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1. Introduction  

Standard electromagnetism is based on Maxwell equations and Lorentz force law. It can be 
derived by a least action with the following Lagrangian density for a system of charged 
particles in Gaussian units (e.g., Jackson, 1999),  

 LEMS=LEM+LEM-P+LP=-(1/(16π))[(1/2)┟ik┟jl-(1/2)┟il┟kj]FijFkl-Akjk-ΣI mI[(dsI)/(dt)]├(x-xI), (1) 

where Fij ≡ Aj,i - Ai,j is the electromagnetic field strength tensor with Ai the electromagnetic 4-
potential and comma denoting partial derivation, ┟ij is the Minkowskii metric with signature 
(+, -, -, -), mI the mass of the Ith charged particle, sI its 4-line element, and jk the charge 4-
current density. Here, we use Einstein summation convention, i.e., summation over 
repeated indices. There are three terms in the Lagrangian density LEMS – (i) LEM for the 
electromagnetic field, (ii) LEM-P for the interaction of electromagnetic field and charged 
particles and (iii) LP for charged particles.  

The electromagnetic field Lagrangian density can be written in terms of the electric field E [≡ 
(E1, E2, E3) ≡ (F01, F02, F03)] and the magnetic induction B [≡ (B1, B2, B3) ≡ (F32, F13, F21)] as 

 LEM = (1/8π)[E2-B2].  (2) 

This classical Lagrangian density is based on the photon having zero mass. To include the 
effects of nonvanishing photon mass mphoton, a mass term LProca, 

 LProca = (mphoton2c2/8πħ2)(AkAk),   (3) 

needs to be added (Proca, 1936a, 1936b, 1936c, 1937, 1938). We use ┟ij and its inverse ┟ij to raise 
and lower indices. With this term, the Coulomb law is modified to have the electric potential A0,  

 A0 = q(e-┤r/r),  (4) 

where q is the charge of the source particle, r is the distance to the source particle, and ┤ 
(≡mphotonc/ħ) gives the inverse range of the interaction.  
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Experimental test on Coulomb’s law (Williams, Faller & Hill, 1971) gives a constraint of the 
photon mass as 

 mphoton ≤ 10-14 eV (= 2 × 10-47 g), (5) 

on the interaction range ┤-1 as  

 ┤-1 ≥ 2 × 107 m. (6) 

Photon mass affects the structure and the attenuation of magnetic field and therefore can be 
constrained by measuring the magnetic field of Earth, Sun or an astronomical body 
(Schrödinger, 1943; Bass & Schrödinger, 1955). From the magnetic field measurement of 
Jupiter during Pioneer 10 flyby, constraints are set as (Davis, Goldhaber & Nieto, 1975) 

 mphoton ≤ 4 × 10-16 eV (= 7 × 10-49 g); ┤-1 ≥ 5 × 108 m. (7) 

Using the plasma and magnetic field data of the solar wind, constraints on the photon mass 
are set recently as (Ryutov, 2007) 

 mphoton ≤ 10-18 eV (= 2 × 10-51 g); ┤-1 ≥ 2 × 1011 m. (8) 

Large-scale magnetic fields in vacuum would be direct evidence for a limit on their 
exponential attenuation with distance, and hence a limit on photon mass. Using 
observations on galactic sized fields, Chibisov limit is obtained (Chibisov, 1976)  

 mphoton ≤ 2 × 10-27 eV (= 4 × 10-60 g); ┤-1 ≥ 1020 m. (9) 

For a more detailed discussion of this work and for a comprehensive review on the photon 
mass, please see Goldhaber and Nieto (2010).  

As larger scale magnetic field discovered and measured, the constraints on photon mass and 
on the interaction range may become more stringent. If cosmic scale magnetic field is 
discovered, the constraint on the interaction range may become bigger or comparable to 
Hubble distance (of the order of radius of curvature of our observable universe). If this 
happens, the concept of photon mass may lose significance amid gravity coupling or 
curvature coupling of photons. 

Now we turn to quantum corrections to classical electrodynamics. In classical 
electrodynamics, the Maxwell equations are linear in the electric field E and magnetic field 

B, and we have the principle of superposition of electromagnetic field in vacuum. However, 
in the electrodynamics of continuous matter, media are usually nonlinear and the principle 
of superposition of electromagnetic field is not valid. In quantum electrodynamics, due to 
loop diagrams like the one in Fig. 1, photon can scatter off photon in vacuum. This is the 
origin of invalidity of the principle of superposition and makes vacuum a nonlinear 
medium also. The leading order of this effect in slowly varying electric and magnetic field is 
derived in Heisenberg and Euler (1936) and can be incorporated in the Heisenberg-Euler 
Lagrangian density 

 LHeisenberg-Euler = [2┙2ħ2/45(4π)2m4c6][(E2-B2)2 + 7(E·B)2], (10) 

where ┙ is the fine structure constant and m the electron mass. In terms of critical field 
strength Bc defined as  
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 Bc ≡ Ec ≡ m2c3/eħ =4.4x10l3 G=4.4x109 T=4.4x10l3 statvolt/cm=1.3x10l8 V/m, (11) 

this Lagrangian density can be written as 

 LHeisenberg-Euler = (1/8π) Bc-2 [┟1(E2-B2)2 + 4┟2(E·B)2], (12) 

 ┟1 = ┙/(45π) = 5.1x10-5 and ┟2 = 7┙/(180π) = 9.0 x10-5. (13) 

For time varying and space varying effects of external fields, and higher order corrections in 
quantum electrodynamics, please see Dittrich and Reuter (1985) and Kim (2011a, 2011b) and 
references therein.  

  
Fig. 1. On the left is the basic diagram for light-light scattering and for nonlinear 
electrodynamics; on the right is the basic diagram for the nonlinear light (electromagnetic-
wave) propagation in strong electric and/or magnetic field. 

Before Heisenberg & Euler (1936), Born and Infeld (Born, 1934; Born & Infeld, 1934) 
proposed the following Lagrangian density for the electromagnetic field 

 LBorn-Infeld = -(b2/4π) [1 - (E2-B2)/b2 - (E·B)2/b4]1/2, (14) 

where b is a constant which gives the maximum electric field strength. For field strength 
small compared with b, (14) can be expanded into   

 LBorn-Infeld = (1/8π) [(E2-B2) + (E2-B2)2/b2 + (E·B)2/b2 + O(b-4)]. (15) 

The lowest order of Born-Infeld electrodynamics agrees with the classical electrodynamics. 
The next order corrections are of the form of Eq. (12) with  

 ┟1 = ┟2 = Bc2/b2. (16) 

In the Born-Infeld electrodynamics, b is the maximum electric field. Electric fields at the 
edge of heavy nuclei are of the order of 1021 V/m. If we take b to be 1021 V/m, then, ┟1 = ┟2 = 
5.9 x 10-6. 

For formulating a phenomenological framework for testing corrections to Maxwell-Lorentz 
classical electrodynamics, we notice that (E2-B2) and (E·B) are the only Lorentz invariants 
second order in the field strength, and (E2-B2)2, (E·B)2 and (E2-B2) (E·B) are the only Lorentz 
invariants fourth order in the field strength. However, (E·B) is a total divergence and, by 
itself in the Lagrangian density, does not contribute to the equation of motion (field 
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equation). Multiplying (E·B) by a pseudoscalar field Φ, the term Φ(E·B) is the Lagrangian 
density for the pseudoscalar-photon (axion-photon) interaction. When this term is included 
together with the fourth-order invariants, we have the following phenomenological 
Lagrangian density for our Parametrized Post-Maxwell (PPM) Lagrangian density including 
various corrections and modifications to be tested by experiments and observations, 

 LPPM = (1/8π){(E2-B2)+ξΦ(E·B)+Bc-2[┟1(E2-B2)2+4┟2(E·B)2+2┟3(E2-B2)(E·B)]}. (17) 

This PPM Lagrangian density contains 4 parameters ξ, ┟1, ┟2 & ┟3, and is an extension of the 
two-parameteer (┟1 and ┟2) post-Maxwellian Lagrangian density of Denisov, Krivchenkov 
and Kravtsov (2004). The manifestly Lorentz covariant form of Eq. (17) is 

 LPPM = (1/(32π)){-2FklFkl -ξΦF*klFkl+Bc-2[┟1(FklFkl)2+┟2(F*klFkl)2+┟3(FklFkl)(F*ijFij)]},  (18) 

where  

 F*ij ≡ (1/2)eijkl Fkl, (19) 

with eijkl defined as 

 eijkl ≡ 1 if (ijkl) is an even permutation of (0123); -1 if odd; 0 otherwise. (20) 

In section 2, we derive the PPM nonlinear electrodynamic equations, and in section 3, we 
use them to derive the light propagation equation in PPM nonlinear electrodynamics. In 
section 4, we discuss ultra-high precision laser interferometry experiments to measure the 
parameters of PPM electrodynamics. In section 5, we treat electromagnetism in curved 
spacetime using Einstein Equivalence Principle, and discuss redshift as an application with 
examples from astrophysics and navigation. In section 6, we discuss empirical tests of 
electromagnetism in gravity and the ┯-g framework and find pseudoscalar-photon 
interaction uniquely standing out. In section 7, we discuss the pseudoscalar-photon 
interaction and its relation to other approaches. In section 8, we use Cosmic Microwave 
Background (CMB) observations to constrain the cosmic polarization rotation and discuss 
radio galaxy observations. In section 9, we present a summary and an outlook briefly. 

2. Equations for nonlinear electrodynamics  

In analogue with the nonlinear electrodynamics of continuous media, we can define the 
electric displacement D and the magnetic field H as follows: 

 D≡4π(∂LPPM/∂E)=[1+2┟1(E2-B2)Bc-2+2┟3(E·B)Bc-2]E+[Φ+4┟2(E·B)Bc-2+┟3(E2-B2)Bc-2]B, (21) 

 H≡-4π(∂LPPM/∂B)=[1+2┟1(E2-B2)Bc-2+2┟3(E·B)Bc-2]B-[Φ+4┟2(E·B)Bc-2+┟3(E2-B2)Bc-2]E. (22) 

From D & H, we can define a second-rank Gij tensor, just like from E & B to define Fij tensor. 
With these definitions and following the standard procedure in electrodynamics [see, e.g., 
Jackson (1999), p. 599], the nonlinear equations of the electromagnetic field are 

 curl H = (1/c) ∂D/∂t + 4π J, (23) 

 div D = 4π ρ, (24) 
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 curl E = -(1/c) ∂B/∂t, (25) 

 div B = 0. (26) 

We notice that it has the same form as in macroscopic electrodynamics. The Lorentz force 
law remains the same as in classical electrodynamics:  

 d[(1-vI2/c2)-1/2mIvI]/dt = qI[E + (1/c)vI × B] (27) 

for the I-th particle with charge qI and velocity vI in the system. The source of Φ in this 
system is (E·B) and the field equation for Φ is 

 ∂iLΦ/∂(∂iΦ) - ∂LΦ/∂Φ= E·B, (28) 

where LΦ is the Lagrangian density of the pseudoscalar field Φ. 

3. Electromagnetic wave propagation in PPM electrodynamics 

Here we follow the previous method (Ni et al., 1991; Ni, 1998), and separate the electric field 
and the magnetic induction field into the wave part (small compared to external part) and 
external part as follows: 

 E = Ewave + Eext,  (29) 

 B = Bwave + Bext. (30) 

We use the following expressions to calculate the displacement field Dwave [= (Dwave┙) = 
(Dwave1, Dwave2, Dwave3)] and the magnetic field Hwave [= (Hwave┙) = (Hwave1, Hwave2, Hwave3)] of 
the electromagnetic waves: 

 Dwave┙ = D┙ – Dext┙ = (4π)[(∂LPPM/∂E┙)E&B - (∂LPPM/∂E┙)ext], (31) 

 Hwave┙ = H┙ – Hext┙ = - (4π)[(∂LPPM/∂B┙) E&B - (∂LPPM/∂B┙)ext], (32) 

where (…) E&B means that the quantity inside paranthesis is evaluated at the total field 
values E & B and (…)ext means that the quantity inside paranthesis is evaluated at the 
external field values Eext & Bext. 

Since both the total field and the external field satisfy Eqs. (23)-(26), the wave part also 
satisfy the same form of Eqs. (23)-(26) with the source terms subtracted:  

 curl Hwave = (1/c) ∂Dwave/∂t, (33) 

 div Dwave = 0, (34) 

 curl Ewave = -(1/c) ∂Bwave/∂t, (35) 

 div Bwave = 0. (36) 

After calculating Dwave┙ and Hwave┙ from Eqs. (31) & (32), we express them in the following 
form: 
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 Dwave┙ = Σ┚=13 ┝┙┚ Ewave┚ + Σ┚=13 ┣┙┚ Bwave┚, (37) 

 Hwave┙ = Σ┚=13 (μ-1)┙┚ Bwave┚ - Σ┚=13 ┣┚┙ Ewave┚, (38) 

where 

 ┝┙┚=├┙┚[1+2┟1(E2-B2)Bc-2+2┟3(E·B)Bc-2]+4┟1E┙E┚Bc-2+4┟2B┙B┚Bc-2+2┟3(E┙B┚+E┚B┙)Bc-2, (39) 

 (μ-1)┙┚=├┙┚[1+2┟1(E2-B2)Bc-2+2┟3(E·B)Bc-2]-4┟1B┙B┚Bc-2-4┟2E┙E┚Bc-2+2┟3(E┙B┚+E┚B┙)Bc-2, (40) 

 ┣┙┚=├┙┚[ξ┮+4┟2(E·B) Bc-2+┟3(E2-B2)Bc-2]-4┟1E┙B┚Bc-2+4┟2B┙E┚Bc-2+2┟3(E┙E┚+B┙B┚)Bc-2, (41) 

and we have dropped the upper indices ‘ext’ for simplicity. Note that the coefficients of 
Bwave┚ in Eq. (37) is the negative transpose of the coefficients of Ewave┚ in Eq. (38) and vice 
versa. This is a property derivable from the existence of Lagrangian.  It is a reciprocity 
relation; or simply, action equals reaction. 

Using eikonal approximation, we look for plane-wave solutions. Choose the z-axis in the 
propagation direction. Solving the dispersion relation for ┱, we obtain 

 ┱± = k {1 + (1/4) [(J1+J2) ± [(J1−J2)2 + 4J2]1/2]}, (42) 

where 

 J1 ≡ (┤−1)22 − ┝11 − 2┣12, (43) 

 J2 ≡ (┤−1)11 – ┝22 + 2┣21, (44) 

 J ≡ – ┝12 - (┤−1)12 + ┣11 – ┣22. (45) 

Since the index of refraction n is 

 n = k/┱, (46) 

we find 

 n± = 1 - (1/4) {(J1+J2) ± [(J1−J2)2 + 4J2]1/2}.  (47) 

From this formula, we notice that “no birefringence” is equivalent to J1=J2 and J=0. A 
sufficient condition for this to happen is ┟1 = ┟2, ┟3 = 0, and no constraint on ξ. We will show 
in the following that this is also a necessary condition. The Born-Infeld electrodynamics 
satisfies this condition and has no birefringence in the theory. 

For Eext = 0, we now derive the refractive indices in the transverse external magnetic field 
Bext for the linearly polarized lights whose polarizations (electric fields) are parallel and 
orthogonal to the magnetic field. First, we use Eqs. (39)-(41) & Eqs. (43)-(46) to obtain 

 ┝┙┚=├┙┚[1-2┟1B2Bc-2]+4┟2B┙B┚Bc-2, (48) 

 (μ-1)┙┚=├┙┚[1-2┟1 B2Bc-2]-4┟1B┙B┚Bc-2, (49) 

 ┣┙┚=├┙┚[┮-┟3B2Bc-2] +2┟3B┙B┚Bc-2, (50) 

 J1 =-4┟1B22Bc-2 − 4┟2B12Bc-2 − 4┟3B1B2Bc-2, (51) 
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 J2 =-4┟1B12Bc-2 − 4┟2B22Bc-2 + 4┟3B1B2Bc-2, (52) 

 J = 4┟1B1B2Bc-2 − 4┟2B1B2Bc-2 + 2┟3(B12-B22)Bc-2. (53) 

Using Eq. (47), we obtain the indices of refraction for this case: 

 n± = 1 + {(┟1+┟2) ± [(┟1−┟2)2 +┟32]1/2} (B12+B22)Bc-2. (54) 

The condition of no birefringence in Eq. (54) means that [(┟1−┟2)2 +┟32] vanishes, i.e.,  

 ┟1 = ┟2,  ┟3 = 0, and no constraint on ξ (55) 

This shows that Eq. (55) is a necessary condition for no birefringence. For Eext = 0, the 
refractive indices in the transverse external magnetic field Bext for the linearly polarized 
lights whose polarizations are parallel and orthogonal to the magnetic field, are as follows: 

 n║= 1 + {(┟1+┟2) + [(┟1−┟2)2 +┟32]1/2} (Bext)2Bc-2   (Ewave ║Bext), (56) 

 n┴ = 1 + {(┟1+┟2) - [(┟1−┟2)2 +┟32]1/2} (Bext)2Bc-2   (Ewave ┴ Bext). (57) 

For Bext = 0, we derive in the following the refractive indices in the transverse external 
electric field Eext for the linearly polarized lights whose polarizations (electric fields) are 
parallel and orthogonal to the electric field. First, we use (39)-(41) & (43)-(46) to obtain 

 ┝┙┚=├┙┚[1+2┟1E2Bc-2]+4┟1E┙E┚Bc-2, (58) 

 (μ-1)┙┚=├┙┚[1+2┟1E2Bc-2]-4┟2E┙E┚Bc-2, (59) 

 ┣┙┚=├┙┚[┮+┟3E2Bc-2] +2┟3E┙E┚Bc-2, (60) 

 J1 =-4┟1E12Bc-2 − 4┟2E22Bc-2 − 4┟3E1E2Bc-2, (61) 

 J2 =-4┟1E22Bc-2 − 4┟2E12Bc-2 + 4┟3E1E2Bc-2, (62) 

 J =-4┟1E1E2Bc-2 + 4┟2E1E2Bc-2 + 2┟3(E12-E22)Bc-2. (63) 

Using (47), we obtain the indices of refraction for this case: 

 n± = 1 + {(┟1+┟2) ± [(┟1−┟2)2 +┟32]1/2} (E12+E22)Bc-2. (64) 

The condition of no birefringence in (64) is the same as (55), i.e., that [(┟1−┟2)2 +┟32] 
vanishes. For Bext = 0, the refractive indices in the transverse external magnetic field Eext for 
the linearly polarized lights whose polarizations are parallel and orthogonal to the magnetic 
field, are as follows: 

 n║= 1 + {(┟1+┟2) + [(┟1−┟2)2 +┟32]1/2} (Eext)2Bc-2   (Ewave║Eext), (65) 

 n┴ = 1 + {(┟1+┟2) - [(┟1−┟2)2 +┟32]1/2} (Eext)2Bc-2   (Ewave ┴ Eext). (66) 

The magnetic field near pulsars can reach 1012 G, while the magnetic field near magnetars 
can reach 1015 G. The astrophysical processes in these locations need nonlinear 
electrodynamics to model. In the following section, we turn to experiments to measure the 
parameters of the PPM electrodynamics. 
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4. Measuring the parameters of the PPM electrodynamics 

There are four parameters ┟1, ┟2, ┟3, and ξ in PPM electrodynamics to be measured by 
experiments. For the QED (Quantum Electrodynamics) corrections to classical 
electrodynamics, ┟1 = ┙/(45π) = 5.1x10-5, ┟2 = 7┙/(180π) = 9.0 x10-5, ┟3 = 0, and ξ = 0. There 
are three vacuum birefringence experiments on going in the world to measure this QED 
vacuum birefringence – the BMV experiment (Battesti et al., 2008), the PVLAS experiment 
(Zavattini et al.. 2008) and the Q & A experiment (Chen et al., 2007; Mei et al., 2010). The 
birefringence Δn in the QED vacuum birefringence in a magnetic field Bext is  

 Δn = n║ - n┴ = 4.0 x 10-24 (Bext/1T)2. (67) 

For 2.3 T field of the Q & A rotating permanent magnet, Δn is 2.1 x 10-23. This is about the 
same order of magnitude change in fractional optical path-length that ground 
interferometers for gravitational-wave detection aim at. Quite a lot of techniques developed 
in the gravitational-wave detection community are readily applicable for vacuum 
birefringence detection (Ni et al., 1991). 

 
Fig. 2. Principle of vacuum dichroism and birefringence measurement. 

The basic principle of these experimental measurements is shown as Fig. 2. The laser light 
goes through a polarizer and becomes polarized. This polarized light goes through a region 
of magnetic field. Its polarization status is subsequently analyzed by the analyzer-detector 
subsystem to extract the polarization effect imprinted in the region of the magnetic field. 
Since the polarization effect of vacuum birefringence in the magnetic field that can be 
produced on earth is extremely small, one has to multiply the optical pass through the 
magnetic field by using reflections or Fabry-Perot cavities. An already performed 
experiment, the BFRT experiment (Cameron et al., 1993) used multiple reflections; PVLAS, 
Q & A, BMV experiments all use Fabry-Perot cavities. For polarization experiment, Fabry-
Perot cavity has the advantage of normal incidence of laser light which suppressed the part 
of polarization due to slant angle of reflections. With Fabry-Perot cavity, one needs to 
control the laser frequency and/or the cavity length so that the cavity is in resonance. With a 
finesse of 30,000, the resonant width (FWHM) is 17.7 pm for light with 1064 nm wavelength; 
when rms cavity length control is 10 % of this width, the precision would be 2.1 pm. Hence, 
one needs a feedback mechanism to lock the cavity to the laser or vice versa. For this, a 
commonly used scheme is Pound-Drever-Hall method (Drever et al., 1983). Vibration 
introduces noises in the Fabry-Perot cavity mirrors and hence, in the light intensity and light 
polarization transmitted through the Fabry-Perot cavity. Since the analyzer-detector 
subsystem detects light intensity to deduce the polarization effect, both intensity noise and 
polarization noise will contribute to the measurement results. Gravitational-wave 
community has a long-standing R & D on this. We benefit from their research 
advancements. 
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Now we illustrate with our Q & A experiment. Since 1991 we have worked on precision 
interferometry --- laser stabilization schemes, laser metrology and Fabry-Perot 
interferometers. With these experiences, we started in 1994 to build a 3.5 m prototype 
interferometer for measuring vacuum birefringence and improving the sensitivity of axion 
search as part of our continuing effort in precision interferometry. In 2002, we finished 
Phase I of constructing the 3.5 m prototype interferometer and made some Cotton-Mouton 
coefficient and Verdet coefficient measurements with a 1T electromagnet (Wu et al., 2002). 
The two vacuum tanks shown on the left photo of Fig. 3 house the two 5 cm-diameter 
Pabry-Perot mirrors with their suspensions; the 1T electromagnet had been in place of 
permanent magnet in the middle of the photo. 

 
Fig. 3. Photo on the left-hand side shows the Q & A apparatus for Phase II experiment; 
photo on the right-hand side shows the Q & A apparatus for Phase III experiment. 

Starting 2002, we had been in Phase II of Q & A experiment until 2008. The results of Phase 
II on dichroism and Cotton-Mouton effect measurement had been reported (Chen et al., 
2007; Mei et al. 2009). At the end of Phase II, our sensitivity was still short from detection of 
QED vacuum birefringence by 3 orders of magnitude; so was the PVLAS experiment and 
had been the BFRT experiment. In 2009, we started Phase III of the Q & A experiment to 
extend the 3.5 m interferometer to 7 m with various upgrades. Photo on the left of Fig. 3 
shows the apparatus for Phase II; photo on the right side of Fig. 3 shows the apparatus for 
Phase III, with the big (front) tank moved further to the front (out of the photo). The laser 
has been changed to 532 nm wavelength and is located next and beyond the front tank. We 
have installed a new 1.8 m 2.3 T permanent magnet (in the middle to bottom of right side 
photo) capable of rotation up to 13 cycles per second to enhance the physical effects. We are 
working with 532 nm Nd:YAG laser as light source with cavity finesse around 100,000, and 
aim at 10 nrad(Hz)-1/2 optical sensitivity. With all these achieved and the upgrading of 
vacuum, for a period of 50 days (with duty cycle around 78 % as performed before) the 
vacuum birefringence measurement would be improved in precision by 3-4 orders of 
magnitude, and QED birefringence would be measured to 28 % (Mei et al., 2010). To 
enhance the physical effects further, another 1.8 m magnet will be added in the future. 

All three ongoing experiments – PVLAS, Q &A, and BMV – are measuring the birefringence 
Δn, and hence, ┟1−┟2 in case ┟3 is assumed to be zero. To measure ┟1 and ┟2 separately, one-

www.intechopen.com



 
Trends in Electromagnetism – From Fundamentals to Applications 

 

54

arm common path polarization measurement interferometer is not enough. We need a two-
arm interferometer with the paths in two arms in magnetic fields with different strengths (or 
one with no magnetic field). 

To measure ┟3 in addition, one needs to use both external electric and external magnetic 
field. One possibility is to let light goes through strong microwave cavity and interferes. 
Suppose light propagation direction is the same as the microwave propagation direction 
which is perpendicular to the microwave fields. Let’s choose z-axis to be in the propagation 
direction, x-axis in the Eext direction and y-axis in the Bext direction, i.e., k = (0, 0, k), Eext = (E, 
0, 0) and Bext = (0, B, 0). We calculate the indices of refraction using Eqs. (39)-(47) without 
first assuming E = B and obtain the following 

 ┝┙┚: ┝11=1+2┟1(E2-B2)Bc-2+4┟1E2Bc-2; ┝22=1+2┟1(E2-B2)Bc-2+4┟2B2Bc-2;   

 ┝33=1+2┟1(E2-B2)Bc-2; ┝12=┝21=2┟3EBBc-2; ┝13=┝23=┝31=┝32=0, (68) 

 (μ-1)┙┚: (μ-1)11=1+2┟1(E2-B2)Bc-2-4┟2E2Bc-2; (μ-1)22=1+2┟1(E2-B2)Bc-2-4┟1B2Bc-2;   

 (μ-1)33=1+2┟1(E2-B2)Bc-2; (μ-1)12=(μ-1)21=2┟3EBBc-2; (μ-1)13=(μ-1)23=(μ-1)13=(μ-1)23=0, (69) 

 ┣┙┚: ┣11=ξ┮+┟3(E2-B2)Bc-2+2┟3E2Bc-2; ┣22=ξ┮+┟3(E2-B2)Bc-2+2┟3B2Bc-2;        

 ┣33=ξ┮+┟3(E2-B2)Bc-2; ┣12=-4┟1EBBc-2; ┣21=4┟2EBBc-2; ┣13=┣23=┣31=┣32=0, (70) 

 J1 ≡ -4┟1(E2+B2)Bc-2+4┟1EBBc-2, (71) 

 J2 ≡ -4┟2(E2+B2)Bc-2+4┟2EBBc-2, (72) 

 J ≡ 2┟3(E2-B2)Bc-2, (73) 

 n± = 1 + (η1+η2)(E2+B2-EB)Bc-2± [(η1-η2)2(E2+B2-EB)2+┟32(E2-B2)]1/2 Bc-2.  (74) 

As a consistent check, there is no birefringence in Eq. (74) for ┟1 = ┟2, ┟3 = 0.  

Now, we consider two special cases for Eq. (74): (i) E=B as in the strong microwave cavity, 
the indices of refraction for light is  

 n± = 1 + (η1+η2)B2Bc-2±(η1-η2)B2Bc-2,  (75) 

with birefringence Δn given by 

 Δn = 2(η1-η2)B2Bc-2;  (76) 

(ii) E=0, B≠0, the indices of refraction for light is  

 n± = 1 + (η1+η2)B2Bc-2±[(η1-η2)2+┟32]1/2B2Bc-2,  (77) 

with birefringence Δn given by 

 Δn = 2[(η1-η2)2+┟32]1/2B2Bc-2.  (78) 

Equation (77) agrees with (54) derived earlier. 
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To measure ┟1, ┟2 and ┟3, we could do the following three experiments to determine them: 
(i) to measure the birefringence Δn = 2(┟1-┟2)B2Bc-2 of light with the external field provided 
by a strong microwave cavity or wave guide to determine ┟1-┟2; (ii) to measure the 
birefringence Δn = 2[(┟1-┟2)2+┟32]1/2B2Bc-2 of light with the external magnetic field provided 
by a strong magnet to determine ┟3 with ┟1-┟2 determined by (i); (iii) to measure ┟1 and ┟2 
separately using two-arm interferometer with the paths in two arms in magnetic fields with 
different strengths (or one with no magnetic field). 

As to the term ξΦ and parameter ξ, it does not give any change in the index of refraction. 
However, as we will see in section 7 and section 8, it gives a polarization rotation and the 
effect can be measured though observations with astrophysical and cosmological 
propagation of electromagnetic waves. 

5. Electromagnetism in curved spacetime and the Einstein equivalence 
principle 

In the earth laboratory, where variation of gravity is small, we can use standard Maxwell 
equations together with Lorentz force law for ordinary measurements and experiments. 
However, in precision experiments on earth, in space, in the astrophysical situation or in 
the cosmological setting, the gravity plays an important role and is non-negligible. In the 
remaining part of this chapter, we address to the issue of electromagnetism in gravity and 
more empirical tests of electromagnetism and special relativity. The standard way of 
including gravitational effects in electromagnetism is to use the comma-goes-to-semicolon 
rule, i. e., the principle of equivalence (the minimal coupling rule). This is the essence of 
Einstein Equivalence Principle (EEP) which states that everywhere in the 4-dimensional 
spacetime, locally, the physics is that of special relativity. This guarantees that the 4-
dimensional geometry can be described by a metric gij which can be transformed into the 
Minkowski metric locally. In curved spacetime, ┟ij is replaced by gij with partial derivative 
(comma) replaced by the covariant derivative in the gij metric (semi-colon) in the 
Lagrangian density for a system of charged particles. When this is done the Lagrangian 
density becomes 

 LI = - (1/(16π))┯GRijkl Fij Fkl - Ak jk (-g)(1/2) - ΣI mI (dsI)/(dt) ├(x-xI), (79) 

where the GR (General Relativity) constitutive tensor ┯GRijkl is given by 

 ┯GRijkl = (-g)1/2 [(1/2) gik gjl - (1/2) gil gkj], (80) 

and g is the determinant of gij. In general relativity or metric theories of gravity where EEP 
holds, the line element near a world point (event) P is given by 

 ds2 = gij dxi dxj = gAB dxA dxB = [┟AB + O((ΔxC)2)] dxA dxB, (81) 

where {xi} is an arbitrary coordinate system, {xA} is a locally inertial frame, and gij & gAB 
are the metric tensor in their respective frames. According to the definition of locally 
inertial frame, we have gAB = ┟AB + O((ΔxC)2). Therefore, in the locally inertial system near 
P, special relativity holds up to the curvature ambiguity, and the definition of rods and 
clocks is the same as in the special relativity including local quantum mechanics and 
electromagnetism. 
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Nevertheless, for long range propagation and large-scale phenomenon, curvature effects are 
important. For long range electromagnetic propagation, wavelength/frequency shift is 
important. From distant quasars, the redshift factor z exceeds 6, i.e., the wavelength changes 
by more than 6-fold. The gravitational redshift is given by 

 ΔτA/ΔτB = g00(B)/g00(A), (82) 

where ΔτA and ΔτB are the proper periods of a light signal emitted by a source A and 
received by B respectively. This formula applies equally well to the solar system, to galaxies 
and to cosmos. Its realm of practical application is in clock and frequency comparisons. In 
the weak gravitational field such as near earth or in the solar system, we have 

 g00 = 1-2U/c2, (83) 

in the first approximation, where U is the Newtonian potential. On the surface of earth, U/c2 
≈ 0.7 x 10-9 and the redshift is a fraction of it. This redshift is measured in the laboratory and 
in space borne missions. It is regularly corrected for the satellite navigation systems such as 
GPS, GLONASS, Galileo and Beidou. Another effect of electromagnetic propagation in 
gravity is its deflection with important application to gravitational lensing effects in 
astrophysics. 

6. Empirical tests of electromagnetism in gravity and the χ-g framework  

In section 1, we have discussed the constraints on Proca part of Lagrangian density, i.e., 
photon mass. In this section, we discuss the empirical foundation of the Maxwell (main) part 
of electromagnetism. First we need a framework to interpret experimental tests. A natural 
framework is to extend the GR constitutive tensor ┯GRijkl [equation (80)] into a general form, 
and look for experimental and observational evidences to test it to see how much it is 
constrained to the GR form. The general framework we adopt is the ┯-g framework (Ni, 
1983a, 1984a, 1984b, 2010). 

The ┯-g framework can be summarized in the following interaction Lagrangian density 

 LI = - (1/(16π))┯ijkl Fij Fkl - Ak jk (-g)(1/2) - ΣI mI (dsI)/(dt) ├(x-xI), (84) 

where ┯ijkl = ┯klij = -┯jikl is a tensor density of the gravitational fields (e.g., gij, ϕ, etc.) or fields 
to be investigated and Fij ≡ Aj,i - Ai,j etc. have the usual meaning in classical 
electromagnetism. The gravitation constitutive tensor density ┯ijkl dictates the behaviour of 
electromagnetism in a gravitational field and has 21 independent components in general. 
For general relativity or a metric theory (when EEP holds), ┯ijkl is determined completely by 
the metric gij and equals (-g)1/2 [(1/2) gik gjl - (1/2) gil gjk].  

In the following, we use experiments and observations to constrain the 21 degrees of 
freedom of ┯ijkl to see how close we can reach general relativity. This procedure also serves 
to reinforce the empirical foundations of classical electromagnetism as EEP locally is based 
on special relativity including classical electromagnetism. 

In the ┯-g framework, for a weak gravitational field, 

 ┯ijkl = ┯(0)ijkl + ┯(1)ijkl, (85) 
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where 

 ┯(0)ijkl = (1/2)┟ik┟jl- (1/2)┟il┟kj, (86) 

with ┟ij the Minkowski metric and |┯(1)ijkl| << 1 for all i, j, k, and l. The small special 
relativity violation (constant part), if any, is put into the ┯(1)ijkl's. In this field the dispersion 
relation for ┱ for a plane-wave propagating in the z-direction is 

 ┱± = k{1+(1/4)[(K1+K2) ± [(K1-K2)2 + 4 K2]1/2]}, (87) 

where 

 K1 =┯(1)1010 - 2┯(1)1013 +┯(1)1313, (88) 

 K2 =┯(1)2020 - 2┯(1)2023+┯(1)2323, (89) 

 K =┯(1)1020 - ┯(1)1023-┯(1)1320+┯(1)1323. (90) 

Photons with two different polarizations propagate with different speeds V± = ┱±/k and 
would split in 4-dimensional spacetime. The conditions for no splitting (no retardation) is ┱+ 
= ┱-, i.e., 

 K1 = K2,     K = 0. (91) 

Eq. (91) gives two constraints on the ┯(1)ijkl's (Ni, 1983a, 1984a, 1984b). 

Constraints from no birefringence. The condition for no birefringence (no splitting, no 
retardation) for electromagnetic wave propagation in all directions in the weak field limit 
gives ten independent constraint equations on the constitutive tensor ┯ijkl's. With these ten 
constraints, the constitutive tensor ┯ijkl can be written in the following form 

 ┯ijkl=(-H)1/2[(1/2)Hik Hjl-(1/2)Hil Hkj]┰ + ┮eijkl, (92) 

where H = det (Hij) and Hij is a metric which generates the light cone for electromagnetic 
propagation (Ni, 1983a, 1984a,b). Note that (92) has an axion degree of freedom, ┮eijkl, and a 
‘dilaton’ degree of freedom, ┰. Lämmerzahl and Hehl (2004) have shown that this non-
birefringence guarantees, without approximation, Riemannian light cone, i.e., Eq. (92) holds 
without the assumption of weak field also. To fully recover EEP, we need (i) good 
constraints from no birefringence, (ii) good constraints on no extra physical metric, (iii) good 
constraints on no ┰ (‘dilaton’), and (iv) good constraints on no ┮ (axion) or no pseudoscalar-
photon interaction. 

Eq. (92) is verified empirically to high accuracy from pulsar observations and from 
polarization measurements of extragalactic radio sources. With the null-birefringence 
observations of pulsar pulses and micropulses before 1980, the relations (92) for testing EEP 
are empirically verified to 10-14 – 10-16 (Ni, 1983a, 1984a, 1984b). With the present pulsar 
observations, these limits would be improved; a detailed such analysis is given by Huang 
(2002). Analyzing the data from polarization measurements of extragalactic radio sources, 
Haugan and Kauffmann (1995) inferred that the resolution for null-birefringence is 0.02 
cycle at 5 GHz. This corresponds to a time resolution of 4 × 10-12 s and gives much better 
constraints. With a detailed analysis and more extragalactic radio observations, (92) would 
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be tested down to 10-28-10-29 at cosmological distances. In 2002, Kostelecky and Mews (2002) 
used polarization measurements of light from cosmologically distant astrophysical sources 
to yield stringent constraints down to 2 × 10-32. For a review, see Ni (2010). In the remaining 
part of this subsection, we assume (92) to be correct. 

Constraints on one physical metric and no ‘dilaton’ (┰). Let us now look into the empirical 
constraints for Hij and ┰. In Eq. (84), ds is the line element determined from the metric gij. 
From Eq. (92), the gravitational coupling to electromagnetism is determined by the metric 
Hij and two (pseudo)scalar fields ┮ ‘axion’ and ┰ ‘dilaton’. If Hij is not proportional to gij, 
then the hyperfine levels of the lithium atom, the beryllium atom, the mercury atom and 
other atoms will have additional shifts. But this is not observed to high accuracy in Hughes-
Drever experiments (Hughes et al., 1960; Beltran-Lopez et al., 1961; Drever, 1961; Ellena et 
al., 1987; Chupp et al., 1989). Therefore Hij is proportional to gij to certain accuracy. Since a 
change of Hik to ┣Hij does not affect ┯ijkl in Eq. (92), we can define H11 = g11 to remove this 
scale freedom (Ni, 1983a, 1984a). For a review, see Ni (2010). 

Eötvös-Dicke experiments (Eötvös, 1890; Eötvös et al., 1922; Roll et al., 1964; Braginsky and 
Panov, 1971; Schlamminger et al., 2008 and references therein) are performed on 
unpolarized test bodies. In essence, these experiments show that unpolarized electric and 
magnetic energies follow the same trajectories as other forms of energy to certain accuracy. 
The constraints on Eq. (92) are  

 | 1-┰ | / U < 10-10, (93) 

and 

 | H00 - g00 | / U < 10-6, (94) 

where U (~ 10-8) is the solar gravitational potential at the earth. 

In 1976, Vessot et al. (1980) used an atomic hydrogen maser clock in a space probe to test 
and confirm the metric gravitational redshift to an accuracy of 1.4 × 10-4, i. e.,  

 | H00 - g00 | / U ≤ 1.4 × 10-4, (95) 

where U is the change of earth gravitational field that the maser clock experienced.  

With constraints from (i) no birefringence, (ii) no extra physical metric, (iii) no ┰ (‘dilaton’), 
we arrive at the theory (84) with ┯ijkl given by  

 ┯ijkl = (-g)1/2 [(1/2) gik gjl - (1/2) gil gkj + ┮ ┝ijkl], (96) 

i.e., an axion theory (Ni, 1983a, 1984a; Hehl and Obukhov 2008). Here ┝ijkl is defined to be (-
g)-1/2 eijkl. The current constraints on ┮ from astrophysical observations and CMB 
polarization observations will be discussed in section 8. Thus, from experiments and 
observations, only one degree of freedom of ┯ijkl is not much constrained. 

Now let’s turn into more formal aspects of equivalence principles. We proved that for a 
system whose Lagrangian density is given by Eq. (84), the Galileo Equivalence Principle 
(UFF [Universality of Free Fall; WEP I [Weak Equivalence Principle I]) holds if and only if 
Eq. (96) holds (Ni, 1974, 1977). 
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If ┮ ≠ 0 in (96), the gravitational coupling to electromagnetism is not minimal and EEP is 
violated. Hence WEP I does not imply EEP and Schiff's conjecture (which states that WEP I 
implies EEP) is incorrect (Ni, 1973, 1974, 1977).  However, WEP I does constrain the 21 
degrees of freedom of ┯ to only one degree of freedom (┮), and Schiff's conjecture is largely 
right in spirit. 

The theory with ┮ ≠ 0 is a pseudoscalar theory with important astrophysical and cosmological 
consequences (section 8). This is an example that investigations in fundamental physical laws 
lead to implications in cosmology. Investigations of CP problems in high energy physics leads 
to a theory with a similar piece of Lagrangian with ┮ the axion field for QCD [Quantum 
Chromodynamics] (Peccei and Quinn, 1977; Weinberg, 1978; Wilczek, 1978). 

In the nonmetric theory with ┯ijkl (┮ ≠ 0) given by Eq. (96) (Ni 1973, 1974, 1977), there are 
anomalous torques on electromagnetic-energy-polarized bodies so that different test bodies 
will change their rotation state differently, like magnets in magnetic fields. Since the motion 
of a macroscopic test body is determined not only by its trajectory but also by its rotation 
state, the motion of polarized test bodies will not be the same. We, therefore, have proposed 
the following stronger weak equivalence principle (WEP II) to be tested by experiments, 
which states that in a gravitational field, both the translational and rotational motion of a 
test body with a given initial motion state is independent of its internal structure and 
composition (universality of free-fall motion) (Ni 1974, Ni 1977). To put in another way, the 
behavior of motion including rotation is that in a local inertial frame for test-bodies. If WEP 
II is violated, then EEP is violated. Therefore from above, in the ┯-g framework, the 
imposition of WEP II guarantees that EEP is valid.  

WEP II state that the motion of all six degrees of freedom (3 translational and 3 rotational) 
must be the same for all test bodies as in a local inertial frame. There are two different 
scenarios that WEP II would be violated: (i) the translational motion is affected by the 
rotational state; (ii) the rotational state changes with angular momentum (rotational 
direction/speed) or species. Recent experimental results of Gravity Probe B experiment with 
rotating quartz balls in earth orbit (Everitt et al., 2011) not just verifies frame-dragging effect, 
but also verifies both aspects of WEP II for unpolarized-bodies to an ultimate precision (Ni, 
2011). 

In this section, we have shown that the empirical foundation of classical electromagnetism is 
solid except in the aspect of a pseudoscalar-photon interaction. This exception has important 
consequences in cosmology. In the following two sections, we address this issue. 

7. Pseudoscalar-photon interaction  

In this section, we discuss the modified electromagnetism in gravity with the pseudoscalar-
photon interaction which was reached in the last section, i.e., the theory with the 
constitutive tensor density (96). Its Lagrangian density is as follows 

 LI = - (1/(16π))(-g)1/2[(1/2)gikgjl-(1/2)gilgkj+┮ ┝ijkl]FijFkl - Ak jk(-g)(1/2) - ΣI mI(dsI)/(dt)├(x-xI). (97) 

In the constitutive tensor density and the Lagrangian density, ϕ is a scalar or pseudoscalar 
function of relevant variables. If we assume that the ϕ-term is local CPT invariant, then ϕ 
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should be a pseudoscalar (function) since ┝ijkl is a pseudotensor. The pseudoscalar(scalar)-
photon interaction part (or the nonmetric part) of the Lagrangian density of this theory is 

 L(┮┛┛) = L(NM) = - (1/16π) ┮ eijklFijFkl =  - (1/4π) ┮,i eijklAjAk,l (mod div),  (98) 

where ‘mod div’ means that the two Lagrangian densities are related by integration by parts 
in the action integral. This term gives pseudoscalar-photon-photon interaction in the 
quantum regime and can be denoted by L(┮┛┛). This term is also the ξ-term in the PPM 
Lagrangian density LPPM with the ┮ ≡ (1/4)ξΦ correspondence. The Maxwell equations (Ni 
1973, 1977) from Eq. (97) become 

 Fik;k + ┝ikml Fkmϕ,l = -4πji, (99) 

where the derivation ; is with respect to the Christoffel connection of the metric. The Lorentz 
force law is the same as in metric theories of gravity or general relativity. Gauge invariance 
and charge conservation are guaranteed. For discussions on the tests of charge conservation, 
and on the limits of differences in active and passive charges, please see Lämmerzahl et al. 
(2005, 2007). The modified Maxwell equations (99) are also conformally invariant. 

The rightest term in equation (99) is reminiscent of Chern-Simons (1974) term e┙┚┛ A┙ F┚┛. There are 
two differences: (i) Chern-Simons term is in 3 dimensional space; (ii) Chern-Simons term in the 
integral is a total divergence (Table 1). However, it is interesting to notice that the cosmological 
time may be defined through the Chern-Simons invariant (Smolin and Soo, 1995).  

 

Term Dimension Reference Meaning 

e┙┚┛ A┙ F┚┛ 3 Chern-Simons (1974) 
Intergrand for topological 

invarinat 

eijkl ┮ Fij Fkl 4 
Ni 

(1973, 1974, 1977) 
Pseudoscalar-photon coupling 

eijkl ┮ FQCD
ij FQCD

kl 4 
Peccei-Quinn (1977) 

Weinberg (1978) 
Wilczek (1978) 

Pseudoscalar-gluon 
coupling 

eijkl Vi Aj Fkl 4 
Carroll-Field-Jackiw 

(1990) 
External constant vector coupling 

Table 1. Various terms in the Lagrangian and their meaning. 

A term similar to the one in equation (98), axion-gluon interaction term, occurs in QCD in an 
effort to solve the strong CP problem (Peccei & Quinn, 1977; Weinberg, 1978; Wilczek, 1978). 
Carroll, Field and Jackiw (1990) proposed a modification of electrodynamics with an 
additional eijkl Vi Aj Fkl term with Vi a constant vector (See also Jackiw, 2007). This term is a 
special case of the term eijkl ┮ Fij Fkl (mod div) with ┮,i = - ½Vi. 

Various terms in the Lagrangians discussed in this subsection are listed in Table 1. Empirical 
tests of the pseudoscalar-photon interaction (98) will be discussed in next section. 

8. Cosmic polarization rotation  

For the electromagnetism in gravity with an effective pseudoscalar-photon interaction 
discussed in the last section, the electromagnetic wave propagation equation is governed by 
equation (99). In a local inertial (Lorentz) frame of the g-metric, it is reduced to  
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 Fik,k + eikml Fkm ┮,l = 0. (100) 

Analyzing the wave into Fourier components, imposing the radiation gauge condition, and 
solving the dispersion eigenvalue problem, we obtain k = ┱ + (n┤┮,μ + ┮,0) for right circularly 
polarized wave and k = ┱ – (n┤┮,μ + ┮,0) for left circularly polarized wave in the eikonal 
approximation (Ni 1973). Here n┤ is the unit 3-vector in the propagation direction. The 
group velocity is  

 vg = ∂┱/∂k = 1, (101) 

which is independent of polarization. There is no birefringence. For the right circularly 
polarized electromagnetic wave, the propagation from a point P1 = {x(1)i} = {x(1)0; x(1)μ} = {x(1)0, 
x(1)1, x(1)2, x(1)3} to another point P2 = {x(2)i} = {x(2)0; x(2)μ} = {x(2)0, x(2)1, x(2)2, x(2)3} adds a phase of 
┙ = ┮(P2) - ┮(P1) to the wave; for left circularly polarized light, the added phase will be 
opposite in sign (Ni 1973). Linearly polarized electromagnetic wave is a superposition of 
circularly polarized waves. Its polarization vector will then rotate by an angle ┙. Locally, the 
polarization rotation angle can be approximated by  

 ┙ = ┮(P2)-┮(P1) =Σi=03 [┮,i ×(x(2)i - x(1)i)] =Σi=03 [┮,iΔxi] = ┮,0Δx0 + [Σμ=13┮,μΔxμ]  

 = - (½) Σi=03 [ViΔxi] = - (½) V0Δx0 – (½) [Σμ=13VμΔxμ] (102) 

The rotation angle in (102) consists of 2 parts -- ┮,0Δx0 and [Σμ=13┮,μΔxμ]. For light in a local 
inertial frame, |Δxμ| = |Δx0|. In Fig. 4, space part of the rotation angle is shown. The 
amplitude of the space part depends on the direction of the propagation with the tip of 
magnitude on upper/lower sphere of diameter |Δxμ| × |┮,┤|. The time part is equal to Δx0 
┮,0. (∇┮ ≡ [┮,┤]) When we integrate along light (wave) trajectory in a global situation, the 
total polarization rotation (relative to no ┮-interaction) is again Δ┮ = ┮2 – ┮1 for ┮ is a scalar 
field where ┮1 and ┮2 are the values of the scalar field at the beginning and end of the wave. 
When the propagation distance is over a large part of our observed universe, we call this 
phenomenon cosmic polarization rotation (Ni, 2008, 2009a, 2010).  

In the CMB polarization observations, there are variations and fluctuations. The variations 
and fluctuations due to scalar-modified propagation can be expressed as ├┮(2) - ├┮(1), 
where 2 denotes a point at the last scattering surface in the decoupling epoch and 1 
observation point. ├┮(2) is the variation/fluctuation at the last scattering surface. ├┮(1) at 
the present observation point is zero or fixed. Therefore the covariance of fluctuation 
<[├┮(2) - ├┮(1)]2> gives the covariance of ├┮2(2) at the last scattering surface. Since our 
Universe is isotropic to ~ 10-5, this covariance is ~ (┪× 10-5)2 where the parameter ┪ depends 
on various cosmological models. (Ni, 2008, 2009a, 2010) 

Now we must say something about nomenclature. 

Birefringence, also called double refraction, refers to the two different directions of 
propagation that a given incident ray can take in a medium, depending on the direction of 
polarization. The index of refraction depends on the direction of polarization. 

Dichroic materials have the property that their absorption constant varies with polarization. 
When polarized light goes through dichroic material, its polarization is rotated due to 
difference in absorption in two principal directions of the material for the two polarization 
components. This phenomenon or property of the medium is called dichroism. 
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Fig. 4. Space contribution to the local polarization rotation angle -- [Σμ=13┮, μΔxμ] = |∇┮| cos 
┠ Δx0. The time contribution is ┮,0 Δx0. The total contribution is (|∇┮| cos ┠ + ┮,0) Δx0. (Δx0 > 
0). 

In a medium with optical activity, the direction of a linearly polarized beam will rotate as it 
propagates through the medium. A medium subjected to magnetic field becomes optically 
active and the associated polarization rotation is called Faraday rotation. 

Cosmic polarization rotation is neither dichroism nor birefringence. It is more like optical 
activity, with the rotation angle independent of wavelength. Conforming to the common 
usage in optics, one should not call it cosmic birefringence -- a misnomer. 

Now we review and compile the constraints of various analyses from CMB polarization 
observations.  

In 2002, DASI microwave interferometer observed the polarization of the cosmic 
background (Kovac et al., 2002). E-mode polarization is detected with 4.9 ┫. The TE 
correlation of the temperature and E-mode polarization is detected at 95% confidence. This 
correlation is expected from the Raleigh scattering of radiation. However, with the 
(pseudo)scalar-photon interaction under discussion, the polarization anisotropy is shifted 
differently in different directions relative to the temperature anisotropy due to propagation; 
the correlation will then be downgraded. In 2003, from the first-year data (WMAP1), WMAP 
found that the polarization and temperature are correlated to more than 10 ┫ (Bennett et al 
2003). This gives a constraint of about 10-1 for Δ┮ (Ni, 2005a, 2005b).  

Further results and analyses of CMB polarization observations came out after 2006. In Table 
2, we update our previous compilations (Ni 2008, 2010). Although these results look 
different at 1 ┫ level, they are all consistent with null detection and with one another at 2 ┫ 
level.  

|∇┮| Δx0  
(in the direction of ∇┮) 

θ 

|∇┮| cos ┠ Δx0  
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Analysis 
Constraint 

[mrad] 
Source data 

Ni (2005a, b) ±100 WMAP1 (Bennett et al 2003) 

Feng, Li, Xia, Chen & Zhang (2006) -105 ± 70 
WMAP3 (Spergel et al 2007) & 

BOOMERANG (B03) (Montroy et al 2006) 
Liu, Lee & Ng (2006) ±24 BOOMERANG (B03) (Montroy et al 2006) 

Kostelecky & Mews (2007) 209 ± 122 BOOMERANG (B03) (Montroy et al 2006) 
Cabella, Natoli & Silk (2007) -43 ± 52 WMAP3 (Spergel et al 2007) 

Xia, Li, Wang & Zhang (2008) -108 ± 67 
WMAP3 (Spergel et al 2007) & 

BOOMERANG (B03) (Montroy et al 2006) 
Komatsu et al (2009) -30 ± 37 WMAP5 (Komatsu et al 2009) 

Xia, Li, Zhao & Zhang (2008) -45 ± 33 
WMAP5 (Komatsu et al 2009) & 

BOOMERANG (B03) (Montroy et al 2006) 
Kostelecky & Mews (2008) 40 ± 94 WMAP5 (Komatsu et al 2009) 

Kahniashvili, Durrer & Maravin (2008) ± 44 WMAP5 (Komatsu et al 2009) 
Wu et al (2009) 9.6 ± 14.3 ± 8.7 QuaD (Pryke et al 2009) 

Brown et al. (2009) 11.2 ± 8.7 ± 8.7 QuaD (Brown et al 2009) 
Komatsu et al. (2011) -19 ± 22 ± 26 WMAP7 (Komatsu et al 2011) 

Table 2. Constraints on cosmic polarization rotation from CMB polarization observations. 
[See Ni (2010) for detailed references.]  

Both magnetic field and potential new physics affect the propagation of CMB propagation 
and generate BB power spectra from EE spectra of CMB. The Faraday rotation due to 
magnetic field is wavelength dependent while the cosmic polarization rotation due to 
effective pseudoscalar-photon interaction is wavelength-independent. This property can 
be used to separate the two effects. With the tensor mode generated by these two effects 
measured and subtracted, the remaining tensor mode perturbations could be analyzed for 
signals due to primordial (inflationary) gravitational waves (GWs). In Ni (2009a,b), we 
have discussed the direct detectability of these primordial GWs using space GW  
detectors.  

Observations of radio and optical/UV polarization of radio galaxies are also sensitive to 
measure/test the cosmic polarization rotation, and give comparable constraints of tens of 
mrad. These observations have the capability of determining the polarization rotation in 
various directions. For a recent work, see di Serego Alighieri et al. (2010).  

9. Outlook 

We have looked at the foundations of electromagnetism in this chapter. For doing this, we 
have used two approaches. The first one is to formulate a Parametrized Post-Maxwellian 
framework to include QED corrections and a pseudoscalar photon interaction. We discuss 
various vacuum birefringence experiments – ongoing and proposed -- to measure these 
parameters. The second approach is to look at electromagnetism in gravity and various 
experiments and observations to determine its empirical foundation. We found that the 
foundation is solid with the only exception of a potentially possible pseudoscalar-photon 
interaction. We discussed its experimental constraints and look forward to more future 
experiments. 
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