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1. Introduction 

Taking into consideration the impacts of increasing concern as a result of human activity on 
the environment in recent decades, different approaches have been developed and proposed 
to minimize the persistence of organic and inorganic pollutants, not only the dangerous or 
biorecalcitrant. Industrial waste discharges, those from domestic sewage, and so-called 
emerging contaminants (pesticides, hormones and drugs), among others, have caused 
numerous problems for the sustainability of ecosystems (Amat et al.,2011).  

In general, environmental problems are largely associated with the disposal of waste into 
sewers, rivers and eventually into the ocean. The damage caused to biota by these 
discharges is incalculable (Hermann & Guillard, 2002; Corcoran et al., 2010).  

New and effective forms of wastewater treatment are essential to enable a responsible 
economic development of the planet ensuring its sustainability for future generations (Amat et 
al.,2011). These processes need to be environmentally safe, providing the elimination of 
contaminants and not just promoting a phase transfer, ensuring the reuse of water (Hermann 
& Guillard, 2002;Machado et al., 2003a; Sattler et al.,, 2004; Wojnárovits et al., 2007).  

Besides the application in order to minimize the environmental impacts of human action, 
via photocatalytic processes, semiconductor oxides have also been employed in producing 
chemical raw materials through specific chemical reactions (Kanai et al., 2001; Murata et al., 
2003; Amano et al., 2006; Denmark & Venkatraman, 2006; Hakki et al.,2009; Swaminathan & 
Selvam, 2011; Swaminathan & Krishnakumar, 2011), in the conversion of solar energy into 
electricity (Prashant, 2007; Patrocínio et al., 2010; Huang et al., 2011; Zhou et al., 2011) and 
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production of hydrogen for subsequent generation of energy (Jing et al., 2010; Kim & Choi, 
2010; Melo & Silva, 2011).  

2. Advanced Oxidation Processes (AOP) 

Advanced Oxidation Processes (or Advanced Oxidative Technologies) stand out among the 
new technologies potentially useful for the minimization of environmental impacts to biota 
(Ismail et al., 2009), and, among these technologies, are the photocatalytic degradation of 
contaminants in the environment, especially using solar radiation (Martin et al., 1995; Ziolli & 
Jardim, 1998; Machado et al., 2003a; Duarte et al.,2005; Augugliaro et al., 2007; Machado et al., 
2008). They are characterized by being able to degrade a wide range of organic contaminants 
into carbon dioxide, water and inorganic anions through reactions involving oxidizing species, 
particularly hydroxyl radicals which have a high oxidizing power (Eo=2.8 V) (Nogueira & 
Jardim, 1998; Machado et al., 2003a; Machado et al., 2008; Kumar & Devi, 2011). 

Among the AOP can be cited processes involving the use of ozone, hydrogen peroxide, 
catalytic decomposition of hydrogen peroxide in acid medium (Fenton or/and photo-
Fenton reactions), and semiconductors such as titanium dioxide (heterogeneous 
photocatalysis) (Nogueira & Jardim, 1998; Kumar & Devi, 2011). The heterogeneous 
photocatalysis is considered one of the most promising advanced oxidation technologies. In 
heterogeneous photocatalytic processes, highly oxidizing reactive oxygen species (ie 
hydroxyl radicals, superoxide radical-ions, etc.) are generated from interaction between the 
semiconductor electronically excited, oxygenated species and other substrates (Andreozzi et 
al., 1999; Fujishima et al., 2007; Machado et al., 2008; Kumar & Devi, 2011). 

The solar photocatalysis deserves special attention, since the sun is a virtually inexhaustible 
source of energy at no cost (Machado et al., 2008; Amat et al., 2011).  

2.1 Heterogeneous photocatalysis 

The great potential of heterogeneous photocatalysis has been demonstrated mainly in the 
treatment of industrial effluents and wastewater through the degradation of contaminants 
(Malato et al., 1997; Andreozzi et al., 1999; Malato et al., 2002; Sattler et al., 2004a, 2004b; 
Duarte et al., 2005; Pons et al., 2007; Palmisano et al., 2007a; Machado et al., 2008). A 
significant number of these studies have focused on the photocatalytic properties of TiO2, 
suggesting a promising use of this material in heterogeneous photocatalysis (Mills & Hunte, 
1997; Malato et al., 2002; Mills et al., 2002; Machado et al., 2003a; Machado et al., 2003b; 
Sattler et al., 2004a, 2004b; Duarte et al., 2005; Palmisano et al., 2007a; Pons et al.,2007; 
Machado et al., 2008; Oliveira et al., 2012).  

The potential of heterogeneous photocatalysis has been demonstrated in studies originally 
reported by Fujishima and Honda (Fujishima & Honda, 1971, 1972). The photoactivation of a 
semiconductor is based on its electronic excitation by photons with energy greater than the 
band gap energy. This tends to generate vacancies in the valence band – VB (holes, h+) and 
regions with high electron density (e-) in the conduction band – CB (Hoffmann et al., 1995; 
Nogueira & Jardim, 1998; Kumar & Devi, 2011). These holes have pH dependent and strongly 
positive electrochemical potentials, in the range between +2.0 and +3.5 V, measured against a 
saturated calomel electrode (Khataee et al., 2011). This potential is sufficiently positive to 
generate hydroxyl radicals (HO.) from water molecules adsorbed on the surface of the 
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semiconductor (eqs. 1-3). The photocatalytic efficiency depends on the competition between 
the formation of pairs of electrons and holes in semiconductor surface and the recombination 
of these pairs (eq.4) (Nogueira & Jardim, 1998; Ziolli & Jardim, 1998; Ni et al., 2011). 

 TiO2 + hǎ → TiO2 (e-CB + h+VB)  (1) 

 h+ + H2Oads. → HO. + H+ (2) 

 h+ + OH-ads.  → HO.  (3) 

 TiO2 (e-CB + h+VB) → TiO2 +   (4) 

The electrons transferred to the conduction band are responsible for reducing  reactions, 
such as the formation of gaseous hydrogen and the generation of other important oxidizing 
species such as superoxide anion radical. In the case of TiO2, the band gap energy, Eg, is 
between 3.00 and 3.20 eV (Hoffmann et al., 1995;  Palmisano et al., 2007a; Jin et al., 2010; 
Kumar & Devi, 2011). This process can be viewed schematically in Fig. 1. 

 

Fig. 1. General scheme for some primary processes that occur after photoactivation of a 
semiconductor and for photocatalytical production of gaseous hydrogen by decomposition 
of water. 
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The production of reactive species by a TiO2 photocatalyst is influenced by a series of 
factors, such as surface acidity and  pH of the reaction medium, control of the kinetic of 
recombination of charge carriers, interfacial electron-transfer rate, optical absorption of the 
semicondutor, phase distribution, morphology, specific surface area and porosity 
(Hoffmann et al., 1995; Furube et al, 2001; Diebold, 2003; Carp et al., 2004; Kumar & Devi 
(2011).  

The reactions (1) to (4) combined with other (Hoffmann et al., 1995; Machado et al., 2008; 
Kumar & Devi, 2011) give an approximate view of the chain  reactions that compose a 
heterogeneous photocatalytic process. 

Different semiconductors are able to trigger the heterogeneous photocatalytic processes.  
Other in addition to TiO2 are: CdS, ZnO, ZnS, and Fe2O3 (Nogueira & Jardim, 1998).  

TiO2 stands in front of others for its abundance, low toxicity, good chemical stability over a 
wide pH range, photosensitivity, photostability, insolubility in water, low cost, chemical 
inertness, biological and chemical inertness, and stability to corrosion and photocorrosion 
(Martin et al., 1995; Augugliaro et al., 2007). However, its band gap energy limits, in 
principle, its application in photocatalytic processes induced by solar radiation, since the 
radiation incident on the biosphere consists of approximately 5 % UV, 43 % visible and 52 %, 
harvesting infrared (Kumar & Devi, 2011).  

The introduction of changes in the crystalline structure of TiO2 through the introduction of 
dopant ions and/or modifying ions and associations between TiO2 and other semiconductor 
oxidesin order to expand the use of incident radiation, is particularly important if the aim is 
to use solar radiation in photocatalytic processes. The synthesis of new materials based on 
TiO2 has resulted in substantial progress towards the improvement of the photocatalytic 
activity of this semiconductor (Imhof & Pine, 1997; Cavalheiro et al.,2008; Eguchi et al., 2001; 
Agostiano et al., 2004; Machado et al., 2008; Zaleska et al., 2010; Batista, 2010; Machado et al., 
2011b).  

Titanium dioxide can be found in nature in the form of three different polymorphs: Anatase, 
Rutile and Brookite (Hanaor & Sorrell, 2011; Khataee et al., 2011; Kumar & Devi, 2011). 
Among these polymorphs, the thermodynamically more stable is the rutile, which can be 
obtained from the conversion of anatase, which in turn is the most photoactive polymorph 
(Hoffmann et al., 1995; Khataee et al., 2011).  

Technological applications of titanium oxide are quite large. In addition to the previously 
described, TiO2 has been used in filters to absorb ultraviolet radiation (sunscreens, for 
example), pigments, in chemical sensors for gases (Pichat et al., 2000), as constituents of 
ceramic materials for bone and dental implants (Chen et al., 2008), among others. 

2.2 Changes in the structure and surface of titanium dioxide 

Strong light absorption and suitable redox potential are prerequisites for photocatalytic 
reactions. Growing interest has focused on doped TiO2 catalysts (Ohno et al., 2003; Luo et 
al., 2004; Li et al., 2005; Labat et al., 2008; Yang et al., 2008; Long et al., 2009; Zhang et al., 
2010; Zaleska et al., 2010; Iwaszuk & Nolan, 2011; Long & English, 2011; Spadavecchia et 
al., 2011; Kumar & Devi, 2011;), however current achievements are still far from the ideal 
goal. 
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In order to extend the photocatalytic activity in the region of visible light, and in order to 
achieve a better use of solar radiation, several approaches have been proposed for tuning 
the band gap response of titania to the visible region. Doping or incorporate trace impurities 
in the structure of TiO2 in order to obtain materials with photocatalytic activity maximized 
in the visible region are strategies widely used (Ohno et al., 2003; Li et al., 2005; Zaleska et 
al., 2010).  These strategies  include doping with transition metals (Nogueira & Jardim, 1998; 
Yamashita et al., 2001; Cavalheiro et al., 2008; Zaleska et al., 2010), nonmetals (Ohno et al., 
2003; Li et al., 2005), and the inclusion of low-valence íons on the surface of the 
semiconductor (for example, Ag+, Ni3+, V3+ e Sc3+). Certain metals, when incorporated to 
titanium dioxide, are able to decrease the band gap, making possible in some cases its 
application in solar photocatalysis. Furthermore, they can contribute to minimize the 
electron-hole recombination, increasing the photocatalytic efficiency of the semiconductor 
(Zaleska et al., 2010). 

Coupling of two photocatalysts has also been considered effective for improvement of 
photocatalytic efficiency. As example, nitrogen doped TiO2 coupled with WO3 and after 
loaded with noble metal, resulted in a material with improved photocatalytic efficiency 
(Yang et al., 2006). 

2.2.1 Synthesis of TiO2 

We have performed the synthesis of titanium dioxide using different methodologies 

(Batista, 2010; Oliveira, 2011). A modification was introduced in the methodology of the 

synthesis by precipitation of TiO2 using titanium tetraisopropoxide as precursor suggested 

by Batista (Batista, 2010). It consists in making the whole process, since the solubilization of 

the precursor in 2-propanol, always under the action of ultrasound. The solid obtained was 

dried at 60 ° C and  subjected to heat treatment at 400 ° C. This new photocatalyst has been 

adopted in our most recent studies since it has shown impressive  photocatalytic activity in 

the mineralization of different organic substrates (Machado et al., 2011b). As a result, we 

have studied the introduction of modifications in order to enlarge it, especially expanding it 

to the visible. 

After annealing, the semiconductor was highly crystalline, being only anatase with average 

crystallite size around 12 nm, estimated from the line width obtained for the peak of greatest 

intensity in XRD (Fig.2). For a semiconductor synthesized according to a similar 

methodology adopted by Batista, the minimum crystallite size obtained was equal to 22 nm 

(Batista, 2010).  

From the curves of diffuse reflectance, the band gap of the synthesized TiO2 and TiO2 P25 
Degussa were estimated. For this, we used Tauc´s method (Wood & Tauc, 1972). For the 
synthesized TiO2 was obtained a value equal to 3.18 eV while for TiO2 P25 Degussa the 
estimated band gap was equal to 3.20 eV, in agreement with the value described by many 
authors (Hoffmann et al., 1995; Machado et al., 2008; Batista, 2010). The earlier versions 
obtained by precipitation, reported by Batista in his DSc Thesis (Batista, 2010) showed no 
photocatalytic activity due to its proper degree of aggregation and in some cases limited 
surface area. Most likely, due to the significant aggregation observed in semiconductor 
synthesized by Batista (2010), the recombination of charge carriers was more favored at the 
expense of photocatalytic reactions. It is very likely that the introduction of ultrasound in 
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the synthesis process resulted in significant increase in the dispersion of the particles formed 
during the formation of critical nuclei, resulting in the precipitation of particles with 
minimal or no aggregation. Morphological characterization of this new photocatalyst is 
ongoing. 
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Fig. 2. X-ray diffraction patterns of TiO2 synthesized by solubilization of titanium 
tetraisopropoxide in 2-propanol and subsequent hydrolysis and precipitation by slow 
addition of ultrapure water. 

The mineralization of food dye trartrazine, C.I. 19140, mediated by this new photocatalyst is 

presented as an example. It was promoted at pH 3, using 100 mg/L of photocatalyst, in 

experiments on laboratory scale, using as radiation source a 400 W high pressure mercury 

vapor lamp. 4 L of the model effluent were used per experiment. Hydrogen peroxide (166 

mg/L) was added as an extra font of radicals (Machado et al., 2003a). The results were 

compared to the obtained under the same conditions using TiO2 P25 Degussa as 

photocatalyst. Additionally, all photolysed samples underwent the following tests: pH 

monitoring, spectrophotometric measurements through the use of a UV/VIS dual beam 

Shimadzu UV-1650PC spectrophotometer. The aliquots collected in the experiments in the 

presence of the photocatalyst were filtered using Millipore filters (0.45 m of mean pore 

size) to remove suspended TiO2 before the measurements. The experimental setup is similar 

to that described in previous studies (Machado, 2003; Oliveira, 2012). 

After 120 minutes of reaction, 52% of mineralization was reached with the use of the 
synthesized TiO2. For TiO2 P25-mediated degradation, the mineralization was 84% under 
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the same conditions  In the absence of H2O2, the levels of mineralization were respectively 
24 and 38% for the synthesized TiO2 and TiO2 P25 (Fig. 3). The mineralization was estimated 
from measurements of dissolved organic carbon using a Shimadzu TOC-VCPH Total 
Organic Carbon Analyzer. 
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Fig. 3. Mineralization of tartrazine by heterogeneous photocatalysis using: (a) TiO2 
synthesized in reaction in the absence of H2O2; (b) TiO2 P25 in reaction in the absence of 
H2O2; (c) TiO2 synthesized, in reaction in the presence of H2O2, and (d) TiO2 P25 reaction in 
the presence of H2O2. 

The changes introduced during the solubilization and synthesis process itself should have 

been enough to guarantee a level of ordering of the particles formed. The final product after 

thermal treatment of the oxide formed proved to be 100% anatase. 

2.2.2 Photocatalysts based on the association between a photosensitizing dye and a 
semiconductor oxide  

Electron transfer at the interface between a photoactive species and the semiconductor 

surface is a fundamental aspect for organic semiconductor devices (Grätzel, 2001; Ino et al., 

2005). Certain photoactive compounds has proven to be able, when electronically excited, to 

inject electrons in the conduction band of semiconductors (Grätzel, 2001; Ino et al., 2005; 

Rehm et al., 1996; Nazeeruddin et al., 1993; Asbury et al., 2001; Krüger et al., 2001; Argazzi et 

al., 1998; Xargas et al., 2000; Tennakone et al., 1997; Sharma et al., 1991; Hao et al., 1998; 

Chen et al., 1997; Wu et al., 2000), increasing the performance of dye-sensitized solar cells. In 
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particular, ultrafast charge separation led by electron injection from electronically excited 

photoactive molecules to the conduction band of a wide-gap metal oxide, and a good 

electronic coupling between dye molecules and surface of the substrate are key steps for 

improving the performance of these materials (Rehm et al., 1996; Nazeeruddin et al., 1993; 

Asbury et al., 2001). In the dye sensitization process, dye gets excited rather than the TiO2 

particles to appropriate singlet and triplet states, being subsequently converted to cationic 

dye radicals after electron injection to TiO2 CB (Benko et al., 2002). The electrons injected to 

TiO2 CB react with the preadsorbed O2 to form oxidizing species (superoxide, hydroperoxyl 

and hydroxyl radicals) which combined to the species produced from photoexcited TiO2, 

induce oxidative reactions (Wu et al., 1998). Thus TiO2 plays an important role in electron-

transfer mediation, even though TiO2 itself is not excited. A photodegradation mechanism of 

dyes under visible irradiation without TiO2 photoexcitation was recently presented by 

Kumar & Devi (2011). The formation of singlet oxygen has been reported in some cases 

(Stylidi et al., 2004). 

The association between photosensitizing dyes and oxides semiconductors with 

photocatalytic activity constitutes a strategy for obtaining more efficient photocatalysts for a 

wider range of applications. These photosensitizing dyes, when excited by photons of lower 

energy, allow the injection of electrons from these species to the conduction band of the 

semiconductor increasing the concentration of charge carriers (Benkö et al., 2002; Sharma et 

al., 2006; Machado et al., 2008; Shang et al., 2011; Kumar & Devi, 2011). The electrons, in 

turn, can be transferred to reduce organic acceptors adsorbed on the catalyst surface 

(Machado et al.,2008). Thus, the photocatalyst composites containing a photosensitizing dye 

associated with  the photoactive semiconductor have, in general, improved photocatalytic 

activity. The possibility of utilization of solar radiation, because they have the range of 

absorption expanded to the visible, makes it possible achieve important contributions in 

solving problems concerning  effluent treatment (Machado et al.,2008). Machado and 

coworkers (2003b; 2008; 2011; Duarte et al., 2005) have studied composites prepared by the 

association between zinc phthalocyanine (ZnPc) and titanium dioxide, obtained by coating 

TiO2 particles using a solution of zinc phthalocyanine followed by controlled drying of the 

organic suspension (Machado et al., 2008). These materials have been intensively 

characterized (Machado et al., 2008; Batista et al., 2011). A decrease between 20 and 30% in 

the specific surface area (SSA) is verified for the composites when compared to the TiO2 P25 

(Machado et al., 2008; Oliveira et al., 2011; Batista et al., 2011). This difference should be as a 

result of the incorporation of ZnPc aggregates on the surface of the semiconductor. The 

changes in the specific area caused by the incorporation of zinc phthalocyanine do not imply 

distortions in the crystal structure (Machado et al., 2008). Scanning tunneling microscopy of 

different metal phthalocyanines confirm that the above mentioned aggregates are adsorbed 

onto the semiconductor surface (Qiu et al., 2004).  

For these composites, the surface sensitization by electron transfer via physisorbed ZnPc 
should compensate the decrease in surface area, increasing the efficiency of the 
photocatalytic process. It should be emphasized that the extended range of wavelengths 
shifted to the visible region of the electromagnetic spectrum, which is capable of positively 
influencing the electron transfer between the excited dye and the semiconductor conduction 
band tends to improve electron–hole separation (Machado et al., 2008; Carp et al., 2004; 
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Wang et al., 1997; Shourong et al., 1997; Zhang et al., 1997; Zhang et al., 1998). These 
composites have  shown to be better photocatalysts for wastewater decontamination, mainly 
mediated by visible light, than pure TiO2 (Machado et al., 2003b;  Duarte et al., 2005; 
Machado et al., 2008; França, 2011; Oliveira et al., 2012), performance that remains even 
when reused (Machado et al., 2008). 

The zero point charge pH (pHZPC) was estimated for TiO2 P25 and a composite containing 
1.6% m/m of ZnPc by zeta potential measurements, carried out in a disperse suspension 
using a Zetasizer Nano ZS90. The estimated value for the composite, pHZPC = 5.50, lower 
than the one for P25 (pHZPC = 6.25) suggests a differentiated behavior for the composite 
since its surface is negatively charged in a pH range in which P25 is still with the surface 
positively charged. The value measured for TiO2 P25 agrees with the reported in the 
literature (Hoffmann et al., 1995). The morphological characteristics of both samples were 
investigated by SEM, carried out in a Philips XL-30 microscope coupled to a field emission 
gun and a EDX analytical setup. The micrographs show the occurrence of macro-aggregates 
in the composite and spherical particles around 25 nm in P25. The estimated concentration 
of ZnPc on P25 surface is around 1.6%, confirmed by EDX measurements (Batista et al., 
2011). Also, the thickness of ZnPc coating, homogeneity, and aggregation on the TiO2 

composite surface were evaluated by TEM using a Philips CM-120 microscope. The 
improvement of visible light absorption in TiO2/ZnPc and electronic surface properties of 
this composite (Machado et al., 2008) are responsible for an almost three times faster 
mineralization of Ponceau 4R (C.I. 16255), an azo dye employed in the food industry, when 
compared with the result obtained using only TiO2 P25, and still much higher than the 
presented by the other TiO2-based photocatalysts (Oliveira et al., 2012). This dye is classified 
as a carcinogen in some countries and is currently listed as a banned substance by U.S. Food 
and Drug Administration (FDA). 

The highest photocatalytic activity of TiO2/ZnPc 1.6% seems to be the result of synergism 
between the photocatalytic characteristics inherent to TiO2 P25 with the redox properties 
and charge transport of ZnPc Frenkel’s “J” aggregates on the semiconductor surface (Fidder 
et al., 1991; Kim et al., 2006; Machado et al., 2008; Machado et al., 2011a). The sensitization of 
TiO2 P25, induced by zinc phthalocyanine aggregates was effective in producing more 
active photocatalysts.  

Fig. 4 presents the diffuse reflectance spectra (DRS) of ZnPc, TiO2 and some of the studied 
TiO2/ZnPc composites.  

Unlike what occurs with TiO2 (Fig. 4a), for composite materials obtained by the association 
between TiO2 and ZnPc there is a significant electronic absorption for wavelengths above 
390 nm. Comparison between the graphs presented in As can be seen in Fig. 4 (a to e), the 
UV-Vis absorption spectrum (DRS) of these composites is not the result of an additive effect 
between the absorption spectra of the precursors. The absorption spectra of the composites 
are quite different from the typical absorption profiles of TiO2 (Fig. 4a) and pure ZnPc in the 
solid state (Fig. 4f) or even in very dilute liquid solutions (Miranda et al., 2002).  

The absorption spectrum of these composites is characterized by an intense absorption band 
below 460 nm, and a large, intense and non structured absorption band above 475 nm. Both 
bands are most probably the result of superposition of electronic states of TiO2 and ZnPc 
aggregates.  
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Fig. 4. Diffuse reflectance spectra (DRS) of TiO2 and TiO2/ZnPc composites, prepared with 
different percent in mass of ZnPc. TiO2 P25 (a) and composite containing: 1.0%of ZnPc (b); 
2.5%of ZnPc (c); 5.0%of ZnPc (d); composite containing 2.5% of ZnPc, using TiO2 P25 as 
reference (e) and DRS of pure ZnPc (f). Barium sulphate was used as reference for (a) to (d) 
(Machado et al., 2008). 
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In Fig. 4e the shape of the bands in the ultraviolet and visible portions of the electronic 
spectrum of the composite containing 2.5% m/m of ZnPc, obtained using TiO2 as reference, 
is very different from that observed for pure ZnPc in the solid state, Fig. 4f. In the visible, it 
presents a large and intense three peak band centered by a red shifted Q band, with 
maximum at 683 nm. The batochromic shift of the absorption maximum associated to Q 
band, suggests the occurrence of Frenkel’s J aggregates of ZnPc (Fig. 5) in the composites 
(Köhler & Schmid, 1996; Eisfeld & Briggs, 2006; Chen, Z. et al., 2008), which agrees with 
results of a theoretical study employing methods of Density Functional Theory on the 
formation of aggregates of zinc phthalocyanine (Machado et al., 2011a). The bathochromic 
shift of the absorption maximum of the Q band highlights the differentiated nature of these 
compounds against pure TiO2 and ZnPc. The Soret (B) band also presents a different shape 
compared to its equivalent in pure ZnPc in the solid state (Fig. 4f), and is red shifted. The 
spectrum of Fig. 4e is very similar to the absorption spectrum for a flash-evaporated ZnPc 
thin film deposited on a glass substrate (Senthilarasu et al., 2003), in which the two energy 
bands characteristic of phthalocyanines are evident, one in the region between 500 and 900 
nm, with an absorption peak at 690 nm, related to the Q band, and the other, very intense, at 
330 nm, attributed to Soret (B) band (Meissner & Rostalski, 2001), similar to that reported for 
the absorption spectrum for thin films of Magnesium Phthalocyanine (Mi et al., 2003). The 
unstructured band in the visible and the red shifted Q band of these composites can be 
attributed to the strong intermolecular interactions due to ZnPc aggregation (ZnPcagg), 
resulting in coupling effects of excitons on the allowed transitions, with significant effects on 
the mobility of charge carriers (Hoffmann, 2000).   

 

Fig. 5. Representation of the molecular structure of a Frenkel’s J aggregate of ZnPc formed 
by four grouped individual molecules, indicating the sharing the same ligand MO between 
the ZnPc 2 and 3, in the HOMO (Machado et al., 2011a). 
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Fig. 4f presents the diffuse reflectance spectrum of pure ZnPc. The intense absorption peak 

at 552 nm, is related to the Q band and is attributed to very intense * transitions 
(Leznoff & Lever, 1990). The Soret band presents an absorption maximum at 301 nm. A low 
intensity and non structured absorption band with the absorption peak centered at 416 nm, 

is related to an n* transition involving the eu azanitrogen lone pair orbital with the eg 
LUMO (Ricciardi et al., 2001). A set of three very small intensity low energy bands, above 
the Q band, can also be observed.  

The Eg value for the TiO2/ZnPc composites, 2.7 eV, lower than the estimated for pure TiO2 
(Hoffmann et al., 1995), has a value similar to the estimated for iron (II) phthalocyanine 
excitons (2.6 eV) in TiO2/FePc blends (Sharma et al., 2006) and other metal phthalocyanine 
associated to semiconductor oxides (Iliev et al., 2003). For ZnPc thin films, Senthilarasu et al. 
assigned an Eg of 1.97 eV (Senthilarasu et al., 2003) with a directly allowed optical transition, 
near the value estimated for the peak absorption Q-band (2.25 eV) of pure ZnPc in the solid 
state (Fig. 4f). The Eg for the composites might be related to the coupling between TiO2 and 
ZnPc electronic states and their positive implications. Similar to TiO2/FePc blends (Sharma 
et al., 2006) and ZnPc thin films (Ino et al., 2005; Senthilarasu et al., 2003), the 
photoexcitation of ZnPc aggregates should result in the formation of e-/ZnPc+ pairs, 
followed by electron transfer from ZnPc excitons to the conduction band of bulk TiO2, which 
explains at least in part the improved photocatalytic activity observed for some of the 
ZnPc/TiO2 composites (Machado et al., 2008; Oliveira et al., 2012). Sharma et al. reported 
charge separation after photo-excitation of TiO2/FePc composite film due to charge transfer 
from FePc to TiO2 resulting in FePc(h+) and TiO2(e-) (Sharma et al., 2006). Additionally, they 
reported that the charge transport and the current leakage through FePc films and the 
photo-generation are due to the efficient dissociation of exciton at the donor–acceptor 
interface of the bulk, and that the higher holes mobility in the organic material layer, 
combined with lower conductance leakage, leads to the more efficient collection of photo-
generated carriers. Thus, the electronic coupling strength between donor and acceptor is one 
of the critical conditions to ensure the occurrence of such electron transfer (Ino et al., 2005; 
Rehm et al., 1996; Senthilarasu et al., 2003; Meissner & Rostalski, 2001).  

The spectrum presented in Fig. 4e is very similar to the absorption spectrum for a flash-
evaporated ZnPc thin film deposited on a glass substrate (Senthilarasu et al., 2003), in which 
the two energy bands characteristic of phthalocyanines are evident, one in the region 
between 500 and 900 nm, with an absorption peak at 690 nm, related to the Q band, and the 
other, very intense, at 330 nm, attributed to Soret (B) band (Meissner & Rostalski, 2001), 
similar to that reported for the absorption spectrum for thin films of Magnesium 
Phthalocyanine (Mi et al., 2003).  

2.3 Solar photocatalysis using a compound parabolic concentrator (CPC) reactor 

2.3.1 Design and construction of a CPC reactor 

The study of new technologies has now focused on decontamination methods feasible 
alternatives that are environmentally friendly, and allow its application in large scale, with 
easy operation and low cost.  

The economic use of AOPs based on the use of solar radiation in the treatment of 
wastewater has been proposed for their low cost, especially in regions with high insolation 
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(Malato et al., 2002; Machado et al., 2003;  Sattler et al., 2004a, 2004b; Machado et al.,2004; 
Palmisano et al., 2007; Machado et al., 2008; Torres et al., 2008; Li et al., 2009). Literature 
reports suggest that the reactors most suitable for application in solar photocatalysis are 
CPC type (Malato et al., 1997; Malato et al., 2002; Sattler et al., 2003a, 2003b; Machado et 
al.,2004; Duarte et al., 2005;  Machado et al.,2008). 

CPC reactors are static collectors of solar radiation with reflective surfaces in the form of 
involute positioned around cylindrical tubes, Fig. 6. Reflectors with this geometry allows the 
pock up of solar radiation, either by direct incidence, as the diffuse radiation, directing it to 
a glass tube through which circulates the effluent to be treated (Duarte et al., 2005). 

 
 
 

 

Fig. 6. Representation in two angles (a and b) of a CPC reactor, detailing one of the reflectors 
in the form of involute (c), and pipes the fixed to the body of the reactor (d).  

Our CPC reactor was designed to process up to 150 L of effluent, This reactor consists in a 
module with an aperture of about 1.62 m2, elevation angle adjusted to the latitude of 
Uberlândia, Brazil (19o S), ensuring a better use of incident radiation. The reflecting surface 
contains 10 borosilicate glass tubes (external diameter 32 mm, wall thickness of 1.4 mm, and 
length of 1500 mm), mounted in parallel and connected in series, each on double parabolic 
shaped inox steel reflector surfaces (Duarte et al., 2005). A centrifugal pump of 0.50 HP with 
rotor and housing made in inert material has been used to ensure a flow of 2 m3/h.  

a 

b 

c 

d 
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The flow of effluent in tubular reactors is usually turbulent, which may cause loss of 
efficiency in the capture of solar radiation. However, this difficulty can be minimized during 
the design of the reactor, and the use of balanced amounts of the catalyst, in the case of 
heterogeneous photocatalysis, so as to guarantee a uniform flow and a good dispersion of 
the photocatalyst in the effluent to be treated, minimizing possible effects of co-absorption 
of the incident radiation (Duarte et al., 2005). Non-uniform flows implies in non uniform 
residence times that can lower efficiency compared to the ideal conditions (Koca & Sahin, 
2002). In the case of the heterogeneous processes with photocatalyst powder in suspension, 
sedimentation and depositing of the catalyst along the hydraulic circuit should be avoided 
and turbulent flow in the reactor needs be guaranteed. Reynolds’s number varying between 
10 000–50 000 ensures fully turbulent flow and avoids the settlement of the photocatalyst 
particles in the tubes (Malato et al., 2002). In our project, the Reynolds’ number were defined 
as being Reglass = 34,855.4 and RePVC = 40,070.0, for glass and PVC, the materials where the 
effluent with the photocatalyst in suspension circulate. 

Details of the project of a CPC reactor similar to the built in our laboratory are available in 
Duarte et al., 2005. 

2.3.2 Photocatalytic degradation of organic substrates using solar radiation 

2.3.2.1 Degradation of organic matter present in a model-effluent simulating the 
wastewater produced by a pulp and paper industry, using TiO2 P25 and the composite 
TiO2/ZnPc 2.5% m/m 

The performance of the studied composites to degrade organic matter present in 
wastewaters, in reactions mediated by solar irradiation, and the possibility of reuse of such 
photocatalysts, was evaluated monitoring the consumption of the organic matter content 
during the treatment of three 50 L batches of a model effluent (an aqueous solutions 
containing 160 mg L-1 of a sodium salt of lignosulphonic acid (Sigma-Aldrich), possessing a 
mean molecular mass of 52,000 D. The reactions were done at pH 3, with the addition of 
hydrogen peroxide (30 mg L-1), used as additional source of reactive species (Machado et al., 
2003a), and monitored by chemical oxygen demand (COD) analysis of aliquots of effluent 
samples collected at different accumulated doses of UV-A radiation (this option was due to 
operational limitations. However, the spectral pattern of the visible light does not change 
significantly during the execution of the experiments). To evaluate the observed (global) 
reaction kinetics, the temporal variations were substituted by the UVA accumulated dose, 
which warrants the reproducibility of these experiments under different latitude and 
weather conditions. The incident UV-A radiation was monitored using a Solar Light PMA-
2100 radiometer. All reactions were stopped when the accumulated dose of UVA reached 
900 kJ m-2 (Machado et al., 2008). This corresponds to about 3 hours of sunlight on a sunny 
day, or 5 to 6 hours during a cloudy day with moderate to high nebulosity in Uberlândia, 
MG, Brasil (Duarte et al., 2005). 

The COD measurements considered the Environmental Protection Agency (EPA) 
recommended method (Jirka & Carter, 1975).  

A same sample of the photocatalyst (100 mg per liter of effluent), containing initially 2.5% of 
ZnPc, was used to treat the three effluent batches. The treatment of each batch was 
performed using a CPC (Compound Parabolic Concentrator) reactor (Duarte et al., 2005). 
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As reference, an additional effluent batch was treated under similar conditions using pure 
TiO2 P25 as photocatalyst. 

The degradation of the sodium salt of lignosulphonic acid (LSA) suggests higher 
photocatalytic efficiency for the TiO2/ZnPc composite. Fig. 7 shows a more effective  
LSA degradation under the action of TiO2/ZnPc, which increases with reuse, with 
significant changes in the degradation profile due to the use of the recovered composite 
While under the action of TiO2 P25 was reached 60% degradation, under the same 
conditions, with the unused composite, the degradation reached 96%. For the composite 
in both the first and second reuse, the degradation of the LSA was about 90%. The change 
in profile suggests that other processes, less likely to occur before, became important for 
the overall reaction (Machado et al., 2008). The production of singlet oxygen by 
photosensitization from 3ZnPc*, for example, is an event plausible if the level of 
aggregation of ZnPc is reduced. The formation of singlet oxygen has been reported in 
some cases (Stylidi et al., 2004). 

On the other hand, the better hydration of the surface of the composite due to the increasing 
number of cycles of use, should favor reactions from the valence band. 
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Fig. 7. Degradation of the organic load present in 50 L of a model waste water containing 
LSA monitored in terms of relative chemical oxygen demand (COD/COD0), induced by: (1) 
TiO2 P25; (2) TiO2/ZnPc 2.5%; (3) TiO2/ZnPc 2.5% in the first recycling; (4) TiO2/ZnPc 2.5% 
in the second recycling.  
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Despite the fact that part of ZnPc adsorbed to the surface of TiO2 P25 may have been 
degraded during the photocatalytic process, surprisingly, the photocatalytic efficiency of the 
composite did not decrease when reused. Results suggest that the composite can be reused 
at least five times before making any significant loss of photocatalytic efficiency. 

2.3.2.2 Photocatalytic degradation of paracetamol using solar photocatalysis  

Conditions were evaluated to promote the mineralization of paracetamol (or 
acetaminophen), a known emerging contaminant (Daughton, C. G. & Ternes, T. A., 1999; 
Bound, J. P. & Voulvoulis, N., 2004; Jones, O. A. H., Voulvoulis, N. et al. , 2007; Nikolaou, A., 
Meric, S. et al.,  2007;  Zhang, X. et al., 2008; Bartha, B. et al., 2010), employing heterogeneous 
photocatalysis mediated by  TiO2/ZnPc  2.5% m/m, under the action of solar radiation. The 
results were compared with process under similar conditions, using TiO2 P25 as 
photocatalyst. 

Firstly, to find the best experimental conditions, the influence of hydrogen peroxide 
concentration and pH was evaluated in the photocatalytic reactions mediated by 100 mg L-1 
of photocatalyst, on a laboratory scale using an experimental setup already described 
(Machado et al., 2003a; Oliveira et al., 2012). The best conditions for the reactions in 
laboratory scale were obtained at pH 6.80 using 33.00 mg L-1 of hydrogen peroxide for the 
degradation and mineralization of aqueous solutions containing 10 mg L-1 of paracetamol 
(França, 2011). Under these conditions, the substrate was completely oxidized after 40 
minutes of reaction using TiO2 P25, while 78% of mineralization with this same 
photocatalyst was reached after 120 minutes of reaction. Using the TiO2/ZnPc composite, 
the substrate was completely oxidized after 60 minutes of reaction, and 63% was 
mineralized after 2 hours of reaction. 

In the photocatalytic tests using a CPC reactor and solar radiation (Fig. 8), the experiments 
were done preferentially at pH 3.00 (França, 2011), using 50 L of an aqueous solution 
containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. Hydrogen peroxide, 
used as additional radical source (Machado et al., 2003a), was employed at the same 
concentration as defined in studies on laboratory scale.  

Although the mineralization of paracetamol under the action of solar radiation has been 
equivalent in both cases (56%), after the accumulation of an UVA dose equal to 700 kJ m-2, 
comparing the results obtained on laboratory scale and induced by solar radiation, it was 
observed that the increase in mineralization obtained with the use of the composite, 33%, 
was higher than that obtained using the commercial photocatalyst, equal to 25%, suggesting 
a better utilization of solar radiation by TiO2/ZnPc  composite. 

In terms of degradation, monitored by high performance liquid chromatography (HPLC), 
the commercial photocatalyst required the accumulation of less UVA radiation (200 kJ m-2) 
to oxidize 96% of paracetamol, whereas for the composite this level of degradation was 
achieved when the dose reached 350 kJ m-2 (Fig. 9). 

The results obtained by Zhang et al (2010) indicated that TiO2 photocatalytic degradation is 
an effective way to remove paracetamol from wastewater and drinking water without any 
generation of more toxic products. Although we have not analyzed the intermediates and 
products obtained, our results also point to the efficiency of heterogeneous photocatalysis in 
the treatment of acetaminophen, even if present in high concentrations in wastewater and 
drinking water. 
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Fig. 8. Variation of dissolved organic carbon (DOC) as a function of cumulative dose of 
UVA, during the photocatalytic degradation of paracetamol mediated by solar radiation: 
TiO2/ZnPc 2.5% m/m (●);TiO2 P25 (■). 
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Fig. 9. Variation in the concentration of paracetamol measured by HPLC during 
photodegradation experiments mediated by TiO2 P25 (■) and TiO2/ZnPc 2.5% m/m (▲) 
and induced by solar radiation.  
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3. Obtention of gaseous hydrogen for energy production 

The International Energy Agency (IEA) estimates that world demand for energy should 
suffer an increase of 45% by 2030 (Birol, 2008). Based on the projections presented, one can 
expect a worsening of global warming, if no measures are taken that result in significant 
reduction of CO2 emissions. In addition, we expect a worrying shortage of fossil fuels, if 
alternative sources of energy are not being widely used. 

Among the alternative energy sources, H2 is a very attractive option, as it concentrates high 
energy per unit mass – 1.0 kg of hydrogen contains approximately the same energy 
furnished by 2.7 kg of gasoline, which facilitates the portability of energy (Smith & Shantha, 
2007). Besides, its combustion generates no contaminants. 

Experts have pointed out three major obstacles to the expansion of consumption of 
hydrogen taking into consideration the technology available at the moment: clean 
production, low cost, storage and transportation. As a result, most efforts to expand the use 
of hydrogen as a source of cheap energy has been based on the development of new 
materials and processes of production. 

Among the technologies for hydrogen production, biomass gasification (Albertazzi  et al., 
2005; Smith & Shantha, 2007), photocatalysis (Ni et al. 2007; Patsoura et al.,2007; Jing et al., 
2010), and biological processes (Peixoto, 2008), have been focus of many studies for being 
routes clean and renewable. The heterogeneous photocatalysis and hydrogen generation by 
decomposition of water using concentrated solar radiation  as primary source energy are 
between the most promising having gain attention due to their potential. 

The great expectation of the global market for the use of hydrogen gas as an important input 
in the production of energy has been driven by the sectors of energy generation and 
distribution, which moves large numbers of capital around the world, and is in frank 
expansion, due to the enormous demand for energy by all sectors (Steinfeld, 2005; Preguer 
et al., 2009; Pagliaro et al., 2010). Most efforts to expand the use of hydrogen as a renewable 
energy source has been based on the development of fuel cell technology, both for 
expansion of its service life, by minimizing costs. Volumes of hydrogen gas have already 
been produced, both in EU-funded projects, such as the United States.  

3.1 Hydrogen production using heterogeneous photocatalysis  

In recent decades, research has been conducted on the possibility of using hydrogen as 
energy vector with low carbon emissions. The policy guidance for reducing the emission of 
greenhouse gases, and the prospect of decline in oil and other fossil fuels, has brought to 
light again the discussion about the use of hydrogen and technologies related to it. 
However, it is clear that large-scale use of hydrogen will only be possible if renewable 
sources are used in its production (Preguer et al., 2009). Currently, renewables contribute 
only about 5% of the commercial production of hydrogen, while the remaining 95% are 
derived from fossil fuels, given the still high cost of production from renewable sources.  

The photocatalytic degradation of water to produce hydrogen, under the action of solar 
energy, offers a promising way to produce hydrogen cleanly, inexpensive and 
environmentally friendly. While great progress in photocatalysis using radiation in the 
ultraviolet region has occurred in recent decades, it has been extended with some difficulty, 
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considering the use of visible radiation as a trigger for photocatalytic processes. Particularly, 
we have achieved some progress in this direction, involving the association between a 
photosensitizer dye and a semiconductor oxide. 

The development of semiconductor oxides capable to be excited by radiation in the visible 
region became one of the most important topics in photocatalysis research, since the visible 
light represents a significant fraction of solar energy usable (Hwang et al., 2004). However, 
finding another photocatalyst than TiO2, which has good chemical stability, corrosion 
resistance, be able to efficiently absorb radiation in the visible, and is environmentally 
friendly, has proved an arduous task. However, no semiconductor material capable of 
catalyzing the overall water splitting under action of visible radiation around 600 nm, with a 
quantum efficiency high enough to make possible the commercial application (Maeda & 
Domen, 2007; Jing et al., 2010). Besides, many of the photocatalysts capable to induce 
hydrogen production with commercially acceptable quantum efficiency, with excitation 
between 300 and 450 nm, are expensive and inadequate from the environmental point of 
view (Zeug et al., 1985; Maeda et al., 2006; Bao et al., 2008).  

The low efficiency for the hydrogen production by semiconductor photocatalysis already 
with appropriate band gap should be due to the following reasons: 1) quick electron/hole 
recombination in the bulk or on the surface of semiconductor particles; 2) quick back 
reaction of oxygen and hydrogen to form water on the surface of catalyst; and 3) inability to 
promote efficient use of visible radiation. It is known that photogenerated electrons easily 
recombine with holes in the semiconductor (Hoffmann et al., 1995; Li et al., 2010; Kumar & 
Devi, 2011), compromising the quantum efficiency of the photocatalytic process (Kudo, 
2006). Noble metal loading can suppress to some extent the charge recombination by 
forming a Schottky barrier (Chand & Bala, 2007; Fu et al., 2008). Often, sacrificial reagents 
has been added to the reaction media for the elimination of photo-generated holes, 
minimizing the electron/hole recombination, improving the quantum efficiency (Liu et al., 
2006; Zaleska, 2008a; Jing et al., 2010). Methanol, ethanol and acetic acid have usually been 
employed as agents of sacrifice. Toxic organic substrates can also be a good option of 
sacrificial reagent (Jing et al., 2010). 

Much progress has been made in photocatalytic water splitting since the Fujishima-Honda 
effect was reported (Fujishima & Honda, 1971, 1972). Thermodynamically, water splitting 

into H2 and O2 can be seen as an unfavorable reaction (G = +238 kJ/mol) (Jing et al., 2010; 
Melo & Silva, 2011). However, the efficiency of water splitting is determined by the band 
gap, band structure of the semiconductor and the electron transfer process (Linsebigler et 
al., 1995; Hagfeldt & Grätzel, 1995; Melo & Silva, 2011).  

Generally for efficient H2 production using visible light-driven semiconductor the band gap 
should be less than 3.00 eV (ca. 420 nm) and higher than 1.23 eV (ca. 1000 nm), 
corresponding to the water splitting potential (Jing et al., 2010; Melo & Silva, 2011). 
Moreover CB and VB levels should satisfy the energy requirements set by the reduction and 
oxidation potentials for H2O, respectively: the bottom of the conduction band must be 
located at a more negative potential than the H+/H2 reduction potential (Eo = 0 V vs. NHE 
at pH 0), while the top of the valence band must be more positively positioned than the 
H2O/O2 oxidation potential (Eo = 1.23 V vs. NHE) (Melo & Silva, 2011). Band engineering is 
thus necessary for the design of new semiconductors with the combined properties (Jing et 
al., 2010). 
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Oxides as HPb2Nb3O10, MgWOx and NiInTaO4 among others, active under the action of 
ultraviolet radiation, were also active in the visible region after doping using C, N and S ( 
TiO2Nx, TiO2Cx, TaON and Sm2Ti2O5S) (Hwang et al., 2004),  as well as certain perovskite-type 
photocatalysts, with significant absorption in the visible. Zhang & Zhang (2009) reported the 
synthesis of a photocatalyst based on BiVO4 which showed high photocatalytic activity in the 
visible region. However, most of these catalysts are not environmentally friendly as TiO2. 

Photocatalytic induced water-splitting technology involving nanosized TiO2, despite the 
considerable variety of semiconductor photocatalysts capable to split water using solar 
energy and other photocatalytic processes has great potential to support an economy based 
on low-cost and environmentally friendly hydrogen production using solar radiation 
(Ashokkumar, 1998; Ni et al., 2007). 

The photocatalytic hydrogen production using TiO2 as photocatalyst can be schematized 
through Figs. 1 and 10. 

 

Fig. 10. Band gap of (a) Rutile sand (b) Anatase compared to the redox potential of water at pH 1.  

For an efficient production of H2, the energy level of the CB should be more negative than 
the energy level of the reduction of hydrogen, while the energy level of VB should be more 
positive than the energy level of the oxidation of water to formation of O2 (Fig.10) 
(Ashokkumar, 1998; Ni et al., 2007), eqs 5 to 7. As outlined in Fig. 1, the vacancies 
photogenerated in the VB oxidize water into oxygen and hydrogen cations. These cations 
are reduced to molecular hydrogen in the conduction band. In other words, the separated 
electrons and holes act as reducer and oxidizer, respectively, in the water splitting reaction 
to produce hydrogen and oxygen. However, for this to happen effectively, it is necessary to 
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ensure the fast transportation of the photogenerated carriers, avoiding bulk electron/hole 
recombination. Separation of hydrogen gas is also required as oxygen and hydrogen are 
produced simultaneously.  

 2 2 2

1

2

gh E
H O H O

 
   (5) 

 / 2
22 2

BC H H O
E E

e H H
    (6) 

 /2 2
2 2

1
2 2

2
BV O H OE E

h H O O H
     (7) 

Having the adequate semiconductor, capable to induce water splitting when photoexcited by 
solar radiation, a key issue concerns the efficient utilization of the solar energy itself. Two 
major drawbacks of solar energy must be considered: (1) the intermittent and variable manner 
in which it arrives at the earth’s surface (2) efficient collection of solar light on a useful scale. 
The first drawback can be solved by converting solar energy into storable hydrogen energy. 
For the second, the solution could be the use of solar concentrators (Jing et al., 2010).  

For photocatalytic hydrogen production, it is imperative the use of visible radiation, especially 
if the goal is the storage of the energy supplied by the sun. Thus, photocatalysts able to 
mediate reactions through the use of visible radiation are more than desirable. Amplify the 
sensitivity of photocatalysts through the introduction of dopants, impurities and / or 
association between semiconductor and photosensitizers capable of shifting the absorption of 
the resulting composite to visible, are alternatives to a more efficient water photolysis (Hwang 
et al., 2004; Machado et al., 2008; Zaleska, 2008a, 2008b; Zhang & Zhang, 2009). 

When a metal (eg platinum) is deposited on a semiconductor, the excited electrons migrate 
from the semiconductor to the metal until the Fermi levels of both species are aligned. The 
Schottky’s barrier (Chand & Bala, 2007; Fu et al., 2008) formed at the metal/semiconductor 
interface can serve as a trap for electrons, efficient enough to minimize electron-hole 
recombination, increasing the efficiency of the photocatalytic process. At the same time, the 
metal is important for its own catalytic activity. Metals deposited on a semiconductor serve 
as active sites for the production of H2, in which the trapped electrons are transferred to 
photogenerated protons to produce H2 (Fig. 11) (Melo & Silva, 2011). 

Research on photocatalytic hydrogen production in our laboratory is very recent. Our 
primary aim is the development of highly efficient, stable and low-cost visible-light-driven 
photocatalyst using different modification methods, such as doping, sensitization, 
supporting and coupling methods to extend the light response and performance of the 
photocatalyst aiming its application in environmental photocatalysis and photocatalytic 
hydrogen production. Despite a considerable variety of semiconductor photocatalysts 
capable to split water using solar energy and mediate other photocatalytic processes 
(Ashokkumar, 1998; Kim et al., 2010; Jing et al., 2010; Kumar & Devi, 2011), our studies have 
focused on improving the photocatalytic activity of TiO2 through its synthesis by different 
procedures, their use and of hybrid variants, doped or not, and composites involving TiO2 
and photosensitizing dyes, especially considering issues related to the environment. In 
particular, we have studied photocatalytic reactions using solar radiation, with the 
photocatalyst in aqueous suspensions, with methodologies based on CPC reactor.  
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Fig. 11. Schematic representation of the photocatalytic water splitting on a platinized 
semiconductor powder particle.  

We have developed small closed circulation reactor for bench-scale tests. These reactors 
ensure the evaluation of the developed photocatalyst from lab scale to out-door scale, in a 
batch mode.  

The object of these studies is to improve hydrogen production and its storage under low 
pressure.  

4. Solar cells 

Photovoltaic cells are a good example of an alternative energy source, converting sunlight 
into electricity. Research in this field is quite intense given the importance of solar cells as 
sources of sustainable energy, as well as due to their reduced cost, low environmental 
impact, and fair efficiency for conversion of solar energy into electricity (O’Regan & Grätzel, 
1991; Grätzel, 2003; Brennaman et al., 2011). 

The efficiencies obtained for a silicon solar cell is about 24%, although at a very high 
manufacturing cost. Therefore, other materials have been studied in order to facilitate the 
conversion of solar energy into electrical energy (Zhao et al, 1998; Jayaweera et al., 2008; Cao 
et al., 2009; Patrocinio et al., 2010; Brennaman et al., 2011). 

New developed devices such as dye solar cells, capable of converting solar energy into 
electrical (dye solar cells – DSCs), have been presented as alternatives for power generation 
(Hagfeldt & Gratzel, 1995; Gratzel & Hagfeld, 2000; Jayaweera et al., 2008). Despite its 
efficiency is still lower than that of silicon cells, the DSCs have been particularly interesting 
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because they have a much lower production cost than devices based on silicon. In addition, 
the resulting material can be extremely thin as well as flexible and can be applied to almost 
any surface (Brabec et al., 2001; Kippelen & Bredas, 2009). Technically they are known as 
dye-sensitized solar cells, or DSSCs. 

4.1 Dye-sensitized solar cells (DSSCs) 

The use of solar cells based on a combination of dyes and photosensitizers oxide 
semiconductor (DSCs) have attracted great attention since the pioneering work of Grätzel 
and collaborators (O’Regan & Gratzel, 1991; Grätzel, 2005). The most efficient sensitizers for 
wide band gap semiconductors are the well-known metallo-organic ruthenium complexes 
(Grätzel & O'Regan, 1991). Certain Ru(II) complexes have shown to be excellent 
photosensitizers for TiO2 in DSSCs, having gained the attention because of the high 

efficiencies achieved (11%) in converting sunlight into electricity (Nazeeruddin et al., 
2005; Gao et al., 2008a, 2008b; Cao et al., 2009). In dye-sensitized solar cells, the conversion of 
visible light to electricity is achieved through the spectral sensitization of wide band gap 
semiconductors. Light is absorbed by the dye molecules, which are adsorbed on the surface 
of the semiconductor, thus inducing charge separation. Excitation of the dye molecules 
results in electron injection into the conduction band of the semiconductor. For electron 
injection to occur, the excited electrons must be at higher energy level than the 
semiconductor conduction band. An electrolyte of high ionic strength is also used in dye-
sensitized solar cells to facilitate charge transfer across the device. 

DSSCs have emerged as one of the most promising devices for sustainable photovoltaics due 
to their usually reduced cost, low environmental impact, and fair efficiency  of conversion of 
solar energy into electricity (Grätzel, 2003; Polo et al., 2004; Brennaman et al., 2011). 

Research in this field has been intense, given the growing worldwide demand for new 
energy sources (Kamat, 2007; Jacobson, 2009), either with focus on new materials and 
components or on cell assemblies for development of more efficient and environmentally 
friendly devices (Garcia et al., 2003; Prochazka et al., 2009;  Zakeeruddin & Grätzel, 2009;  
Snaith, 2010). It is increasingly urgent the need to diversify energy matrices in order to rely 
on truly renewable energy sources, cleaner and environmentally friendly, if the goal is to 
build an ecologically sustainable society (Kamat, 2007; Herrero et al., 2011). 

However, the high cost of dyes based on Ru (II), due to the low abundance of this metal and 
use restrictions from the environmental point of view are aspects that restricts its application 
on a large scale, which has stimulated efforts to use photosensitizing dyes with good 
features, safe and low cost (Hamann et al., 2008; Mishra et al 2009; Imahori et al., 2009).  

Several simple organic dyes, and especially xanthene dyes (Eosin Y, Rose Bengal, etc.), yield 
efficiencies comparable to those achieved with ruthenium complexes, especially when used 
to sensitize ZnO films (Guillén et al., 2008; Plank et al., 2009; Pradhan et al., 2007). Organic 
dyes such as these are inexpensive (Kroon et al., 2007), can be easily recycled (Lee et al., 
2006) and do not rely on the availability of precious metals such as ruthenium. They also 
have high extinction coefficients and their molecular structures contain adequate anchoring 
groups to be adsorbed onto the oxide surface. However, solar cells sensitized with such dyes 
tend to have low stability. The development and optimization of solar cells is of great 
interest, both commercially and scientifically. However, dye sensitized devices are still not 
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commercially available in large volumes. Disadvantages such as the low efficiency and 
stability of these cells pose a hindrance to their commercialization. 

A considerable increase in conversion efficiency of components of solar radiation into 
electrical energy by other photosensitizing dyes has been achieved in recent years. 
Macrocyclic systems such as porphyrins, phthalocyanines and derivatives have been shown 
to be capable of application in solar cells (Lu et al., 2009a).  

Special attention has been given to the electron recombination processes that limit the DSC 
efficiency (Wang et al., 2006; Peter, 2007a; Zhao et al., 2008). Experimental and theoretical 
studies have been carried out in order to better understand and control these processes 
(Kruger et al., 2003; Cameron & Peter, 2005; Peter, 2007b; Xia et al., 2007a), typical interface 
phenomena. Strategies have been proposed to prepare efficient blocking layers in DSCs by 
using different techniques, such as spray pyrolysis, sputtering or by immersion in oxide 
precursor solutions (Xia et al., 2007a; Xia et al., 2007b; Wang et al., 2003; Handa et al., 2007). 
For example, the application of a compact layer onto the FTO glass before the mesoporous 
oxide film can prevent electron recombination at the FTO/TiO2 interface. This blocking 
layer physically avoids the contact between the electrolyte and the FTO surface, decreasing 
the occurrence of triiodine reduction by photoinjected electrons (Patrocinio et al., 2010; Lei et 
al., 2010). Efficient layer-by-layer (LbL) TiO2 compact films is considered one of the most 
effective blocking layers to avoid recombination processes at FTO surface in DSCs 
(Patrocinio et al.,. 2009). Although not previously reported as blocking layers, LbL metal 
oxide films have been applied in several devices (Krogman et al., 2008; Srivastava & Kotov, 
2008; Jia et al., 2008; Lu et al., 2009b), including DSCs (Tsuge et al., 2006; Agrios et al., 2006). 
Iha and coworkers have shown that an LbL film based on TiO2 nanoparticles and sodium 
sulphonated polystyrene, PSS, applied onto the FTO substrate before the mesoporous TiO2 
layer improved the overall conversion efficiency of DSCs by  28% (Patrocinio et al., 2009). 
Other complementary effects of the compact LbL TiO2 layer in DSCs and the role of the 
polyelectrolyte itself were still under investigation. 

LbL films using polyelectrolytes with good thermal stability at the electrode sintering 
temperature (450o C), such as sodium sulphonated polystyrene and sulphonated lignin, SL, 
maintain the compact morphology, and act as effective contact and blocking layers in DSCs.  
TiO2 LbL films with poly(acrylic acid) as a polyanion presented similar morphology to that 
exhibited by TiO2/PSS and TiO2/SL films before sintering (Patrocinio et al., 2010). The best 
performance so far achieved is through the use of the TiO2/PSS compact layer that increases 
the overall efficiency of DSCs to  30%, from 5.6 to 7.3%. The LbL TiO2/PSS film imposes a 
longer time for a charge exchange at the electrode surface decreasing the electron 
recombination. The TiO2/SL films (23% improvement) can be a cost effective option if a 
commercial application is considered.  

5. Organic synthesis mediated by heterogeneous photocatalysis 

Despite the widespread use of titanium dioxide, modified or not, or even other 
semiconductors with photocatalytic activity in photodegradation and mineralization of 
organic matter (Agostiano et al., 2003; Mrowetz et al.,2004; Machado et al.,2008; Hoffmann et 
al.,2010; Gupta et al.,2011), and its other capabilities (Mrowetz et. al.,2004; Zaleska, 2008a, 
2008b), these semiconductors have been little explored in the synthesis of compounds of 
interest, although it is recognized that the photocatalytic synthesis should enable the 

www.intechopen.com



Potential Applications for Solar Photocatalysis:  
From Environmental Remediation to Energy Conversion 

 

363 

efficient production of chemicals through combined fotoredox reactions with significant 
advantages compared to other methods (Swaminathan & Krishnakumar, 2011). 

Synthetic methods based on photocatalytic processes have been reported for the preparation 
of different organic substrates (Amano et al., 2006; Palmisano et al., 2007b; Denmark & 
Venkatraman, 2006; Hakki et al.,2009; Swaminathan & Selvam, 2011; Swaminathan & 
Krishnakumar, 2011). Although the production of chemicals of industrial interest using 
heterogeneous photocatalysis has been shown to be a viable process, there is still little 
research on the use of photocatalysis for this purpose, and about the performance of these 
photocatalytic processes (Kanai et al., 2001; Murata et al., 2003; Amano et al., 2006; Denmark 
& Venkatraman, 2006; Hakki et al.,2009; Swaminathan & Selvam, 2011;Swaminathan & 
Krishnakumar, 2011). Apparently, the reason for this is that, in general, these methods are 
not yet fully satisfactory with regard to operational simplicity, cost of reagents and 
performance.  

The stimulus for research in this field is necessary so that new and viable methodologies can 
be established. 

6. Conclusion 

In this chapter we combined a fast literature review about the different applications of 
heterogeneous photocatalysis, involving environmental photocatalysis, Hydrogen 
production for power generation, solar energy conversion into electricity using 
dye/semiconductor oxide cells and organic synthesis, with some experimental results 
obtained in our research group.  
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