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1. Introduction 

Point mutation or single base substitution is the replacement of a single base nucleotide with 
another nucleotide of the genetic material. Point mutations can be divided into transitions, 
changes between the purines A and G, or changes between the pyrimidines C and T, and 
transversions, changes between purines and pyrimidines. A fundamental aspect of DNA 
point mutation is the observation that transitional nucleotide changes commonly occur with 
greater frequency than transversional changes. This bias is primarily due to the biochemical 
structure of the nucleotide bases and the similar chemical properties of complementary base 
pairing (Topal & Fresco, 1976). Estimates of the bias are important for understanding the 
mechanisms of nucleotide substitution, assessing mode and strength of natural selection, 
and the relative abundance of transitional and/or transversional mutations has important 
consequences in epidemiological research as each class is associated with different diseases 
(Wakeley, 1996; Martínez-Arias et al., 2001). This review addresses the issue to which extent 
transition bias is ubiquitous among living organisms and whether this is similar in different 
species, along with the screening of point mutations associated with diseases and disorders. 

2. Point mutations and transitional bias 

Within coding sequences, transitional changes are often synonymous whereas 
transversional changes are not. When both types of changes lead to a change in protein 
sequence, the transitional change is often less severe with respect to the chemical properties 
of the original and mutant amino acids (Zhang, 2000). In mammalian nuclear DNA, 
transition mutations appear to be approximately twice as frequent as transversions as is 
evident from the substitution patterns of mammalian pseudogenes (Gojobori et al., 1982), in 
synonymous and non-coding SNPs in humans (Cargill et al., 1999), and in SNPs in mice 
(Lindblad-Toh et al., 2000). On the other hand, transitions are about as common as 
transversions in synonymous and intron SNPs in Drosophila DNA (Moriyama and Powell, 
1996). In contrast to the modest transition bias observed in mammalian nuclear DNA, 
transitions appear to be about 15 times as frequent as transversions in human mitochondrial 
(mt) DNA (Tamura & Nei, 1993). In a detailed analysis of mtDNA Belle et al. (2005) 
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investigated the transition bias by assessing polymorphism in the cytochrome b gene (cyt-b) 
in 70 species distributed amongst mammals, birds, reptiles, amphibians, and fish, 
considering a total of 1823 mutations. The authors found that the bias towards transitions is 
widespread and the ts / tv ratio was always greater or equal to 1, and it varied from an 
average ratio of 2.4 in amphibians to 7.8 in birds. This is in sharp contrast with plant 
mtDNA where a transversion bias has been recorded (Wolfe et al., 1987), suggesting that the 
mitochondrial genomes of plants and animals follow very different patterns of evolution. 
Data of Belle et al. (2005) indicated little evidence for variation within orders or genera and 
between closely related species such as the great apes. For these primates, an advantage was 
that complete mtDNA sequences for humans, chimpanzees, gorillas and orangutans are 
available. Though humans displayed the greatest ts / tv ratio among these species (humans 
13.75, chimpanzees 11.00, orangutans 6.87, gorillas 5.67), there was no evidence of 
significant variation (χ2 = 5.8, df = 3, p = 0.12) between species, suggesting that the parameter 
has not changed much during the evolution of the great apes. Generally, the majority of the 
variation appeared to be at higher phylogenetic levels, between orders and classes. No 
evidence that the metabolic rate affects the ts / tv ratio was found in surveyed species. 

Rosenberg et al. (2003) conducted a similarly designed analysis of 4,347 mammalian protein-
coding genes from seven species (human, mouse, rat, cow, sheep, pig, macaque) as well as 
from the introns and multiple intergenic regions from human, chimpanzee and baboon 
primates. Estimates showed that genes and regions with widely varying base composition 
exhibit uniformity of transition mutation rate both within and among mammalian lineages, 
with no relationship to intrachromosomal or interchromosomal effects. This points to 
similarity in point mutation processes in genomic regions with substantially different GC-
content biases. Knowledge of the mutational transition/transversion rate bias also allows a 
prediction of time to saturation of substitutions at fourfold-degenerate sites. From mutation 
parameters the above authors derived that transversions become more common than 
transition after 250 Myr, i.e. the time about which transitions become saturated (at ~25% of 
sites). Transversions become saturated much more slowly, beginning to reach 50% after 
about 750 Myr. In addition, the observed number of transitional substitutions accumulates 
approximately linearly for about 100 Myr, whereas the transversional substitutions 
accumulate linearly for about 250 Myr. 

The accumulation of base substitutions not subject to natural selection is the neutral 
mutation rate. Most CpGs (regions of DNA where a cytosine nucleotide occurs next to a 
guanine nucleotide, separated by one phosphate) in mammals are uniquely hypermutable 
(e.g., Hwang & Green, 2004). The Cs of most CpGs are methylated (Ehrlich & Wang, 1981; 
Miranda & Jones, 2007), which enhances the deamination of C that produce in this case a 
T:G mismatch. The net result is that methyl-CpGs mutate at 10–50 times the rate of C in any 
other context (Sved & Bird, 1990), or of any other base (Hwang & Green 2004). 
Consequently, CpGs not under selection are replaced over time by TpG/CpAs. Mammals 
thus exhibit two dramatically different neutral mutation rates: the CpG mutation rate and 
the non-CpG rate. Walser et al. (2011) determined the neutral non-CpG mutation rate as a 
function of CpG content by comparing sequence divergence of thousands of pairs of 
neutrally evolving chimpanzee and human orthologs that differ primarily in CpG content. 
Both the mutation rate and the mutational spectrum (transition/transversion ratio) of non-
CpG residues changed in parallel as sigmoidal function of CpG content. As different 
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mechanisms generate transitions and transversions, these results indicate that both mutation 
rate and mutational processes are contingent on the local CpG content. Authors assessed that a 
threshold CpG content of ∼0.53% must be attained before the non-CpG mutation rate is 
markedly affected, and the CpG effect reaches saturation at levels above ∼0.63% CpG. Methyl-
CpG may mediate the recruitment of various DNA- or histone-binding proteins and other 
factors (Cedar & Bergman, 2009), which could conceivably affect the susceptibility of the DNA 
to mutation. In this case the correlation between non-CpG mutations and CpG content would 
mean that chromatin states promoted by CpG methylation, or that result in it, render DNA 
more susceptible to mutation than DNA not in such states. There is some evidence that the 
mutation rate of compact heterochromatin (closed, inactive formation of chromosome) is 
higher than euchromatin (opened, transcribed chromosome portion) (Prendergast et al., 2007).  

In attempting to quantify the context dependence of nucleotide substitution rates, Zhang et 
al. (2007) generated sequence data in baboon, chimpanzee and human by the NISC 
Comparative Sequencing Program. The study confirmed that C→T substitutions are 
enhanced at CpG sites compared with other transitions, and are relatively independent of 
the identity of the preceding nucleotide. While, as expected, transitions in general occurred 
more frequently than transversions, the most frequent transversions involved the C at CpG 
sites, with their rate comparable to the rate of transitions at non-CpG sites. A four-class 
model of the rates of context-dependent evolution in primate DNA sequences, CpG 
transitions > non-CpG transitions ≈ CpG transversions > non-CpG transversions, was 
consequently inferred from the observed mutation spectrum. 

To relate establishment of mitochondrial mutations to environmental stress, Khrapko et al. 
(1997) investigated whether point mutations accumulated during a human lifetime were 
different from those that arise in human cell cultures in the absence of added xenobiotic 
chemicals. They found that human organs such as colon, lung, muscle and their derived 
tumors share nearly all mitochondrial hotspot point mutations that indicate that they are 
primarily spontaneous in nature and arise either from DNA replication error or reactions of 
DNA with endogenous metabolites. The hypothesis that environmental mutagens are 
important contributors to mitochondrial point mutagenesis thus no longer seems tenable. 
Assessments of the types of point mutations observed as polymorphisms have shown that 
both G→A and A→G transitions occur more frequently than transversions that was 
consistent with previous observations in human mtDNA (Aquadro & Greenberg, 1983; 
Horai & Hayasaka, 1990). In TK6 cells (human lymphoblast cells with normal P53 function) 
and in human tissues the mitochondrial point mutation rate appeared to be more than two 
orders of magnitude higher than the nuclear point mutation rate. 

2.1 Mitochondrial and nuclear DNA mutations related to disorders 

Although much smaller than the nuclear genome, mitochondrial DNA is equally important 
as it has been hypothesized to play a crucial role in ageing and carcinogenesis. This is 
mainly due to the fact that mitochondria represent the major site for the generation of 
cellular oxidative stress and play a key role in mediating programmed cell death (Birch-
Machin, 2006). The first primary pathological mutations in mtDNA were discovered over 20 
years ago (Holt et al., 1988; Wallace et al., 1988), and since then more than 100 mutations of 
mtDNA have been linked to human disease. The vast majority of these mutations fall into 
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two classes: point mutations and large-scale rearrangements. The latter can be partial 
deletions (D) or duplications involving 1–10 kb of DNA (Holt et al., 2010). Nevertheless, the 
rearranged mtDNA invariably coexists with wild type molecules, a situation termed 
heteroplasmy, which is also frequently (Saada et al., 2001), but not universally (Van 
Goethem et al., 2001) found among pathological point mutations of mtDNA. Cellular 
dysfunction usually occurs when the ratio of mutated to wild-type mtDNA exceeds a 
threshold level (Birch-Machin, 2000). Mitochondrial DNA is wholly dependent on the 
nucleus for its maintenance and replication, and so mutations in nuclear DNA can also 
produce defects in mtDNA, or mtDNA loss (Zeviani et al., 1989; Moraes et al., 1991).  

Incomplete oxygen reduction within the mitochondrial respiratory chain can lead to the 
formation of the superoxide radical, the first molecule in the pathway responsible for the 
production of reactive oxygen species (ROS), often inducing DNA strand breaks (Kang & 
Hamasaki, 2003). Growing evidence suggests that cancer cells exhibit increased intrinsic ROS 
stress, due in part to oncogenic stimulation, increased metabolic activity and mitochondrial 
malfunction (e.g., Pelicano et al., 2004; Sedelnikova et al., 2010). As the mitochondrial 
respiratory chain is a major source of ROS generation and the exposed mtDNA molecule is in 
close proximity to the source of ROS, the vulnerability of the mtDNA to ROS-mediated 
damage appears to be a mechanism to amplify ROS-stressing cancer cells. Coupled with this 
phenomenon is free-radical theory of Harman (2001) who attributed ageing in a wide range of 
species by postulating that the production of intracellular ROS is the major determinant of life 
span. Intracellular ROS are primarily generated by the mitochondrial respiratory chain and 
thus constitute a prime target for oxidative damage. According to this theory, mtDNA 
mutations caused by ROS accumulate within the cell, leading to impaired respiratory chain 
proteins, thereby generating more ROS, which in turn causes higher mtDNA mutation rates. 
Although there are data supporting a direct functional role of mtDNA in ageing and 
photoageing (Trifunovic et al., 2004; Birch-Machin & Swalwell, 2010), there is still considerable 
debate about the type of mtDNA associated with ageing. For example, the most frequently 
reported DNA region under assumption presents 4977-bp common deletion, but its 
significance is under debate (Thayer et al., 2003; Meissner et al., 2010). In addition, there are 
single somatic mtDNA control region mutations associated with ageing in tissues including 
skin, but their functional significance is still unclear (Liu et al., 1998; Wallace, 2005). This 
process of chronological ageing can be accelerated in skin by chronic exposure to ultraviolet 
radiation, which has been shown to be associated with a further increase in mtDNA damage. 
Mitochondria have further been implicated in the carcinogenic process because of their role in 
apoptosis and other aspects of tumour biology, alongside ROS generation (Jakupciak et al., 
2005). In many types of human malignancy such as colorectal, liver, breast, pancreatic, lung, 
prostate, bladder and skin cancer somatic mtDNA mutations have been detected (Durham et 
al., 2003; Dasgupta et al., 2008; Fry et al., 2008; Yin et al., 2010; Choi et al., 2011; Namslauer et 
al., 2011; Potenza et al., 2011). Furthermore, sequence variations of mtDNA have been 
observed in preneoplastic lesions, which suggest generation of mutations early in tumour 
progression (Parr et al., 2006).  

Human cells lacking mtDNA, so-called ρ0 (rho zero) cells, can be repopulated with 
mitochondria derived from healthy subjects or patients with suspected mtDNA defects, to 
produce cytoplasmic hybrids, or cybrids. If the respiratory capacity of the cybrid cell is 
impaired then the deficiency can be ascribed to the mitochondrial, as opposed to the 
nuclear, genome (Chomyn et al., 1991). The cybrid cell culture system has enabled the 
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discovery of the biased segregation of human mtDNA variants (Hayashi et al., 1991). 
Zastawny et al. (1998) compared oxidative base damage levels in mitochondrial and nuclear 
DNA of endogenous pig liver cells using gas chromatography. Higher levels (4.4 to 42.4 
times) of five measured bases were found in mtDNA in relation to nuclear DNA. The higher 
rate of oxidatively modified bases may be due to the large amount of ROS produced in 
mitochondria, the absence of bound histones in mtDNA, and deficiency of DNA repair 
enzymes in some restoring routes.  

Defects in oxidative phosphorylation (OXPHOS) are genetically unique because the key 
components involved in this process, respiratory chain enzyme complexes I, III, IV, V, are 
encoded by both nuclear and mitochondrial genes. Therefore, Rubio-Gozalbo et al. (2000) 
examined whether there are clinical differences in patients suffering from OXPHOS defects 
caused by nuclear or mtDNA mutations. 16 families with >=2 two siblings bearing a 
genetically established OXPHOS deficiency were studied, in four families due to a nuclear 
gene mutation and twelve due to a mtDNA mutation. Differences in age at onset, severity of 
clinical course, outcome, and intrafamilial variability in patients affected by an OXPHOS 
defect due to nuclear or mtDNA mutations were observed. Patients with nuclear mutations 
became symptomatic at a young age, and had a severe clinical course. Patients with mtDNA 
mutations showed a wider clinical spectrum of age at onset and severity. Reported 
differences are of importance regarding the choice of type of genome in further studies of 
affected patients. 

2.2 Point mutations in pathogens 

The challenge to identify point mutations accounting for resistance against antiparasitic 
drugs has been often addressed in veterinary pharmacology. For drug resistance in 
Plasmodium, causative organisms of malaria, a multitude of tests have been available and 
used for detecting parasites resistant to multiple drugs over the past 15 years (Hunt, 2011). 
Although the mechanisms by which malaria parasites develop resistance to drugs are 
unclear, current knowledge suggests that a main mechanism of resistance is the alteration of 
target enzymes by point mutation. Mutations in dihydrofolate reductase (dhfr) and 
dihydropteorate synthatase (dhps) cause anti-folate resistance in human malaria parasites 
against drugs sulphadoxine and pyrimethamin with synergystic anti-malarial effect (Prajapati 
et al., 2011). A constant monitoring is necessary to keep information about newly emerging 
drug resistance in Plasmodium, e.g. due to ATP6 gene variants implicated in artemisin 
resistance (Menegon et al., 2008), and to detect new gene variants associated with resistance 
to older drugs, e.g. cyt-B gene variants in atovoquone resistance (Sutherland et al., 2008).  

The principal mechanism of resistance to benzimidazoles is likely to involve changes in the 
primary structure of beta-tubulins, the building blocks of microtubules (Lacey, 1988). 
Specifically, point mutations in the beta-tubulin isotype 1 gene leading to amino acid 
substitutions in codons 167, 198, and 200 are widely thought to be associated with resistance 
in nematodes and DNA-based assays have been developed to monitor single nucleotide 
polymorphisms (SNP) (Silvester & Humbert, 2000; Von Samson-Himmelstjerna et al., 2009). 
These SNPs offer a means to detect the presence of resistance within populations and to 
monitor the development of resistance. As research progresses, however; it has become clear 
that other genes may be implicated in benzimidazole resistance and further aspects of 
anthelmintic resistance/susceptibility (Blackhall et al., 2008). Pan et al. (2011) identified 
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heat-shock protein 60 (HSP 60) as one of the most frequently expressed biomolecules after 
albendazole treatment of patients that could be connected with beta-tubulin gene isoform 2 
which exhibits a conserved point mutation indicative of benzimidazole resistance in 
tapeworm Echinococcus granulosus.  

Detection of point mutations has been beneficial in allowing consistent differentiation of 
closely related parasitic organisms. By examining the ITS1 region Zhu et al. (1999) 
established six fixed nucleotide differences between sibling species of Ascaris suum (pig 
nematode) and A. lumbricoides (human nematode) that are impossible to distinguish by 
mitochondrial genes due to existence of different lineages before host affiliations (Levkut et 
al., 1999; Dubinský et al., 2000; Criscione et al., 2007). The rrnS mitochondrial gene was 
found to be a useful genetic marker for related genotypes G1 (sheep strain) and G3 (buffalo 
strain) of Echinococcus granulosus complex, revealing a total nucleotide uniformity within 
genotypes and two point mutations (166T→G, 205A→G) between these variants (Busi et al., 
2007; Šnábel et al., 2009). 

3. Conclusion 

DNA base substitutions (mutations) are the most frequent class of genetic variants. 
Determining the factors that affect the base mutation rate remains a major concern of 
geneticists and molecular evolutionists. In mammalian nuclear DNA, transition mutations 
appear to be approximately twice as frequent as transversions. In human mitochondrial (mt) 
DNA transitions appear to be as much as about 15 times more frequent than transversions. 
In evaluating 70 species of mammals, birds, reptiles, amphibians, and fish, the ts / tv ratio 
varied from average of 2.4 in amphibians to 7.8 in birds in mtDNA. This contrasts with plant 
mtDNA with recorded transversion bias, suggesting that the mitochondrial genomes of 
plants and animals follow very different patterns of evolution. In mammalian protein-
coding genes, it was estimated that transversions become more common than transition 
after 250 Myr, i.e. the time about which transitions become saturated (at ~25% of sites). 
Transversions become saturated much more slowly, beginning to reach 50% after about 750 
Myr. The observed number of transitional substitutions accumulates approximately linearly 
for about 100 Myr, whereas the transversional substitutions accumulate linearly for about 
250 Myr. Most CpG sites, particularly those in transposable elements, are preferred sites of 
C methylation. Therefore, the correlation between CpG content and non-CpG mutations 
could be due to an effect of methyl-CpG per se, to its spontaneous deamination to produce a 
T:G mismatch and subsequent recruitment of error-prone DNA repair mechanisms, or both. 
According to the present knowledge, more than 100 mutations of mtDNA have been proved 
to be linked to human disease. The majority of these mutations are point mutations and 
large-scale rearrangements (partial deletions or duplications involving 1–10 Kb of DNA). 
Mitochondria are implicated in the carcinogenic process because of their role in apoptosis 
and other aspects of tumour biology, and because of generating ROS (reactive oxygen 
species), presented as major determinant of life span. Intracellular ROS are primarily 
generated by the mitochondrial respiratory chain and thus constitute a prime target for 
oxidative damage. Many types of human malignancy such as colorectal, liver, breast, 
pancreatic, lung, prostate, bladder and skin cancer harbor somatic mtDNA mutations. 
Mitochondrial DNA is wholly dependent on the nucleus for its maintenance and replication, 
and so mutations in nuclear DNA can also produce defects in mtDNA, or mtDNA loss. 
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