC on STAT3 signalling pathway 

Signal Transducer Activator Transcription (STAT3) transcription factors are latent proteins 

that bind to the genome on activation to either induce or to repress gene expression 

(Bromberg et al., 1999). STAT3 is aberrantly activated in majority of the cancers including 

pancreatic cancer (Wei et al., 2003). Clinical specimens have revealed that more than 50% of 

the breast and lung cancer, and over 95% of head and neck cancers have hyperactive STAT3 

signaling (Darnell, 2005). Interestingly, STAT3 deficient mice in a chemical carcinogenesis 

model have shown the reduced proliferation of epithelial cells due to inability to pass 

through G1-S-G2 cell cycle progression (Chan et al., 2004). Furthermore, Chiarle et al. have 

demonstrated that disruption of STAT3 signaling by anti-sense oligoneclosides was 

sufficient to impair the growth of solid tumors (Chiarle, 2005), highlighting the potential of 

anti-STAT3 therapy in clinical medicine. Recently, numerous natural and synthetic 

compounds have been discovered to target STAT3 signaling. Results from our laboratory 

showed that benzyl isothiocyanate (BITC) targets STAT3 signaling to induce apoptosis in 

pancreatic cancer (Sahu & Srivastava, 2009).  

Our laboratory showed that BITC significantly suppress the phosphorylation of STAT3 at 

both Tyr-705 and Ser-727 to induce apoptosis in BxPC-3 (Fig. 2), MIA PaCa-2, Capan-1 and 

PanC-1 pancreatic cancer cell lines, in a dose and time dependent manner (Sahu & 

Srivastava, 2009). Interestingly, BITC also down regulated the protein levels of STAT3 in 

these cell lines, although its functional implications are yet to be explored. Furthermore, 

down regulation of STAT3 protein expression by BITC was transcriptional, as evidenced by 

RT-PCR analysis of BITC treated BxPC-3 cells (Fig. 2). 

 

Fig. 2. Benzyl isothiocyanate induces apoptosis in pancreatic cancer cells by inhibiting the 
phosphorylation of STAT3. (J Natl Cancer Inst 2009;101: 176  –  193). 

BITC-induced apoptosis was further substantiated by IL-6 treatment, which specifically 
phosphorylates STAT3 at Tyr-705 (Berishaj, 2007) and STAT3α overexpression. IL-6 pre-
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treated BxPC-3 cells showed significant resistance to BITC-induced apoptosis (Fig. 3). 
Similarly, when STAT3α was over expressed in BxPC-3 cells, BITC-induced apoptosis was 
severely abrogated, indicating that BITC targets STAT3 to induce apoptosis in pancreatic 
cancer cells. 

 

Fig. 3. IL-6 pre-treatment or STAT3α overexpression abrogates BITC-induced apoptosis in 
pancreatic cancer cells. (J Natl Cancer Inst 2009:101; 176  –  193). 

3. Effect of BITC on AKT/FOXO/Bim signaling pathway 

Phosphotidyl inositol 3phosphate (PI3K)/AKT signaling plays a critical role in cell survival 
and growth during embryonic development as well as during normal cell survival 
(Finkielsztein & Kelly, 2009). However, cancer cells exploit the same pathway to overcome 
apoptosis induced by either therapeutic drugs or internal stimuli such as oxidative stress. 
Upon binding of growth factors to Tyrosine Kinase Receptor (TKR), PI3K is directly or 
indirectly activated by TKRs by inhibiting or removing the P85 regulatory unit of PI3K 
(Vivanco & Sawyers, 2002). Activated PI3K phosphorylates phosphatidylinositol and 
converts inositol 4,5biphosphate (PIP2) into PIP3. Consequently, AKT and PDK translocate 
to membrane and interact with PIP3 through PH domain leading to conformational changes 
in AKT to expose phosphorylation sites. AKT is phosphorylated by PDK1 at Ser-308 leading 
to stabilization of AKT. Yet another phosphorylation takes place at Tyr-473, which is 
required for full activation of AKT. In addition, another protein complex mTOR has been 
shown to be required for the phosphorylation of AKT (Sarbassov et al., 2005). This pathway 
is negatively regulated by phosphatases, such as PTEN, which dephosphorylates PIP3 thus 
limiting its availability (Osaki et al., 2004). 

Recently, FOXO transcription factors received ample of attention in cancer because of direct 

involvement in apoptosis and drug resistance (Salih & Brunet, 2008). FOXO1 and FOXO3a 

are the members of FOXO transcription factors, which operate right under the AKT 

signaling. Upon growth signal stimulation, AKT is activated by phosphorylation at Ser-473, 

BxPC‐3 
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which further phosphorylates FOXO1 or FOXO3a transcription factors. Phosphorylated 

FOXOs bind to 14-3-3 chaperons and transported out of nucleus and subjected to 

proteosomal degradation (Tzivion et al., 2011). But during oxidative stress or growth factor 

withdrawal, AKT is dephosphorylated leading to nuclear import of FOXOs and induction of 

pro-apoptotic proteins such as Bim and PUMA (Obexer, 2011).  

A recent report has shown that 59% of the pancreatic tumors harbor aberrantly activated 

AKT signaling (Schlieman et al., 2003). One of the possible reasons behind hyperactive AKT 

signaling in pancreatic cancer is due to mutation or deletion of PTEN gene (Sawai et al., 

2008). Indeed, strategies aimed at blocking AKT activation could be a promising treatment 

for pancreatic cancer. Interestingly BITC significantly inhibited AKT signaling in vitro and  
in vivo. 

 

Fig. 4. BITC down regulates the phosphorylation of key molecules of PI3K/AKT pathway. 
(Clin Cancer Res; 17(7); 1784–1795).  

BITC suppressed the phosphorylation of AKT at both Ser-308 and Ser-473 in BxPC-3 and 
PanC-1 cells, in dose dependent manner (Boreddy et al., 2011a). Furthermore, BITC also 
suppressed the phosphorylation of various other key molecules of PI3K/AKT pathway such 
as PI3K (Tyr-458), PDK1 (Ser-241), mTOR (Ser-2448) etc. (Fig. 4), indicating that BITC targets 
PI3K/AKT signaling to induce apoptosis in pancreatic cancer cells. Interestingly, BITC was 
almost ineffective in human pancreatic ductal epithelial (HPDE-6) cells (Fig. 4). Over 
expression of AKT blocked the apoptosis inducing effects of BITC in pancreatic cancer cells. 

Recently, FOXO transcription factor received plenty of attention as a potential target for 

cancer therapy, as they are directly involved in apoptosis induction. Interestingly, BITC 

significantly suppressed the phosphorylation of FOXO1 (Ser-256) and FOXO3a (Ser-253), 

without effecting the protein levels in both BxPC-3 and PanC-1 cells (Fig. 5). Moreover, 

immunoprecipitation studies showed that BITC treatment significantly masked 14-3-3 

binding motif on FOXO proteins indicating that more of FOXO proteins were retained in the 

nucleus (Fig. 5B). Furthermore, BITC significantly increased the expression FOXO1 

transactive genes such as P21, P27 and Bim in both the cell lines, BxPC-3 and PanC-1  

(Fig. 5C). 

www.intechopen.com



 
Molecular Targets of Benzyl Isothiocyanates in Pancreatic Cancer 

 

197 

Apart from phosphorylation, another tier of FOXO transcription factor regulation is 
acetylation. Interestingly, BITC also reduced the acetylation of FOXO proteins. Probably, 
inhibition of acetylation by BITC was due to down regulation of CBP protein expression, 
since SIRTs were not altered by BITC treatment.   

 

Fig. 5. BITC activates FOXO transcription factors and pro-apoptotic proteins in pancreatic 
cancer cells. (Clin Cancer Res; 17(7); 1784–1795). 

Role of AKT in BITC-induced apoptosis was further confirmed by using PI3K inhibitor LY-
294002 and overexpression of wild type AKT in BxPC-3 cells. Interestingly, when BxPC-3 
cells were pre-treated with LY-294002 followed BITC (10µM) for 24h, apoptosis induction 
was potentiated, as compared to BITC alone treated cells (Fig. 6), whereas AKT 
overexpression severely abrogated BITC-induced apoptosis in BxPC-3 cells (Fig. 6). In line 
with apoptosis results, phosphorylation of FOXO proteins were increased with AKT 
overexpression, whereas Bim, P27, P21 expression was reduced. However, BITC partially 
blocked these effects, indicating that BITC targets AKT pathway to induce apoptosis in 
pancreatic cancer cells lines (Fig. 6).  

4. BITC Regulates NFkB Activity by Inhibiting HDACs 

NFkB transcription factors are mainly involved in the regulation of immune and 
inflammatory response, apart from cell proliferation and apoptosis Ghosh et al., 1998; Hart 
et al., 1998). NFkB is normally located in the cytoplasm sequestered by its endogenous 
inhibitor IkB. Upon cellular stimulation, IkB proteins are phosphorylated at Ser-32/36 
liberating NFkB, which translocates to the nucleus and gets involved in the transcription of 
responsive genes such as Cyclin D1 (Sun & Andersson, 2002). 

www.intechopen.com



 
Pancreatic Cancer – Molecular Mechanism and Targets 

 

198 

   

Fig. 6. AKT inhibitor potentiates BITC-induced apoptosis, whereas AKT overexpression 
abrogates BITC-induced apoptosis in BxPC-3 pancreatic cancer cells. (Clin Cancer Res2011: 
17(7); 1784–1795). 

NFkB may activate various survival signals to promote cell survival. NFkB is known to 
interfere with inducers of extrinsic apoptosis pathway by up regulating the FLIP-like 
inhibitory protein (Kreuz et al., 2001). NFkB also induces the expression of inhibitors of 
apoptosis proteins such as IAP (Deveraux et al., 1998) and some members of the Bcl2 (Shou et 
al., 2002) family proteins, thereby protecting the cells from various apoptosis stimuli.  NFkB is 
also known to play critical role in drug resistance is various cancer models (Arlt et al., 2003). 
Hence, inhibiting of NFkB activation may potentiate the clinical efficacy of the drugs. 

BITC significantly inhibits the phosphorylation of NFkB at both Ser-276 and Ser-536 in both 
BxPC-3 and Capan-2 pancreatic cancer cells, in a dose and time dependent manner (Fig. 
7A&B). Interestingly, BITC down regulated the expression of NFkB in BxPC-3 cells but not 
in Capan-2 cells, indicating that BITC differentially act on different cells (Batra et al., 2010). 
Furthermore, BITC drastically inhibited the nuclear localization of NFkB in BxPC-3 cells 
(Fig. 7C). BxPC-3 cells that were transfected with a luciferase gene containing NFkB-
promoter and treated with BITC demonstrated around 90% decrease in luciferase activity, as 
compared to control cells (Fig. 7D). Furthermore, BITC also decreased Cyclin D1 expression 
and transcriptional activity, as it is one of the target genes of NFkB (Fig. 7E & Fig. 7F). 
Interestingly expression of IKK was decreased with BITC treatment, but neither 
phosphorylation (Ser32/36) nor protein levels of IkB were altered in BITC treated BxPC-3 
cells (Fig 7A), indicating that down regulation of IKK by BITC treatment could be the reason 
for inhibition of NFkB phosphorylation (Ser-536). 

Apart from the phosphorylation, NFkB is known to be regulated by acetylation. 
Interestingly, BITC also inhibited the acetylation of NFkB on lysine residue in BxPC-3 cells. 
BITC suppressed the acetylation of NFkB by altering the expression of HDAC1 and HDAC3 
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(Fig. 8A&B), as these molecules play critical role in NFkB acetylation. In agreement with 
other HDAC inhibitors’ data, such as veronistat (SAHA) and tricostatin A (TSA), BITC also 
up regulated the expression of p21 in BxPC-3 and Capan-2 cells, in a dose dependent 
manner (Fig. 8C). 

 

Fig. 7. BITC treatment causes inhibition of NF-κB and cyclin D1 in BxPC-3 pancreatic cancer 
cells. (Mol Cancer Ther 2010: 9(6):1596-608). 

 
Fig. 8. BITC down regulates the expression of HDACs and p21 in BxPC-3 cells. (Mol Cancer 
Ther. 2010: 9(6);1596-608).  

A  B

C 
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Role of HDACs in BITC-induced NFkB deacetylation was further substantiated by HDAC 
overexpression in BxPC-3 cells. HDAC1/3 overexpression significantly outweighed the 
effects of BITC in BxPC-3 cells. Furthermore, overexpression of HDACs protected BxPC-3 
cells from BITC-induced apoptosis, as indicated by the reduced cleavage of caspase-3, PARP 
and increased survival in HDACs overexpressing BxPC-3 cells, as compared to BITC alone 
treated cells (Fig. 9). 

 

Fig. 9. Over expression of HDAC1/HDAC2 rescue BxPC-3 cells from BITC-induced 
apoptosis. (Mol Cancer Ther. 2010: 9(6);1596-608). 

5. BITC induces ROS generation, DNA damage and cell cycle arrest in 
pancreatic cancer cells 

As many drugs induce cell death in cancer cells by triggering ROS generation, it was quite 

obvious to see whether BITC could induce ROS generation in pancreatic cancer cells. In 

agreement with other drugs, BITC caused significant generation of H2O2 in Capan-2 cells in 

a dose and time dependent manner (Fig. 10). On the contrary, BITC induced a modest 

increase in the generation of hROS, such as singlet oxygen, superoxide, nitric oxide, 

hydroxyl and alkyl peroxide radicals in response to BITC treatment.  

Eventually, BITC-induced ROS production substantially increased the phosphorylation of 

stress sensors, such as ERK (Thr202/Thy204), JNK (Thr183/Tyr185) and P38 

(Thr180/Tyr182), (Fig. 11). The activation of ERK and JNK was as early as1 h after BITC 

treatment and was sustained until 12h. On the other hand, activation of P38 was observed 

around 24 h of BITC treatment (Sahu et al., 2009b).  

BITC–induced ROS generation also resulted in DNA damage as evidenced by the 
phosphorylation of H2A.X at Ser-139, which is considered to be the hall mark of DNA 
double strand breaks (Sedelnikova et al., 2003). Interestingly, when BITC-treated cells were 
cultured in fresh medium without BITC for additional 48h cells showed persistent H2A.X 
phosphorylation (Fig. 12), indicating that BITC induce permanent DNA damage in Capan-2 
cells (Zhang et al., 2006). As protective mechanism, DNA damage lead to cell cycle arrest to 
obtain brief window of time to compensate/repair the damage that occurred due to ROS 

www.intechopen.com



 
Molecular Targets of Benzyl Isothiocyanates in Pancreatic Cancer 

 

201 

production. Accordingly, treatment of Capan-2 cells with BITC (10µM) for 24h resulted in 
the increased accumulation of cells in G2/M phase (42%) (Srivastava, 2004). The increased 
expression and phosphorylation of Chk2 (Thr-68) by BITC treatment caused G2/M arrest. 
Furthermore,   BITC also decreased the phosphorylation and expression of Cdc25C (ser-216), 
Cdc2 (Tyr-15) and Cyclin B1in apan-2 cells, as compared to control cells (Fig.12).  

 

Fig. 10. BITC induces ROS generation in Capan-2 cells. (Carcinogenesis 2009: 30;1744–1753). 

 

 

Fig. 11. BITC induces phosphorylation of MAP kinases. (Carcinogenesis 2009: 30;1744–1753). 

Capan-2 

Capan-2 
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Fig. 12. Effect of BITC on cell cycle proteins. (J. Nutr. 2006: 136; 2728–2734). 

Interestingly, although ERK, JNK and P38 were activated in response to BITC treatment, 

they had different roles in BITC-induced cell cycle arrest and apoptosis. MEK-1 inhibitor 

PD98059 significantly abrogated BITC induced G2/M cell cycle arrest and apoptosis (Fig. 

13A, B&D). Whereas, both JNK (SP600125) and P38 (SB202190) inhibitors failed to protect 

the cells from BITC-mediated G2/M cell cycle arrest. Further, MEK-1 inhibitor blocked 

BITC-mediated activation of ERK as well as down-regulation of G2/M regulatory proteins 

such as cyclin-dependent kinase-1 (Cdk1), cyclin B1, Cdc25C and cleavage of caspase-3 and 

PARP, suggesting the involvement of ERK in BITC-induced G2/M cell cycle arrest and 

apoptosis (Fig. 13C). BITC-mediated apoptosis was almost completely blocked in the cells 

pre-treated with ERK, JNK or P38 inhibitors as evaluated by cell death apoptosis ELISA 

assay (Fig.13D). Similar results were obtained with MAPK8-shRNA in Capan-2 cells, 

indicating that all the MAPK were involved in BITC-induced apoptosis but only ERK was 

involved in BITC-induced cell cycle arrest. 

Involvement of BITC-induced ROS generation in cell cycle arrest and apoptosis was further 

confirmed by treatment with antioxidants such as NAC, tiron, GSH and SOD. BITC-induced 

phosphorylation of MAPK and down regulation of cell cycle proteins such as GSH, Cdk1, 

Cdc25C, Cyclin B1 were significantly blocked by the treatment also with NAC (Fig.14). 

Furthermore, BITC-induced apoptosis was inhibited when cells were pre-treated with 

antioxidants, such as tiron, GSH and SOD. These results indicate that BITC induces ROS in 

pancreatic cancer cells which leads to DNA damage, cell cycle arrest and apoptosis.  
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Fig. 13. MAPK inhibitors rescue pancreatic cancer cells from BITC induced apoptosis and 
cell cycle arrest. (Carcinogenesis 2009: 30;1744–1753). 

 

 

Fig. 14. Antioxidants protects Capan-2 cells from BITC-induced cell cycle arrest and 
apoptosis. (Carcinogenesis 2009: 30;1744–1753). 

A  B

C
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6. BITC sensitizes human pancreatic cancer cells to radiation and TRAIL 
treatment 

Increased systemic toxicity and resistance are the major drawbacks of radiation therapy in 
pancreatic cancer treatment. Interestingly, BITC potentiated therapeutic effect of γ-
irradiation in BxPC-3 cells. BxPC-3 cells were pre-treated with 2.5 or 5 µM BITC for 24h, 
followed by treatment with different doses of γ-irradiation (2.5, 5, 10 and 20Gy) at a dose of 
4Gy/minute. The cells were allowed for 24 or 48h before being analyzed for survival assay. 
BxPC-3 cells pre-treated with BITC and treated with 5Gy γ-irradiation show intense cell 
death, as compared to either treatment alone, indicating that BITC sensitizes the cells to γ-
irradiation (Sahu et al., 2009c). Furthermore, as shown in Table 1, more cells were 
accumulated in G2/M arrest in response to combination treatment, as compared to either 
treatment alone. In addition, expression of cell cycle proteins Chk2 and Cdc25 was increased 
in combination treated cells, as compared to control cells. Interestingly, DNA damage 
markers H2A.X (Ser-139) and ATR (Ser-428) also increased in combination treatment, 
indicating that BITC sensitizes cells to γ-irradiation. In agreement with cell cycle data, 
apoptosis induction was more in combination treated cells. 

Similarly, BITC also potentiated the apoptosis inducing activity of TRAIL in pancreatic cancer 
cells. BxPC3 cells had a 3.84 fold increase in apoptosis upon treatment with BITC alone, an 8.65 
fold increase was observed with TRAIL alone, and a 12.39 fold increase was seen when cells 
were treated with BITC combined with TRAIL. Similarly, Panc-1 cells underwent a 1.49 fold 
increase in apoptosis upon treatment with BITC, a 1.82 fold increase with TRAIL alone, and a 
3.45 fold increase with BITC combined with TRAIL compared to vehicle. Interestingly, 
sensitization of pancreatic cancer cells to TRAIL by BITC was more in Kras wild type cells 
(BxPC-3) as compared to Kras mutated cells (PanC-1 and MIA PaCa-2). Further studies are 
needed to elucidate the role of Kras mutation in TRAIL or BITC-induced apoptosis.  

7. BITC inhibits pancreatic cancer angiogenesis 

Pancreatic tumors can acquire substantial development of new blood vessels in a process 
called angiogenesis (Philip, 2008). This vascular development is a necessary component of 
solid tumor growth and progression. Numerous reports have shown that disrupting tumor 
angiogenesis could effectively inhibit tumor growth and metastasis. BITC has shown 
promising potentials as anti-angiogenesis agent for pancreatic cancer vitro and in vivo. 

In a rat aorta ring assay model, treatment with 5 µM BITC reduced sprouting of new blood 
vessels by 67% as compared to control aortic rings (Fig. 15A). Furthermore, 5 µmol BITC 
treatment drastically (70%) suppressed new embryonic blood vessel growth in each egg as 
compared to control eggs in a CAM assay model (Fig. 15B), indicating that BITC has 
potential to inhibit tumor angiogenesis (Boreddy et al., 2011b). 

BITC was also effective in suppressing the secretion of pro-angiogenic factors from pancreatic 
cancer cells under both, normoxia and hypoxia conditions. Hypoxia alone induced the 
secretion of both MMP-2 and VEGF around 2-4 folds in both BxPC-3 and PanC-1 cells; 
however, BITC significantly inhibited the secretion of both VEGF and MMP-2 from the both 
BxPC-3 and PanC-1 cells under normoxia and hypoxia conditions (Fig. 16A-D). Interestingly, 
BITC significantly inhibited the migration and invasion of both, BxPC-3 and PanC-1 cells in a 
dose dependent manner. These steps are critical for the migration of the tumor cells in vivo. 
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Fig. 15. BITC inhibits ex vivo angiogenesis. (PLoS ONE 2011: 6(10); e25799). 

 

  

Fig. 16. BITC inhibits the secreastion of VEGF and MMP-2 in pancreatic cancer celss under 
both normoxia and hypoxia conditions. (PLoS ONE 2011: 6(10); e25799, 1-12).  
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Furthermore, BITC was quite effective in down regulating various angiogenic factors such 
as, HIF1-α, VEGFR-2, MMP-2, Rho A, Rho C and RAC1,2,3 in dose dependent manner in 
BxPC-3 and PanC-1 cells (Fig. 17A). Similarly, BITC inhibited the expression of angiogenic 
proteins in human endothelial cells (HUVEC) (Fig. 17B), in a dose dependent manner. 
Interestingly, BITC was ineffective in STAT3-overexpressing BxPC-3 cells. Furthermore, 
when STAT-3 was silenced in BxPC-3 cells the molecular changes were similar to that of 
BITC treatment changes indicating that BITC inhibits tumor angiogenesis by targeting 
STAT-3 (Fig. 17C&D). 

 

 
 

Fig. 17. BITC down regulates the critical molecules of angiogenesis in BxPC-3, PanC-1 and 
HUVECs by targeting the STAT3. (PLoS ONE 2011: 6(10); e25799, 1-12). 

HUVEC 

BxPC-3 BxPC-3 

A  B 

C  D 

BxPC-3 PanC-1 
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8. BITC suppresses pancreatic tumor growth and angiogenesis in vivo 

BITC exhibited similar results in vivo as observed in culture. Tumor growth in BITC-fed 
mice was substantially retarded, as compared to control mice. Tumors appeared to grow 
more slowly in BITC-fed mice as compared with control mice. For example, 6 weeks after 
treatment with12 μmol BITC, the average tumor volume in control mice was about 1.92-fold 
higher than that in BITC-treated mice (mean tumor volume, control vs BITC treated: 334 
vs172 mm3, difference = 162 mm3, 95% CI = 118 to 204 mm3 ;P = .008; Fig.18A). Furthermore, 
average tumor weight in BITC-treated mice was 225mg, whereas in control mice tumor 
weight was 425mg (Fig. 18B), indicating that BITC potentially suppress the growth of 
pancreatic tumors in vivo. Interestingly, BITC-treated mice did not show any toxicity 
symptoms such as weight loss (Fig. 18C). 

  

Fig. 18. BITC suppresses the growth of pancreatic cancer xenografts in vivo. (J Natl Cancer 
Inst 2009;101: 176-193). 

It is noteworthy that when animals were orally gavaged with 12µmol/day BITC for 46 days, 
mean BITC concentration in plasma after1 hour of BITC administration was 6.5 ± 0.1 mmol/ 
L (n=10), whereas accumulated BITC concentration in the tumors after 46 days was 7.5 ± 0.3 
µmol/g (n=10). These results indicate that the therapeutic concentration of BITC could be 
achieved in vivo by oral feeding. 

A 76% reduction in hemoglobin content was observed in BITC-treated matrigel plugs that 
were implanted in Nu-Nu athymic nude mice as compared to untreated plugs (Fig. 19A). 
Similarly, BITC-treated tumor xenografts showed 61% reduced hemoglobin content as 
compared to untreated xenografts (Fig. 19B).  

Tumors excised from BITC-treated mice showed reduced phosphorylation of STAT3 (Tyr-
705 and Ser-727) (Fig. 20A), AKT (Ser-473 and Ser-308), FOXO1 (Ser-256) and FOXO3a (Ser-
253) (Fig. 20B). Furthermore, protein expression of STAT3 and angiogenic proteins (Fig. 
20C) was down regulated, whereas expression of AKT, FOXO1, FOXO3a remained 
unaltered. Nonetheless, Bim expression was significantly increased in BITC-treated tumor as 
compared to vehicle alone treated tumors indicating that the in vivo effect of BITC was 
similar to in vitro effects.   
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Fig. 19. BITC inhibits angiogenesis in vivo. (Clin Cancer Res 2011: 17(7); 1784–1795).  

 

 

Fig. 20. BITC down regulates key molecules of survival and angiogenesis pathways. (Natl 
Cancer Inst 2009;101: 176-193. Clin Cancer Res 2011: 17(7); 1784–1795. PLoS ONE 2011: 6(10); 
e25799, 1-12).  
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9. Conclusion 

9.1 Does BITC have multiple targets in pancreatic cancer? 

Since, BITC inhibits the phosphorylation and protein levels of various key survival 
molecules such as STAT3, AKT and NFkB, indicating that BITC has multiple targets in 
pancreatic cancer. However, at this time, it is not clear whether BITC is targeting various 
survival pathways individually or it is the tandem effect upstream regulators. Since 
previous reports showed that STAT3 is being regulated by AKT through FOXO1 
(Kortylewski  et al., 2003) and NFkB is a direct target of AKT (Dan, 2008), presently we 
assume that AKT is the main target of BITC and other targets are obligated events but 
further studies are needed to conclude interaction of these pathways (Fig. 21). 

 

 
Fig. 21. BITC mechanism of action in pancreatic cancer 
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