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1. Introduction 

A bioterrorism attack- is the deliberate release of biological agents such as viruses, 

bacteria, or toxins used to cause illness or death in people, animals, or plants (CDC). 

These agents are typically found in nature, but it is possible that they could be changed to 

increase their ability to cause disease, make them resistant to current therapeutics, or to 

increase their ability to be spread into the environment. Biological agents can be spread 

through the air, through water, or in food. Terrorists may use biological agents because 

they can be extremely difficult to detect and may not cause illness for several hours to 

several days. Some bioterrorism agents, like Variola major and Yersinia pestis, can be 

spread from person to person, while others e.g. Bacillus anthracis are not (Bioterrorism 

review, 2009). Biological agents make attractive weapons because they are relatively easy 

to obtain and carry from place to place, can be easily dispersed, and can cause widespread 

fear and panic beyond the actual physical damage they can cause. Many of the agents that 

could be used for bioterrorism have been divided into three categories A, B, and C, for 

public health preparedness based on various characteristics of the microbes or the 

diseases they cause.  

Category A includes the most "dangerous" and highest priority for public health 

preparedness. Some of these pathogens can be transmitted from person-to-person, cause 

diseases with a high mortality rate and are likely to cause public panic and social disruption. 

Category A agents include B. anthracis (anthrax), Variola major (smallpox), Francisella 

tularensis (tularemia), Y. pestis (plague), Clostridium botulinum neurotoxin (botulism), and 

Viral hemorrhagic fever viruses (e.g. arenaviruses, filoviruses, bunyaviruses, and 

flaviviruses).  

This chapter will discuss the Category A agent Y.pestis,the disease it causes,and recent 

efforts to develop vaccines.  

Plague, a zoonotic disease caused by the gram-negative bacillus Y. pestis is primarily a 

disease of rodents, with transmission occurring through infected fleas. Human disease is 

acquired through rodent flea vectors, as well as respiratory droplets from animal to humans 

and humans to humans.  
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2. History of plague 

The first reported pandemic of plague has been referred to as the “Great Plague of 
Justinian” (Sticker, 1908; Hirst,1953). This pandemic began around 532 AD in Egypt and 
spread through the Middle East and the Mediterranean basin, reaching Turkey, 
Constantinople, Greece, Italy, and the territories of France and Germany. The second 
pandemic, which is also known as the Black Death, began in 1334 in China and then spread 
westward along the trade routes to the Black Sea and eventually to Constantinople. The 
disease, which spread slowly and inevitably from village to village by infected rats and 
humans, or more quickly from country to country by ships, eventually killed 20 to 30 
million people in Europe (Gottfried,1983). The third pandemic probably originated in the 
Chinese province of Yunnan around 1855 and spread to the southern coast of China, causing 
several smaller outbreaks. Larger epidemics occurred when the disease finally reached 
Canton and Hong Kong in 1894, thus marking the beginning of the third pandemic. Plague 
spread rapidly throughout the world through all inhabited continents, except Australia. 
Rats aboard the faster steamships that had replaced slow-moving sailing vessels in 
merchant fleets carried the disease. Between 1894 and 1903, plague entered 77 ports on 5 
continents. During the early years of the third pandemic, the death toll in India and China 
alone was 12 million. In United State, plague was introduced in 1900. Between 1900 and 
1924, most plague cases in the U.S. occurred in port cities along the Pacific and Gulf coasts 
(Link, 1955). More recently, a plague epidemic caused the death of several hundred 
residents in the Surat city of India between September and October 1994 (Perry and 
Fetherstone 1997). 

The recent increase in the number of human plague cases together with the reappearance of 
epidemics in countries such as Malawi, Mozambique, and India has led to its designation by 
WHO as a re-emerging infectious disease (World Health Organization 2002, World Health 
Organization 2003). As of 30 July 2010, the Ministry of Health in Peru confirmed a total of 17 
cases of pneumonic plague in Ascope province of Department La Libertad. The onset of 
symptoms for the last reported case of pneumonic plague was on 11 July 2010. During the 
investigations, 10 strains of Y. pestis were isolated from humans, rodents and domestic cats. 
In 2009, the Chinese Ministry of Health, reported a cluster of pneumonic plague cases in the 
remote town of Ziketan, Qinghai province. The first case was a 32 year old male herdsman, 
who developed fever and haemoptysis. Between 1990 and 2005, a total of 107 cases of 
plague were reported in the U.S.(Centers for Disease Control and Prevention, 2006). 
Recently there have been reports of 14 deaths potentially due to pneumonic plague in 
Madagascar (http://www.promed mail.org). 

2.2 Plague as a biological weapon 

In 1346, during the siege of Kafa (now Feodossia, Ukraine) the attacking Tartar forces 
catapulted the bodies of warriors who had died of plague into the besieged city as a 
weapon. It has been speculated that this operation may have been responsible for the advent 
of the Black Death in Europe (Wheelis, 2002; Lederberg, 2001). In World War II, Unit 731 of 
the Japanese army, developed plague-infected fleas in China resulting in outbreaks of 
plague (Harris, 1994). Later, to eliminate dependency on the flea vector, the U.S. and the 
Soviet Union biological weapons programs developed methods to aerosolize Y.pestis. The 
World Health Organization (WHO) has estimated that, if 50 kg of Y. pestis were released as 
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an aerosol over a city of 5 million people, 150,000 would get pneumonic plague infection of 
which 36,000 would die (WHO 1970). The plague bacilli would remain viable as an aerosol 
for 1 hour for a distance of up to 10 km.  

3. Clinical characteristics of plague 

Plague can be broadly classified into three forms: 

3.1 Bubonic plague 

This is the classic form of the disease, which is characterised by swollen lymph nodes called 

buboes. Common symptoms are fever, headache, and chills occurring within 2 to 6 days of 

exposure to the organism either by flea bite or by contamination of open wounds with 

infected material. Gastrointestinal complications such as nausea, vomiting, and diarrhoea 

are common (Iteman et al., 1993, von Reyn et al., 1977). Buboes typically occur in the 

inguinal and femoral regions but may also occur in other regions of the body (Butler, 1989; 

Conrad et al., 1968). Bacteraemia or secondary plague septicaemia is frequently seen in 

patients with bubonic plague (Gage et al., 1992). In humans, the mortality of untreated 

bubonic plague is approximately 60%, but this is reduced to less than 5% with prompt, 

effective therapy.  

3.2 Septicaemic plague 

Primary septicaemic plague occurs mainly in patients with positive blood cultures but no 

palpable lymphadenopathy. Clinically, septicaemia caused by Y.pestis resembles that caused 

by other gram-negative bacteria. Common symptoms include chills, headache, malaise, and 

gastrointestinal disturbances. Patients with septicaemic plague are more likely to experience 

abdominal complications than compared those with  bubonic plague. Even with treatment, the 

mortality of septicaemic plague may range from 30 to 50% (Crook and Tempest 1992, Hull et 

al., 1987, Poland and Barnes, 1979); untreated septicemic plague is virtually 100% fatal. 

3.3 Pneumonic plague 

Pneumonic plague is an infection of the lungs due to either inhalation of the organism (i.e., 

primary pneumonic plague), or dissemination to the lungs via the blood stream (i.e., 

secondary pneumonic plague). Pneumonic plague is the only form of the disease which is 

readily spread from person to person via respiratory droplets through close contact (2 to 5 

ft) with an infected individual. It progresses rapidly from a flu-like illness to pneumonia 

with coughing and the production of bloody sputum. The incubation period for primary 

pneumonic plague is between 1 and 3 days. The last case of pneumonic plague in the U.S., 

resulting from person-to-person transmission occurred during the 1924 - 1925 epidemic in 

Los Angeles (Meyer, 1961). Between 1970 and 1993, 12% of U.S. plague patients developed 

pneumonia secondary to either the bubonic or septicemic form of the disease (Doll, 1994); In 

recent decades, 28% of human plague cases resulting from exposure to infected domestic 

cats in the U.S. presented as primary pneumonic plague. The mortality rate for untreated 

pneumonic plague is nearly 100%. Recent data from Madagascar epidemic indicates that 

mortality associated with respiratory involvement was 57%. 
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4. Microbiology 

The genus Yersinia, a member of the family Enterobacteriaceae, consists of eleven species, of 
which three are pathogenic for humans: Y. pestis; Y. pseudutuberculosis and Y. enterocolitica. Y. 
pestis, is a gram-negative, non-motile, non-spore forming coccobacillus measuring 0.5 to 0.8 
µm in diameter and 1 to 3 µm in length. The organism grows at 4 to 400 C with optimum 
growth at 28 to 30 0 C; the optimum pH range is 7.2 to 7.6 but extreme pH (5 to 9.6) can be 
tolerated (Brubaker, 1972; Holt et al., 1994; Poland and Barnes, 1979; Poland et al., 1994). The 
lipopolysaccharide of Y.pestis is characterized as rough, possessing core components but 
lacking the extended O-group side chains. There is no true capsule; however, a 
carbohydrate-protein surface component, termed capsular antigen or fraction 1 (F1) is 
produced during growth above 330C (Barnes and Quan, 1992; Brubaker et al., 1972; Poland 
et al., 1994).Three biotypes (or biovars) of Y. pestis can be differentiated based on the 
conversion of nitrate to nitrite and fermentation of glycerol: Antiqua, Orientalis and 
Mediaevalis. Biotype Antiqua is positive for both characteristics, bitype Orientalis converts 
nitrate to nitrite but does not ferment glycerol, and biotype Mediaevalis ferments glycerol but 
does not form nitrite. Strains of the three biotypes exhibit no difference in their virulence or 
pathology in animals or humans (Brubaker et al., 1972; Poland et al., 1979). It is thought that 
Antiqua was responsible for the First Pandemic, Mediaevalis for the Second Pandemic, and 
Orientalis for the Third Pandemic. The majority of Y. pestis strains contain three virulence 
plasmids of 9.5, 70 to 75, and 100 to 110 kb (Ben-Gurion and Shafferman, 1981; Ferber and 
Brubaker, 1981; Filippov et al., 1990). In strain KIM and its derivatives, these plasmids are 
referred to as pPCP1 (pesticin, coagulase, plasminogen activator), pCD1 (calcium 
dependence), and pMT1 (murine toxin). 

4.1 Life cycle 

Plague primarily affects rodents. Transmission between rodents is associated with their 
fleas. While infection can occur by direct contact or ingestion, these routes do not normally 
play a role in the maintenance of Y. pestis in animal reservoirs. The rat flea (Xenopsylla 
cheopis), the classic vector for plague, ingests blood from an infected rodent (Hinnebusch 
and Schwan 1993). A bacterial load of 104 CFU/ml of rodent blood would ensure ingestion 
of at least 300 Y. pestis organisms. Y.pestis is cleared by some fleas but multiplies in the 
midgut (stomach) of others. Two days after an infected blood meal, the stomach exhibits 
clusters of brown specks containing Y. pestis. These develop into cohesive dark brown 
masses containing bacilli, a fibrinoid-like material, and probably hemin which extend 
throughout the stomach and into the proventriculus and esophagus. By 3 to 9  days after the 
infected blood meal, the bacterial masses may completely block the proventriculus, extend 
into the esophagus, and prevent newly ingested blood from reaching the stomach. As the 
hungry flea repeatedly attempts to feed, the blood sucked from the mammal mixes with 
bacilli and is regurgitated into the mammalian host (Bacot, 1914; Bacot, 1915; Bahmanyar, 
1976; Bibikova 1977; Cavanaugh 1971, 1956). At higher environmental temperatures (> 28 to 
300 C), blockage of fleas decreases and clearance of the infection increases, possibly due to 
the temperature regulation of hemin storage and/or Pla protease. (Burroughs, 1947; 
Cavanaugh, 1971; Cavanaugh, 1980; Kartman, 1969). The normal digestive process of fleas 
involves maintaining the blood meal as a liquid, which is subsequently degraded primarily 
by proteolytic enzymes (Wigglesworth, 1984). The fate of the blocked flea is death from 
starvation and dehydration (Bacot, 1914; Bibikova, 1977).   
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Y. pestis spreads from the site of the flea bite to the regional lymph nodes and multiplies, 
resulting in the formation of primary and sometimes secondary buboes (swollen lymph 
node). The bacilli can spread into the bloodstream (bacteremia), where they are 
preferentially removed by the spleen and liver. Growth of the organisms continues in the 
blood, liver, and spleen and eventually spreads to other organs (Pollitzer, 1954). 
Development of a bacteremia of sufficient degree and duration is essential for effective 
transmission in nature. Infection of the flea via the blood from a bacteremic rodent 
completes the cycle. If bubonic plague progresses to the pneumonic form in humans, the 
potential for respiratory droplet spread and a primary pneumonic plague epidemic occurs 
(Poland and Barnes, 1979; Poland et al., 1994). This type of epidemic is currently uncommon 
due to the advent of effective antibiotics and modern public health measures. 

5. Diagnosis 

Clinical diagnosis of disease is based on patient symptoms and exposure history. Bubonic 
plague is characterized by painful, swollen lymph node(s), fever, and a history of exposure 
to fleas, rodents, or other animals. It is very difficult to diagnose septicemic plague without 
a blood culture because of its resemblance to other gram-negative septicemias. Likewise, 
pneumonic plague has been mistaken for other pulmonary syndromes (Centers for Disease 
Control and Prevention. 1994). Recent data indicate that pneumonic plague should be 
suspected in symptomatic persons with a history of exposure to infected pets, especially cats 
(Craven et al., 1993; Doll et al., 1994; Gage et al., 1992).  

Specimens for laboratory diagnosis include blood, bubo aspirates, and sputum, which can be 
stained with Gram, Giemsa, Wright, or Wayson stain (Poland et al., 1979). A positive 
fluorescent-antibody assay directed against purified F1, a capsular antigen expressed 
predominantly at 370 C can be used as presumptive evidence of a Y. pestis infection (Du and 
Forsberg, 1995; Poland et al., 1979). To confirm a diagnosis of plague by bacteriological means, 
it is necessary to isolate the organism. Other methods for diagnosing plague include: enzyme 
linked immunosorbent assays (ELISA) (Cavanaugh et al., 1979; Williams et al., 1984), 
polymerase chain reaction (PCR) assays (Norkina OV 1994), and DNA hybridization 
(McDonough et al., 1988). ELISAs have been used to measure levels of either F1 antigen or 
antibodies to F1 in serum (Williams et al.,1984). PCR-gel electrophoresis based methods have 
been developed for detecting Y. pestis in fleas and other specimens (Hinnebusch and Schwan, 
1993; Norkina et al., 1994, Tsukano et al., 1996). Real-time PCR assays in various formats have 
also been developed for detecting and identifying Y. pestis (Higgins et al., 1998; Iqbal et al., 
2000; Lindler and Tall, 2001; Loiez et al., 2003; Tomaso et al., 2003; Chase et al., 2005; Woron et 
al., 2006). Real-time PCR based methods are more specific, and require less time and labor than 
conventional PCR assays. Real-time PCR methods include SYBR Green (Saikaly et al., 2007), 
molecular beacons (Varma-Basil et al., 2004), TaqMan probes (Loiez et al., 2003; Chase et al., 
2005) and minor groove binding (MGB) probes (Skottman et al., 2007), and target specific 
sequences on the chromosome and (or) plasmids. However, PCR based diagnosis is expensive 
compared to immunoassays, which may be useful for mass screening during epidemics. 

6. Treatment 

Patients suspected of having bubonic plague should be placed in isolation until two days 

after starting antibiotic treatment to prevent the potential spread of the disease. Antibiotics 

www.intechopen.com



 
Bioterrorism 

 

88

such as streptomycin, gentamicin, oxytetracyclne, tetracycline and chloramphenicol have 

been used to treat primary infection (Meyer, 1950). Due to the toxicity associated with 

streptomycin, patients are not usually maintained on this antibiotic for the full 10-day 

course but shifted to one of the other antibiotics, usually tetracycline. The tetracyclines are 

also commonly used for prophylaxis, while chloramphenicol is recommended for the 

treatment of plague meningitis (Becker et al.,1987). Newer antibiotics have been used to 

successfully treat experimental plague infections in mice (Bonacorsi et al., 1994). Recently, 

the quinolone levofloxacin was found to be effective against Y.pestis, B.anthracis, and F. 

tularensis (Peterson et al., 2010). 

7. Immunology of Y. pestis 

Yersinia spp like many other gram-negative bacterial pathogens, employ a specialized 
secretory apparatus called the type III secretion system (TTSS) to interact with host cells 
(Cornelis et al., 1998; Cornelis, 2000). The TTSS is a multicomponent secretion apparatus that 
injects specialized proteins (effectors) into the cytosol of the host cell where they interact 
with a variety of host proteins to manipulate cellular functions to ultimately benefit the 
pathogen (Galan and Collmer, 1999). The Yersinia effector proteins called Yops– (Yersinia 
Outer membrane Proteins) and other proteins involved in the TTSS are encoded on a 70-kb 
plasmid (Cornelis et al., 1998). The functions of the Yops are currently under intense study 
and fall into two general categories: proteins facilitating the translocation of Yops into the 
host cells, and those actually secreted into the cytosol. Notably, YopD, YopB, and LcrV (low 
calcium response protein V) appear to function in the translocation of other Yops into the 
cytosol whereas YopE, YopH, YopJ (Yop P in Y. enterocolitica), YopM, YopO, and YopT 
function within the host cell. Yops are virulence factors that can interfere with phagocytosis, 
inhibit the antimicrobial oxidative burst, inhibit the production of inflammatory cytokines 
(e.g. TNF-┙,), and promote apoptosis in macrophages and neutrophils (Cornelis et al.,1998, 
2000). Like TTSS effectors of other bacterial pathogens, Yops function by mimicking 
activities of host cellular proteins and either activate or inhibit cellular processes to promote 
the pathogen’s survival and replication (Staskawicz et al., 2001). 

LcrV, is an important virulence factor (Sing et al., 2002; Fields et al., 1999; Lee et al., 2000). It 
forms the tip of TTSS and helps to translocate effector proteins to host cells. LcrV can also be 
secreted into the environment (Fields et al., 1999) where it has been shown to down regulate 
host protective immune responses in an IL-10 mediated manner (Sing et al., 2002). Thus, 
pretreatment of wildtype peritoneal macrophages with recombinant LcrV (rLcrV) inhibited 
zymosan induced TNF-┙ production. The anti-inflammatory effect of macrophages was found 
to be IL-10 dependent because it could be reversed by neutralizing antibodies specific to IL-
10.There was no effect of neutralizing antibodies against IL-4 or TGF-┚, two other cytokines 
known to inhibit inflammatory responses of macrophages (Sing et al., 2002). The cell receptors 
responsible for LcrV-induced IL-10 production were identified as CD14 and TLR2 (Sing et al., 
2002). IL-10 secretion in response to rLcrV was abrogated in CD14- and TLR2- deficient 
macrophages. Furthermore, the TLR2 stimulating region of LcrV mapped to a short N-
terminal 19 amino acid sequence (Sing et al., 2002). CD14 / TLR2 mediated production of IL-10 
by LcrV was further established by the observation that TLR2-deficient mice were more 
resistant to Y. enterocolitica infection than their wild-type parents (Sing et al., 2002). 

Y. pestis replicates extracellularly; whether its virulence relies upon intracellular replication 
remains a question of debate. Y. pestis replicates within macrophages/ dendritic cells as well as 
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in vitro (Cavanaugh et al., 1959; Janssen et al., 1969; Straley et al.; 1984; Pujal et al., 2005). 
Nevertheless, detailed kinetic studies of mice infected intranasally (Lathem et al., 2005) and 
rats infected intradermally (Sebbane et al., 2005), failed to observe significant numbers of 
intracellular organisms in vivo. However, Y.pestis bacilli were detected in spleen cells and in 
CD11b-expressing macrophages when mice were infected   subcutaneously (Lukaszewski et 
al., 2005). In addition, studies of pneumonic plague in nonhuman primates have documented 
the presence of intact Y. pestis within alveolar macrophages (Finegold et al., 1969; Davis et al., 
1996). Electron microscopy confirmed the presence of alveolar macrophages containing intact 
bacilli in the lungs of aerosol-infected macaques (Finegold et al., 1969). 

Although, the growth of Y. pestis within phagocytes, plays an important pathogenic role, 
extracellular bacilli predominate during the late stages of infection although intracellular 
organisms have also been detected at that time (Finegold et al., 1969; Davis et al., 1996; 
Lukaszewski et al., 2005). These findings suggested that cells of the monocyte/macrophage 
lineage offer Y. pestis a protected intracellular niche that provides sufficient time for the 
pathogen to grow within mammals by upregulating expression of capsular F1 protein, LcrV 
and Yops (Cavanaugh et al., 1959). 

One to 4 hours after infection of macrophages, Y. pestis rapidly expresses virulence markers 
such as Yops, F1 antigen, and V antigen. By 1 to 2 days postinfection, the virulence-
associated proteins begin to paralyse host immune mechanisms by inducing apoptosis, 
suppressing the production of proinflammatory cytokines (e.g. TNF-┙), inhibiting Fc 
receptor-mediated phagocytosis, and preventing neutrophil chemotaxis (Perry and 
Fetherston, 1997). Inside macrophages, Y. pestis F1 protein (fraction 1 antigen) forms a 
capsule around the bacterium. This capsule enhances resistance to engulfment by both 
macrophages and neutrophils, probably by preventing interactions of receptors that could 
facilitate uptake of the pathogen (Du et al., 2002). It was also observed that Y. pestis produces 
a less-acylated (tetra-acylated) lipid A at 37 °C, which results in poor induction of host toll-
like receptor (TLR) 4-mediated innate immune responses and ultimately poor activation of 
human macrophages (Kawahara et al., 2002; Kolodziejek et al., 2010). When Y. pestis 
KIM1001, which expresses a poorly TLR4-stimulating LPS, was modified to strongly induce 
TLR4, it became avirulent (Montminy et al., 2006). 

A fimbrial structure in Y. pestis, PsaA (pH 6 antigen) is induced at 37°C in acidic media, an 
environment similar to that of the macrophage phagolysosome (Lindler and Tal, 1993; Price 
et al., 1995). PsaA selectively binds to apolipoprotein B (apoB)-containing lipoproteins (LDL) 
in human plasma (Makoveichuk et al., 2003), which may prevent recognition by the host 
immune system (Huang XZ 2004, Makoveichuk et al., 2003). 

Infection by Y.pestis leads to a global depletion of NK cells and decreased secretion of IFN-┛, 
resulting in reduced macrophage function. These immunomodulatory effects depend on the 
effector YopM (Kerschen et al.,2004). Phagocytes (macrophages and neutrophils) are the 
main target cells of the Yops. YopH, YopE, YopT, and YopO inhibit the phagocytosis of 
Yersiniae, either by interfering with the host cell actin regulation of Rho GTPases (YopE, 
YopT, and YopO) or specifically and rapidly inactivating host proteins associated with 
signalling from the receptor to actin (YopH) (Aepfelbacher and Heesemann, 2001; 
Aepfelbacher et al., 2005; Andersson et al., 1996; Iriarte et al., 1998; Rosqvist et al., 1990). 
YopH can suppress the production of reactive oxygen intermediates by macrophages and 
PMNs (Green et al., 1995). Moreover, Yops also inhibit the proinflammatory responses 
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elicited by infected cells. YopP inhibits TNF-┙ and IL-8 release by macrophages, and 
epithelial, and endothelial cells, respectively (Boland and Cornelis 1998). TNF-┙ is a potent 
proinflammatory cytokine, released by activated macrophages and plays a crucial role in 
limiting the severity of the bacterial infection. In addition to YopP, YopM interacts with 
protein kinase C-like 2 and ribosomal protein S6 kinase, which are also involved in 
proinflammatory signalling (McDonald et al., 2003). The suppression of the production of 
proinflammatory factors not only reduces the activation of NK cells and phagocytes, but 
also destroys the inflammatory environment needed for adaptive immunity. 

7.1 Current vaccine strategy 

There is a need for a safe and effective plague vaccine to counter the threat of bioterrorism. 
Researchers have been trying for more than 100 years to develop such a vaccine (Titball and 
Williamson, 2004). The first vaccine consisting of a heat-killed broth of densely grown, fully 
virulent Y. pestis was developed in 1897 (Haffkine, 1897; Taylor, 1933). This formulation was 
found to be effective against bubonic plague but had undesirable side effects, such as high 
grade fever, in the majority of human recipients and severe adverse reactions limited its 
acceptance (Taylor, 1933). This vaccine was not effective against the pneumonic form of 
disease (Taylor, 1933; Lien-Teh, 1926). Later, Meyer and colleagues (1974, 1970) developed a 
more refined whole-cell plague vaccine comprised of formalin-killed Y. pestis organisms 
suspended in a saline solution. Ultimately, a vaccine of this type was licensed and sold as 
Plague Vaccine, USP, and was used to protect U.S. military personnel against bubonic 
plague during the Vietnam War (Meyer, 1970; Cavanaugh et al., 1974). However, these 
vaccines also caused significant adverse effects, including fever, headache, malaise, 
lymphadenopathy, erythema and induration at the site of injection (Meyer KF et al., 1974). 
In addition, they generally failed to protect mice and nonhuman primates against 
pulmonary Y. pestis challenge (Titball and Williamson, 2004; Meyer et al.,1974; Meyer et 
al.,1970; Kolle  and Otto 1904).  

In 1904, Kolle and Otto showed that relatively small quantities of live-attenuated Y. pestis 
were sufficient to protect rodents. Later, Strong (1906, 1908) reported that live-attenuated 
vaccines protected humans from bubonic plague. In subsequent years, this formulation was 
used to immunize millions of people in Indonesia, Madagascar and Vietnam (Girard, 1963). 
The results suggested that these vaccines were fully protective in humans against both the 
bubonic and pneumonic form of plague (Titball and Williamson, 2004; Meyer et al., 1970; 
Girard, 1963). Unfortunately, the live attenuated vaccines were found to be unstable, 
sometimes killing experimental animals (i.e., nonohuman primates) due to the retention of 
significant virulence (Welkos et al., 2002; Meyer et al., 1970; Meyer et al., 1974; Russell et al., 
1995). In addition, they also produced frequent side effects in humans such as, debilitating 
fever, malaise and lymphadenopathy (Meyer et al., 1974). These safety concerns have 
limited the use of live-attenuated plague vaccines in the U.S. and Europe.  

Current vaccines are based on variants of a pigmentation-negative Y. pestis strain EV76. 
Strain EV76 produces a robust T-cell response that contributes to protection against 
pneumonic plague in a murine model (Sha et al., 2008). Despite safety concerns and a high 
degree of immune variability among vaccine recipients, the NIIEG line of strain EV 76 is still 
in use today (Zilinskas, 2006). However, uncertainty about the reversal of virulence makes 
the EV76 live attenuated option much less appealing than the development of new vaccines. 
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To overcome the problems associated with the EV76 strain, researchers are trying to find 
non-pathogenic substitutes by replacing it with a plasmid-expressed gene that could 
engender protection. In that context, an Escherichia coli-derived plasmid encoding the 
lipopolysaccharide LpxL, which was over-expressed in the EV76 strain, was chosen because 
of its immunogenicity and ability to activate TLR-4 (Szaba et al., 2008).  

The E.coli lpxL gene was introduced into the Y. pestis chromosome, which encodes a hexa-
acylated lipid A. LpxL is a potent TLR-4 agonist, capable of inducing a strong innate 
immune response. Immunization with this strain resulted in 100 % protection from 
subsequent subcutaneous and intranasal challenges (Sun et al., 2011). Genes for additonal 
virulence proteins such as, Ail (attachment invasion locus, also designated as OmpX), 
plasminogen activator protease (Pla), and pH 6 antigen (Psa) have been deleted in an effort 
to generate effective live attenuated vaccine strains (Felek et al., 2010). In a pneumonic 
plague model, animals infected with a ompX mutant of Y. pestis CO92 survived for two days 
longer than those infected with the parent strain (Kolodziejek et al., 2010). Moreover, Δcaf1 
mutants and ΔpsaA mutants exhibited decreased virulence in a murine infection model 
(Weening et al., 2011). In a recent study, a Δcaf1 mutant of Y. pestis CO92 was attenuated for 
virulence in a mouse model of bubonic plague but not in a pneumonic plague mouse model 
when compared to the WT CO92 strain (Sha et al., 2011). 

7.2 Subunit vaccines based on the F1, LcrV and YscF proteins 

The F1 antigen plays important role in preventing phagocytosis by macrophages. In 1952, 
Baker and colleagues purified the capsular F1 protein. F1 specific antibodies produced in 
rabbits, agglutinated plague bacilli and passively protected mice and rats following 
subcutaneous challenge with virulent Y. pestis (Baker et al., 1952). Passive transfer of F1-
specific antibodies also protected macaques against pneumonic plague (Ehrenkranz and 
Meyer, 1955). Subsequently, vaccination with recombinant F1 was shown to protect mice 
against aerosolized Y. pestis (Andrews et al., 1996). Despite this apparent success, it is now 
well established that virulent F1-negative Y. pestis strains exist (Winter et al., 1960; 
Friedlander et al., 1995; Welkos et al.,1995, Davis et al., 1996; Worsham et al., 1995). Thus, 
vaccines based solely upon F1 antigen will likely fail to protect against all strains of Y.pestis.  

The multifunctional LcrV protein is important for the virulence of Y.pestis (Brubaker et al., 
2003; Une and Brubaker, 1984; Viboud and Biliska, 2005; Heesemann et al., 2006; Bacon et al., 
1956; Janssen et al., 1963; Lawton et al., 1963, Une et al., 1984). Immunization with purified 
LcrV protected mice against subcutaneous challenge; protection was also observed following 
the passive transfer of LcrV-specific antibodies (Une T et al., 1984, Lawton et al., 1963, Une et 
al., 1984, Sato et al., 1991; Nakajima and Brubaker, 1993; Motin et al., 1994). Immunization with 
recombinant LcrV was shown to protect mice against aerosol infection with both F1-positive 
and F1-negative strains of Y. pestis (Motin et al., 1994; Price et al., 1989; Leary et al., 1995; 
Anderson et al., 1996; Anderson et al., 1998). In spite of these important findings, a vaccine 
based on LcrV alone did not fully protect against pneumonic plague, perhaps due to lack of 
cross-protective immunity against LcrV variants (Roggenkamp et al., 1997).  

YscF, a recently identified vaccine candidate, is located on the cell surface and forms the 
TTSS channel, which is required for the secretion of Yops and toxins (Allaoui et al., 1995, 
Haddix and Straley, 1992; Hoiczyk et al., 2001; Marenne et al., 2003). Immunization of mice 
with YscF resulted in a high anti-YscF titer and provided partial protection against 
intravenous (i.v.) challenge with Y. pestis (Matson et al., 2005; Swietnicki et al., 2005). 
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Vaccines based on recombinant F1 and LcrV provided better protection than vaccines 
comprised of either subunit alone  (Williamson et al., 1995,1996 ). F1 and LcrV formulations 
administered with the adjuvant alum provided protection in mice against pulmonary Y. 
pestis challenge (Williamson et al., 1997; Jones et al., 2000). In a similar study, investigators at 
the US Army Medical Research Institute of Infectious Diseases (USAMRIID) demonstrated 
that a formulation consisting of a recombinant F1-LcrV fusion protein (rF1V) and alum 
protected mice against pulmonary challenge with either F1-positive or negative strains of Y. 
pestis (Anderson et al., 1998, Heath et al., 1998). 

Yops have also been investigated as protective antigens. Immunization of mice with 
recombinant Yops ( H, E, N, K, or M) engendered no significant protection against Y. pestis 
infection (Andrews et al., 1999; Leary et al., 1999; Nemeth et al., 1997). However, mice 
immunized with complexes of YopB, YopD, and YopE (BDE) produced high-titers of 
antibodies specific for Yop B, D, and E, and were protected against lethal intravenous 
challenge with F1- but not F1+ Y. pestis. Furthermore, mice passively immunized with anti-
BDE serum were also protected from lethal challenge with F1- Y. pestis (Ivanov et al., 2008).  

Huang et al. (2009) evaluated a vaccine consisting of a spray-freeze dried powder form of a 
recombinant F1-V fusion protein in a mouse model. The vaccine engendered an antibody 
response and provided 70-90% protection against lethal subcutaneous challenge with Y. 
pestis. Ren et al. (2009) developed a vaccine consisting of recombinant F1, and V from 
Y.pestis, and the Protective Antigen from B. anthracis (rF1 + rV+ rPA). This formulation 
protected mice from subcutaneous challenge with 107 colony-forming units (CFU) of a 
virulent Y. pestis strain, and fully protected rabbits against subcutaneous challenge with 
1.2×105 spores of virulent B. anthracis.  

CpG oligodeoxynucleotide (ODN) has been used as an adjuvant together with F1-V antigen 
to enhance its immune response in mice. CpG ODNs significantly augmented the antibody 
response even up to 5 months and increased the efficacy of the vaccine in murine model of 
bubonic and pneumonic plague (Amemiya et al., 2009).  

Immunization with flagellin and with F1-V elicited a robust humoral immune response in 
mice and two species of nonhuman primates. The flagellin-F1-V formulation fully protected 
mice against intranasal challenge with Y. pestis CO92 (Mizel et al., 2009). Oral immunization 
with cationic liposome–nucleic acid complexes (CLDC) combined with F1 antigen elicited 
protective immunity against lethal pneumonic plague in C57BL/6J. This formulation 
protected mice up to 18 weeks post vaccination. Protection mediated by oral CLDC with F1 
antigen depends primarily on CD4+ T cells, with a partial contribution from CD8+ T cells 
(Jones et al., 2010). 

Ramirez and Alejandra (2009) constructed an attenuated Salmonella Typhi strain that expressed 
the F1 antigen of Y. pestis (S. Typhi (F1)), and evaluated its immunogenicity. Newborn mice 
primed intranasally with a single dose of S. Typhi (F1) exhibited a mucosal and cellular 
immune response one week post immunization. S. Typhi(F1) enhanced the activation and 
maturation of neonatal CD11c+ dendritic cells, and MHC-II cell surface markers and the 
production of proinflammatory cytokines. The S. Typhi(F1)- based formulation improved the 
capacity of DC for antigen presentation and T cell stimulation in vitro. 

The protective efficacy of the F1 + rV270 (an LcrV variant lacking amino acid residues 271–
300) vaccines compared to that of EV76 was evaluated. The F1 + rV270 formulation was 
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tested in both guinea pigs and New Zealand White rabbits by determining the antibody 
response and protection against subcutaneous challenge with the virulent Y. pestis 141 strain 
( Qi Z et al., 2010).  

Xiao et al. (2010) developed an anti-F1-specific human monoclonal antibody (mAb) (m252) 
and anti-V-specific human mAbs (m253, m254) against the F1 and V antigens, respectively. 
These monoclonal antibodies were found to be more effective than the corresponding 
mouse antibodies. Neutralization of TNF-┙ and IFN-┛ interfered with the protective efficacy 
of F1- or LcrV- specific antibodies against the fully virulent pgm-positive Y. pestis strain 
CO92 (Lin et al., 2010). Recently, a recombinant rF1+rV vaccine provided protection in 
Cynomolgus macaques against pneumonic plague following inhalational challenge with a 
clinical isolate of Y. pestis (CO92) (Williamson et al., 2011). 

7.3 Plant based vaccines 

The use of plant-based oral recombinant vaccines could be an alternative approach for plague 

immunoprophylaxis. However, F1 and LcrV genes expressed in recombinant plant tissue were 

relatively less immunogenic due to the lack of signals recognized by the innate immune 

system through Toll Like receptors. In one such study, Swiss-Webster mice exhibited 

significant protection following subcutaneous immunization with Nicotiana tabacum leaves that 

expressed a LcrV–F1 (F1-V) translational fusion protein on its surface (Arlen 2008). In a 

separate study, guinea pigs immunized with a transgenic Nicotiana benthamiana tobacco plant 

expressing the F1-V fusion protein were protected against a subsequent pneumonic plague 

infection (Del Prete, 2009). However, the amount of recombinant protein produced in plant-

based vectors was generally poor. To overcome this problem, the N-terminal of the ┛-Zein 

protein (produced in maize and induces protein body formation) was fused with an F1-V 

fusion construct, which resulted in up to three times higher accumulation of protein in 

Nicotiana tabacum drived tissues than the F1-V fusion protein alone (Alvarez et al., 2010). Plant-

based vaccines have also been evaluated for other Category A agents such as Variola major 

virus and B. anthracis (Rigano et al., 2009). Recently, an F1-V fusion protein expressed in carrot 

tap roots and lettuce was found to be stable and immunogenic for mice. (Rosales-Mendoza et 

al., 2010a; Rosales-Mendoza et al., 2010b). 

7.4 DNA vaccine straties 

DNA vaccines have been developed as an alternative to protein-based vaccines. LcrV- and 
F1-based DNA vaccines have been developed that contain either all or part of the open 
reading frames encoding either LcrV, F1, or both. One vaccine containing a portion of LcrV 
that encoded a 127-amino acid peptide, was found to elicit a strong humoral immune 
response. Furthermore, mice immunized with this vaccine exhibited a 60% survival rate 
following challenge with Y.pestis (Vernazza. et al., 2009). A vaccine consisting of the IL-12 
coding sequence and the genes for F1 or LcrV was used to immunize mice intranasally. This 
formulation enhanced IgA production in the mucosa and showed 80% protection from a 
subsequent inhalational challenge with Y.pestis (Yamanaka et al., 2008) 

Recently, a DNA vaccine based on F1 and YscF was constructed by fusion of the gene 
encoding YscF to the downstream sequence of F1. This strategy enhanced protection 
resulting from F1 or YscF DNA vaccines alone. This approach suggested a number of ways 
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to develop protective DNA vaccines (Wang et al., 2010). Immunization with the F1-V based 
DNA vaccine and the adjuvant, lymphotactin (LTN) resulted in high levels of serum IgG 
and mucosal IgA antibodies (Yamanaka et al., 2010). The LcrV based DNA vaccine elicited a 
CD8+ immune response against specific epitopes of this antigen (Wang et al., 2011). 
Immunization of mice with a DNA vaccine consisting of F1 and V and the gene encoding 
the heat-labile enterotoxin (LT) of E. coli as an adjuvant resulted in 40% protection 
(Rosenzweig et al., 2011). 

7.5 Virus vector based vaccines 

Live avirulent or attenuated recombinant viruses expressing genes encoding virulence 
antigens offer several advantages over their bacterial counterparts. Non-enveloped/ naked 
viruses may be a better vehicle for vaccine development as these viruses can be stored for a 
long time without losing their infectivity. In one such case, a recombinant vaccinia virus 
vector was used to express an F1-V fusion protein. The vaccine was orally administered to 
C57BL/6J mice and was found to protect against an inhalational challenge of ten times the 
lethal dose of Y.pestis KIM/D27. It provided 100% protection up to 45 weeks post-
immunization (Bhattacharya et al., 2010). Moreover, a recombinant raccoon pox virus 
producing F1 antigen elicited significant protection in orally immunized prairie dogs 
(Cynomys spp.) (Rocke et al., 2008). More recently, two recombinant raccoon pox viruses 
producing the F1 antigen and a 307-amino-acid truncated form of LcrV engendered a better 
humoral response and protection in both mice and prairie dogs following subcutaneous 
challenge with virulent Y. pestis CO92 (Rocke et al.,2010a, b). 

The route of immunization and booster plays an important role in the immune response and 

subsequent protection. A recombinant Vaccinia virus Ankara vector producing either the 

full-length F1 or the truncated 307 amino acid peptide form of LcrV was administered 

intramuscularly (IM). Vaccines consisting of truncated V antigen and full length F1 antigen 

provided 85% and 50% protection, respectively, against both intranasal and intraperitoneal 

challenges with Y. pestis CO92 (Brewoo et al., 2010). Recently, modified, non-replicating 

adenovirus vectors were evaluated for the development of antibodies against both the 

heavy and light chains of a previously identified anti-LcrV protective antibody. 

Surprisingly, immunized C57BL/6J male mice showed significant levels of IgG that 

persisted for up to 12 weeks and exhibited 80% protection in mice after intranasal challenge 

with a 2×104-cfu of fully virulent Y. pestis CO92 (Sofer-Podesta et al., 2009). 

Human vesicular stomatitis virus (VSV) has been evaluated as an effective vector for the 
development of a novel plague vaccine. VSV was engineered to express LcrV. Immunized 
female BALB/c mice showed strong humoral responses with an IgG2a bias dichotomy and 
exhibited 90% protection from an intranasal challenge with Y. pestis CO92 (Chattopadhyaya 
et al., 2008). These finding highlight the importance of the choice of viral-vectors in the 
development of plague vaccines. 

7.6 Synthetic vaccines based on defined B and T cell epitopes 

The concept of synthetic peptide vaccines was laid by the pioneering work of Anderer who 

demonstrated that a peptide from tobacco mosaic virus (TMV) showed immunoreactivity with 

antiserum against TMV. In addition, a peptide coupled to a carrier induced specific virus 
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precipitating and neutralizing antibodies (Deber et al., 1985). The first step in developing a 

synthetic peptide vaccine for plague is to identify the relevant antigen(s) determine their 

amino acid sequence, and identify protective B and T cell epitopes. Sabhnani and Rao (2003) 

identified the immunodominant epitopes of F1 antigen. The immunogenicity of the B cell (B1, 

B2, and B3) and T cell (T1, T2) peptides was studied in mice using alhydrogel and liposomes as 

delivery vehicles. B-T constructs of F1 antigen engendered protection in mice. PLGA (poly 

(DL-lactide-co-glycolide) microsphere delivery of B-T constructs enhanced protection (Tripathi 

and Rao, 2006). Later, several B and T cell epitopes of V antigen were identified by direct 

binding, competitive, and T cell proliferation approaches. V antigen peptides a, g and j were 

found to be  pure B cell epitopes and peptides d and k pure T cell epitopes, whereas other 

peptides b, f and i showed both B and T cell properties ( Khan and Rao, 2008). Furthermore, 

mice immunized intranasally with B-T conjugates of V antigen peptides entrapped in 

microspheres resulted in high titers of serum and mucosal IgG and IgA upto 120 day 

postimmunization. Interestingly, some of the conjugates showed enhanced protection in mice 

challenged with live bacteria (Uppada and Rao, 2009). Gupta et al. (2009) demonstrated the cell 

mediated immune response of some of the best B-T conjugates in different strains of mice. 

Surprisingly, some of the B-T conjugates of F1 and V antigen resulted in good lymphocyte 

proliferation and cytokine production in vitro as determined by ELISPOT assay. FACS analysis 

of some conjugates showed the presence of IFN-┛ and perforin secreting CD4+ cells as 

compared to CD8+ T cells (Gupta et al. 2011), which demonstrated the importance of CD4+ T 

cells in conferring immunity in the host. 

8. Future perspectives 

The development of a fully protective vaccine against plague remains a challenge . A perfect 
vaccine must protect humans against all three biotypes of Y.pestis. None of the formulations 
of F1 and V based vaccines were fully protective against experimental infections. The ideal 
vaccine would  stimulate robust antibody and cell mediated immune response with respect 
to serum IgG, IgG sub classes and mucosal IgA along with Th1/ Th2 /Th17 cytokines 
correlation. These parameters could be exploited for protection studies in humans. 
Standardized procedures will facilitate human clinical trials to determine vaccine 
formulations, dosages and schedules that best prime protective responses. Incorporating 
additional antigens such as YscF into F1/LcrV-based vaccines and modifying existing 
formulations, on both the DNA and protein level, will be more effective and could lead to 
fully protective vaccine against all strains of Y.pestis. Furthermore, using different ways of 
immunization with novel delivery vehicles and adjuvants could enhance the immune 
response and efficacy of different formulations. Currently, we have extended our study by 
designing MAP (Multiple Antigen Peptide) incorporating the relevant protective epitopes of 
F1, V and YscF antigen in PLGA nanoparticles using CpG, as an adjuvant to activate Toll 
Like Receptor 9 (TLR-9) of the innate immune system (Uppada et al. 2011). This preparation 
gave a better immunogenicity profile than that of single epitope based immunogens. 

A better understanding of virulence mechanisms, host pathogen interactions that operate 

within the body and especially the lungs during infection, could provide some new 

alternative targets for vaccines and therapeutics. The focus should be on the pneumonic 

form of disease rather than the bubonic and septicemic forms. Identifying agonists of TLR-2 

or TLR-4 is also an important area of research for plague vaccine. Synthetic microbial 
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products that activate the Th1 and Th17 pathways are also beneficial to host immunity. 

However, given present concerns for bioterrorism, which may involve the release of 

aerosolized Y. pestis, there is now a greater need to explicitly characterize virulence factors 

that impact pulmonary disease. 
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