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Finite Element Method Applied to the  
Modelling and Analysis of Induction Motors 

M’hemed Rachek and Tarik Merzouki 
University Mouloud Mammeri of Tizi-Ouzou 

Algeria 

1. Introduction  

During the past decades, the development of solution methods and the growth of computer 

capacities have made its possible to solve more and more involved magnetic field problems. 

Thus, numerical techniques essentially based on the Finite Elements Method (FEM) have 

been used and has gradually become a standard in electrical machine modelling-design, 

analysis and optimisation. Electrical machines are electromagnetic devices with combined 

constrains such as complex geometries and several physical phenomena’s. To model them, 

we must solve the magnetic field non-linear Partial Differential Equation (PDE) derived 

from the Maxwell’s equations combined to the materials properties, and their coupling with 

phenomena that exist in electromagnetic structures, such as electric circuits, and mechanical 

motional equations. (Arkkio, 1987; Benali, 1997).  

Induction Motor (IM) is an electromagnetic-mechanical actuator where strongly interacts 

several phenomena such as magnetic field, electrical circuits, mechanical motion. The aim 

of this chapter is to present an implementation of the finite element method for the 

modelling of rotating electrical machines, especially the squirrel cage three-phase 

induction motors. The generalized model consists firstly on strong coupling between the 

partial differential equation of the magnetic field diffusion and the electric circuits 

equations obtained from Kirchhoff laws. The model integrates as well realistic geometries, 

and the non-linear properties of the magnetic materials, as voltage supply of the stator 

windings. Secondly, the mechanical equation including the rotor movement effects is 

coupled to the electromagnetic phenomenon through the magnetic force responsible of 

the rotor motion. 

The governing magnetic field time-dependent equation derived from Maxwell formalism is 

expressed in term of Magnetic Vector Potential (MVP) with only z-direction component for 

the cases of two dimensional (x,y) cartesian coordinates. The induction motors stator 

windings are usually in star or delta connection, then the source term of the magnetic field is 

explicitly an applied line voltage or implicitly the magnetizing current. The squirrel rotor 

cage is formed by massive conductive bars short-circuited at their ends through massive 

and conductive end-rings. Mathematically, the squirrel rotor cage appear as a polyphases 

circuits modelled by the same way that the stator windings but with affecting a zero voltage 

for each adjacent bars with theirs end-rings portion.  
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Generally, permittivity and conductivity can be considered as constants, however the 

magnetic reluctivity of the core ferromagnetic materials depend on the magnetic flux 

density intensity which is implicitly fixed by the voltage excitation or currents level at each 

step time of the motor operating. This magnetic flux density-reluctivity non linear 

dependence is take into account in the model by the classical iterative Newton-Raphson 

method. The finite element formulation of the non-linear transient coupled magnetic field-

electric circuits of induction motors model leads to an algebraic differential equations 

system. The solution process requires firstly a major loop concerning the time-discretization 

using the effectiveness Cranck-Nicholson scheme, and secondly for each step time we have 

to unsure the minor loop convergence of the Newton-Raphson algorithm for determining 

the appropriate magnetic reluctivity values.  

The time stepping finite magnetic field-electric circuits coupled model is sequentially 

coupled with the mechanical equation of the rotor motion. The interaction between stator 

and rotor flux densities generate an electromagnetic torque responsible of the motion. Since 

the physical position of the moving part of the induction motors will change at each time 

step, the finite element coefficients matrix are consequently changes. The unknown 

mechanical position of the moving part can be found after solving the mechanical motional 

equation by the fourth order Rung-Kutta method. To take the movement into account, 

several strategies have been proposed, the boundary integral method, the air-gap-element, 

and the connecting meshes through the sliding line, moving band, and the Lagrange 

multipliers or nodal interpolation techniques (Dreher, et al., 1996).  

A particularly elegant and accurate method is that due to (Abdel-Razek, et al., 1982) named 

the Air-Gap Element (AGE). The air gap element consist on the coupling between the 

meshes of the stator and rotor through the unmeshed air-gap band. The air-gap appears 

such as a multi-nodes finite element (Macro-Element) where it corresponding Laplace 

equation solution leads to an analytical expression of the magnetic vector potential. The 

combination between the magnetic vector potential of the air gap interfaces leads to a 

macro-element matrix. At each displacement step the rotor movement is simulated through 

only new computation of the air-gap element matrix, then the rotor implicitly moved 

without any changes on the motor mesh topologies. In addition, since the magnetic vector 

potential is derived from the field analytical solution in the air-gap, the magnetic flux 

density can be directly deduced permitting an accurate calculation of the electromagnetic 

torque using the Maxwell stress tensor method.  

The magnetic-electric model obtained from the strong coupling of electric circuit equations 

of stator windings and polyphases rotor squirrel cage and the magnetic vector potential 

diffusion equations of the magnetic field, are solved using the nodal based finite element 

method with step-by-step algorithm. Finally, the magnetic vector potential, stator windings 

currents and bars voltages differences are the unknown variables. The studied simulation 

concerns different operating modes such as electrical transients where the speed is constant 

for no-load and nominal conditions, and the general no-load and loaded electro-magneto-

mechanical transient mode. Despite complex mathematical background, the simply and 

detailed presentation of the model offers an important aid for students, teachers and 

industrial employers for understanding the basis in simulation of electrical machines and 

particularly induction motors. 
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2. Magnetic field native equations 

The theory of electromagnetic electrical machines modeling is described by the time-space 

differential Maxwell’s equations where the displacement current are neglected because of 

the low frequency oft he supply source (Joao, et al., 2003; Binns, et al.,1994; Arkkio, 1987):  

 H J   (1) 

 
B

E
t


  


 (2) 

 0B    (3) 

Moreover the electric and magnetic fields quantities are related with the material properties 

expressed by the following constitutive relations: 

  2H B B   (4.a) 

  J E   (4.b)  

Where  2B  ist he magnetic reluctivity,  the electric conductivity, H is the magnetic 

field, and J  the conduction current density. 

In the frequency domain and time-dependence with taking into account the eddy current, 

through (2) and (3) the electric field E  and the magnetic flux density B  are expressed using 

the magnetic vector potential A  and scalar electric potential rU , such as : 

 rA
E U

t


   


 (5) 

 B A   (6) 

Two types of conductors are considered in the field model parts. A solid conductor 

corresponds to a massive part of conductive material in the computational domain, whereas 

a stranded conductor models and thereby assumes the current to be homogeneously 

distributed along the cross-section of the coil. The positive or negative direction of the 

current is fixed by the unit vector 1d   , as follow. 

 

 

                      Stranded stator conductors

       Solid conductors rotor bars

s
cn n

n

r
m

N I
d

S
J

A
U

t
 


 

   

 (7) 

To formulate the magnetic field problem, we consider a two-dimensional domain 

partitioned into electrically conducting and non-conducting regions as shown in Fig.1. This 

domain represents for instance the cross-section of an induction motor with length L . The 

conducting regions are the cross-sections of stranded stator windings conductors s and 
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solid conductors b  of the rotor bars, the non-conducting ferromagnetic region core , and 

the air gap region by air . 

 

Fig. 1. Geometrical configuration of induction motors 

To develop the mathematical model in term of magnetic vector potential in the three-phase 

induction motor, it is assumed that the magnetic field lies in the cross-sectional two-

dimensional (x, y) plane. Hence, only the z-component of the induced current and the 

magnetic vector potential can be considered. It also assumes that magnetic material of the 

motor cores is non-linearly isotropic. The magnetic property of the laminated iron cores is 

modelled by Marrocco approximation of the recluctivity (Brauer, et al, 1985; Hecht, et al., 

1990), which is a single-valued nonlinear function of the flux density B, thus exclude the 

effect of magnetic hysteresis from the analysis.  

The fundamental equations obtained from (1)-(6) and describing the time-space variation of 

the magnetic vector potential with the component (0,0, ( , , ))zA A x y t  has the following 

form  

 
     2 2, , , , , ,

( ) ( )  -  
s r

z z zcn n m

n

A x y t A x y t A x y tN I U
B B d

x x y y S t L
  

       
                      

 (8) 

In the model of an electrical machine, the magnetic field due to the currents in the coils. 

However, it is often more appropriate to model the feeding circuit as a voltage source, 

which leads to the combined solution of the magnetic field and circuit equations. The stator 

phase windings are generally modelled as filamentary conductors, and the rotor bars are 

modelled as solid conductors with eddy currents. 

3. Electric circuits equations model 

The computational model of the induction motors can be greatly improved by coupling the 
circuit equations of the stator and rotor windings with the two-dimensional field equation 
(8). In the circuit equations, the dependence between current and voltage is solved and the 
circuit quantities are coupled with the magnetic field by means of flux linkage. Also, the 
end-windings outside the core region are modelled by including an additional inductance in 
the circuit model (Hecht, et al., 1990; Kanerva, 2005; Piriou, et al., 1990). 
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3.1 Electric circuits equations of the stator windings 

The delta and star connection (see Fig. 2 and Fig.3) are the two commonly used ways to 

connect the stator windings. In the delta connection the potential differences induced in the 

stator windings are equal to the line voltages. In the star connection with neutral point, the 

potential differences of the stator windings are equal to the phase voltages. 

 

  

Fig. 2. Stator windings in delta connection.  

 

 

Fig. 3. Stator windings in star connection.  

The three phases stator circuit equations are in matrix form: 

        s
s s s s s

end

dI t
U t E t R I t L

dt
    (9) 
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  
1

            , ,
cn

s sn n

N
s cn
n s

n n

L N A A
E t N d d n A B C

S t t


   

                          
    (10) 

Where A,B,C denote the three stator phase, s
  and s

  are respectively, the cross-sectional 

areas of the “go” and “return” side of the phase conductors. The column vectors of the 

potential differences of the stator windings with their currents and electromotive force are 

detailed as follows: 
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 
 
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C
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end end

s
end

L

L L

L

 
 
 
 
 
   

 

When the stator windings has star connection with non-connected neutral star point (see 

Fig. 3), only two from the three phase currents are independent variables, and the third is 

determined by an additional constraint which unsure a zero sequence of the phases currents
s s s
C A BI I I   . For this reason the connectivity matrix is formed: 

  
1 0 1

0 1 1
K

 
   

 (11) 

The line voltages sV  and loops currents 1,2
sJ  containing the two independent currents, are 

formed in the following way: 

   1 1 0

0 1 0

s s
AN AB

s s s s
BN BC

s s
CN CA

U U

K U U Q V

U U

   
            

    
      

  (12.a) 

           1
1,2

2

s s
tr tr trAs s

s s
B

J I
I K K K J

J I

           
      

  (12.b) 

3.2 Electric circuits equations of the rotor cage 

A network of the non-skewed rotor cage is shown in Fig. 4. For normal operating 

frequencies (50 or 60 Hz), the inductive component of the inter-bar impedance can be 

neglected. Two adjacent bars are connected by the end-ring resistances and inductances 

(Arkkio, 1987; Benali, 1997; Ho, et al., 2000).  
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Fig. 4. Electric circuit configuration of squirrel rotor cage. 

In a cage rotor, each rotor bar requires its own equation. In time variation, the potential 

difference induced in the thm  rotor bar is given by:  

  
1

               1,...,
dN

jb r r
m r m r m j b

j

A
U R I R N d m N

t




 
      

   (13) 

  
 1       if x,y   belongs  to  rotor bar  

0                                           Otherwise
r
m

m


 


  (14) 

Where rR  is  b bN N  unit matrix.  

Integration of the current density in a rotor bar over its cross section bS  gives the total 

currents of the thm bar. When constant conductivity and uniform cross section area bS  are 

assumed in the bar and the end-bar,  b bN N  unit end-bars self inductance beL , and 

resistance beR  matrices are included, the above equation (13) for each bar can be expressed 

by (15) and (17). All the rotor bars are connected by short-circuit rings in both ends of the 

rotor core (16). This is taken into account by defining the end-ring unit resistance matrix and 

the end-ring unit inductance matrix. 

  
b

r b bm
m be m be m

dI
U R I L U

dt
     (15) 

  
sc

sc sc m
m sc m sc

dI
U R I L

dt
    (16) 
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b

r
r m
m

UA
I d

t L




           
   (17) 

From Kirchhoff’s second law applied to the rotor cage electric circuit (Fig.4), a relation 

between the potential difference and currents of bars and end-ring are obtained such as: 

  2 sc bU M U    (18.a) 

  b tr scI M I    (18.b) 

 Where M  ist he rotor cage connection matrix, and h  is the periodicity factor h  (+1 if 

periodic and -1 if non-periodic). 

  

1 0 . . . 0 0 . . . 0 0 . . .

0 1 . . . 1 0 . . . 0 0 . . .

. . . . . . 1 . . . . . . . .

. . . . 0 . . . . 0 . . . . 0

. . . 0 1 . . . 1 0 . . . 0 0

h

M

     
          
       
     
     
          

  (19) 

4. Magnetic field – Electric circuits coupling 

4.1 Time stepping finite element formulation of the non-linear magnetic field model 

In the electric machine model, the magnetic field in the iron core, windings and air gap is 

solved by the two-dimensional finite element code and coupled with the voltage equations 

of the stator and rotor windings. The model is based on the direct coupling, which means 

that magnetic field equations and electrical circuit equations are solved simultaneously by 

time-stepping approach with handling magnetic non-linearities using Newton-Raphson 

iterative algorithm.  

In the time stepping formulation, the derivative of the vector potential, stator windings 

currents and bars voltages are approximated by first-order difference ratios: 

  

1

1
     s s s

n n n

s r r
m m mk k

A A A

I I I
t t

U U U


  
  

   
         

  (20) 

The time discretization is performed by using the Crank-Nicholson sheme as: 
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2
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m m

A A
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I Is s
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r rU U
m mk kt tk k

A A

I t I

U U

 
 
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 
  

                 
     
     

  (21) 

www.intechopen.com



 
Finite Element Method Applied to the Modelling and Analysis of Induction Motors 211 

Several methods can be used for the numerical solution of the magnetic field equation (8), 

such as reluctance networks, the boundary element method, the finite difference method or 

the finite element method. In this work, the numerical analysis is based on the finite element 

method. The two-dimensional geometry is covered by a finite element mesh, consisting of 

first-order triangular elements. If possible, the cross section of the electrical machine is 

divided in sN  symmetry sectors, from which only one is modelled by the finite element 

method and symmetry constraints are set on the periodic or anti-periodic boundary 

(Nougier, 1999; Binns, et al., 1994; Ho, et al., 1997). The magnetic vector potential can be 

approximated as the sum of the element shape functions times and nodal potential values: 

       
1

, , , , ,
nodesN

z j z j
j

A x y t N x y A x y t


    (22) 

Where nodesN  is the total nodes number of the finite element mesh,  ,jN x y  the shape 

function, and  , ,z jA x y t  is the magnetic vector potential of the node j  . 

The numerical field equation is derived by Galerkin’s method, where (8) is multiplied by 
shape functions and integrated over the whole finite element mesh with substituting the 
magnetic vector potential approximation (22). The last line integral term of the formulation 
(23) correspond to the air-gap contribution due to the rotor movement.  
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       
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  
  
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N U N I d  


      
  
  (23) 
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j
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 



 
 

    
 
 


  

The problems in the analysis of the electrical machine are almost non-linearly isotropic due 
to the presence of ferromagnetic materials. The magnetic permeability is non-homogeneous 
and will be a function of the local magnetic field which is unknown at the start of the 
problem. The permeability is low at very low flux densities, rises quickly as the flux density 
increases and then decreases in the saturation region. As the permeability is unavoidably 
contained in all of the element stiffness matrices, an iterative process must be used to keep 
correcting the permeability until it consistent with the field solution. The Newton-Raphson 
iterative technique is used for the analysis of the non-linear problem (Brauer, et al., 1985; 
Joao, et al.,2003; Neagoe, et al., 1994).  

At the beginning, an unsaturated value of permeability is assigned for each element of the 

mesh. When solving the problem, the magnitude of the flux density in each element is 

computed and the magnetic reluctivities are corrected to be consistent with the computed 
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values of the flux density. The problem is then solved again using the new values. This 

process is continued till a satisfactory result is obtained when the difference between the 

actual solution and the previous one is smaller than a pre-specified value. The equations for 

the time-stepping simulation are derived by adding the equations from two successive steps 

together and replacing the derivatives with expressions (20) and (21). Using this approach, 

the magnetic vector potential integrals formulation (23) are formed for each node in the 

finite element mesh. Following, a residual vector f is obtained after the finite element 

discretization, and the thi  element of the residual vector is: 

     
11 1 1 1

1

2
, ,  ( )
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k

N
f r s

k n nk k i j i j ji k
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             
   
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 (24) 
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In matrix form, equation (24) can be written as follows: 

            1 1 1 1 1 1 1 1, ,    
Ts r s AGE r r

i k nk nk k k k k kA U I S A M A S A A D U               
(25)

 

               1,2 1,2
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   sT T s AGE r r sT T s
k k k k k

k k
D K J S A M A S A A D U D K J


         

4.2 Time stepping finite element formulation of the stator windings equations 

The same approximation (20), and (22) is also applied to the winding equations (9) and (10). 

The resulting equations of the average value of the potential difference at the time steps k 

and k+1 is used to approximate the true potential difference as: 

  
1
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n n end s z n
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U R I L N L d

dt t




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       

   (26.a) 
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k
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



  
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1           Negatively oriented coil

1           Positively orriented coil

0                             Otherwise
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N
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


 

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  (27) 
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After the substitution of the approximation (21) in (26), the voltages equations of the thn
phase of the stator windings becomes: 

  1 1 1

1
1

 
2 2

d
s s s sN sn n n nj js s s sk k k k k k

s z n j n n end
k k

j

U U I IA A R
N L N d I I L

t t
  




  
     
  
 

   (28) 

The voltages equations (28) are expressed in matrix form as follow: 
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

  
      

 
                    

 (29) 

Equation (29) can be written under this following form:  

         1 1 1
1

,  s s s s T s s
i k nk k n k

k
A I KD A G KK J KD A   

      

         1,2
1

 s T s s s s
n n

k k k
H KK J C V V


     

 
(30)

 

The different matrix components of (30) are: 

  
e

s s e
ij n jD N d
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 (31.c) 

 
 3 3 2

s s

s

t
C Q

N L

        
 (31.d) 

4.3 Time stepping finite element formulation of the rotor cage equations 

By undertaking the same way as the stator windings, after applying Crank-Nicholson 

scheme, equations (13), (16) and (17) of the voltage equations of the rotor cage becomes:  

     1

1 1
1

1 1
 

2 2

dN
j jb b r r r k k

m m r m m r m
k k k k

j

A A
U U R I I R d

t
  

 
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       
  

  (32) 
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        1

1 1 1

1 1
  

2 2 2

r r
m m

k kr r r r b br
m m m m be m m
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

  
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    
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1
 

2 2
sc sc sc scsc sc
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k k k k

R L
U U I I

t 

      
 (33.b) 

The combination of the expressions (32) and (33) with the end-rings voltages and currents (18), 

lead to the matrix form of the unified loops voltages equations in the rotor cage expressed as:  

               1 1 1
1

,    r r r r r r r r r
k mk k m k m m

k k k
A U D A C U D A C U G I   

        (34) 
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(35.b)
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 


     (35.c)  

Where  tr
bM M M  is the auxiliary connection matrix. 

4.4 Full magnetic field – Electric circuits coupling model 

Combining equation (25), (30) and (34) a system of coupled equations is obtained:  
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(36) 

Because of the non linearity of the core material, the stiffness matrix [S] depends on the 
nodal values of the magnetic vector potential. After applied the Newton Raphson iteration 
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method, a final algebraic system of equations for the nonlinear time-stepping simulation of 
the electrical machine is obtained such as: 
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 (37) 

Where P is the Jacobian matrix system expressed through the following matrices elements 
(Joao, et al., 2003; Arkkio, 1987; Benali, 1997):  
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ij i jM N N d
t





 
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5. Mechanical model and movement simulation 

5.1 Movement simulation technique 

For modelling the movement in rotating electrical machines using the Air-Gap-Element 

(AGE), the space discretised domain is commonly split up into two subdomains, a stator 

stator , and rotor rotor  meshed domains, and the unmeshed air gap with AGE  boundary 

(Fig. 5). 

 

Fig. 5. Air-Gap Element (macro-element). 
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In a general step-by-step solution of the magnetic field in rotating electrical machines, the 

stator and rotor magnetic field equations are expressed in their own coordinate systems. The 

solutions of both fields equations are matched to each other in the air-gap. The rotor is 

rotated at each time step by an angle corresponding to the mechanical angular frequency, 

this means that a new finite element mesh in the air gap has to be constructed. The basic 

form of the air gap element matrix general terms is given by the expression: 

   0
1 1 1

1
( , , , ) cos( ) sin( )    , , ,

2
AGE

nntl nnt
AGE

i j rj r rj r j j
j r j

A a b r A a a b N a b r A     




  

 
       

 
   (39) 

Where  0 , , ,j rj rj ra a b   are the Fourier’s expansion coefficient which depends on the air-gap 

nodes coordinates locations, nnt  is the total numbers of the air-gap nodes.  

The movement simulation is take into account through the expression (39) while computing 

the associated matrix of the air-gap element given by the line integral term defined in the 

formulation (24). The air-gap-element matrix is given as follow: 

       
1

,  
AGE

nnt
AGE AGE AGE AGE AGE

o j j j
j

A N r d S A
n

 


       (40) 

For a complete development of the air gap element, the reader are invited to detailed 

implementation given in (Abdel-Razek, et al., 1982; Joao, et al., 2003). 

5.2 Mechanical equations and torque computation 

In a general case the magnetic field and electric circuits equations are coupled to the rotor 

mechanical equation through the electromagnetic torque. This includes the interaction 

between mechanical and electromagnetic quantities (Ho, et al., 2000). The mechanical 

differential system equations of speed and angular displacement is given as follow:  
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( )0
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dt
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                        

 (41) 

At each step time, the computed electromagnetic torque is introduced in the mechanical 

model (41) solved using the fourth order Rung- Kutta method to get the rotor angular 

displacement and speed. The electromagnetic torque is computed from Maxwell’s Tensor as 

a function of radial and tangential components of the magnetic flux density: 

 
2

1

2

0
em r

pr L
C B B d





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


   (42) 

Where r is the rotor external radius, and p the number of poles pairs. The magnetic flux 

density components  ,rB B  are computed in the air gap boundaries through the 

derivatives expression of the analytical magnetic vector potential shape functions (39).  
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6. Simulation results and discussions 

6.1 Algorithm of Non-linear step by step finite element solver 

The theory of the previous paragraphs is applied for the simulation of an induction motor in 
different operating modes. Two cases are studied, the first one concern the electric transient 
state simulation of induction motor while considering constant speed, and the second one 
treat the general electromagnetic-mechanical transient state simulation. The solution process 
of the electromagnetic-mechanical non-linear transient model is summurised by the 
following chart (see Fig.6). 

 

Fig. 6. General algorithm for induction machine numerical analysis. 
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6.2 Presentation of the studied induction motor 

The considered simulated system to apply the model of the present works is an three phase 

induction motor Leroy Sommer (Mezani, 2004). The poles number is four, the rated power, 

the efficiency, and voltage are respectively 5.5KW, 84.26% and 380V. The stator windings 

and the rotor cage (bars-end rings) are made respectively with cooper and aluminium 

materials. More detailed characteristics of the motor are presented in Table. 1. 

 

Geometrical components Values (mm) Physical components Values 

Stator core external diameter 168.0 Rated nominal current 11.62A 

Stator core internal diameter  130.0 Nominal torque 37 N.m 

Rotor core external diameter 109.2 Power factor 0.865 

Rotor core inernal diameter 66.4  Moment of inertia 0.014 (Kg.m2) 

Axial length 160.0  Friction coefficient  0.011 (1/ms) 

Stator conductors per slot 19 Slip  4.13% 

Number of stator slot 48 slots Stator phase resistance  1.4 

Number of rotor slot 24 bars Stator phase inductance 0.2 mH 

Table 1. Studied induction motor geometrical and physical datas. 

The stator and rotor slots geometrical dimensions are detailed in the following Fig. 7. To 

reduce the computational time due to nodes number of the finite element mesh and the 

geometrical complexity, usually the electrical machines models are created on the smallest 

symmetrical part of the machine. The (Fig. 8) shows the finite element mesh of the motor 

studied domain where only ¼ of the motors. The mesh containing 3204 nodes and 5623 first 

order triangular element is obtained using the Matlab PdeTool mesh automatic generator. 

We note that the air-gap between the stator and rotor meshes is not meshed and coupled 

together through the air-gap matrix (40). Homogeneous Dirichlet boundary condition is 

imposed for the external and internal motor radius, and anti-periodic ones at the other 

boundaries. 

  

Fig. 7. Gometrical dimensions of the motor slots. 

www.intechopen.com



 
Finite Element Method Applied to the Modelling and Analysis of Induction Motors 219 

 
 
 

 
 
 

Fig. 8. Finite Element Mesh with (AGE). 

6.3 Electromagnetic transient operating condition with constant speed 

Results of this part concern the transient electromagnetic state simulation, at no load and 

nominal operation modes while the speed is considered constant. The electromagnetic 

transient is simulated while considering that the motor is operating in steady state with 

constant speed. Stator and rotor meshes are coupled by air-gap-element matrix. The 

constant speed value is equal to 1495 tr/mn and 1348 tr/mn respectively for the no-load 

and nominal modes. Since the mechanical phenomena is not considered, the speed is 

constant and the rotor displacement is not taken into account. The air-gap-element matrix 

is calculated only once. At each step time, the algebraic system (37) corresponded to 

Newton-Raphson algorithm is iteratively solved in order to get the magnetic permeability 

value. The latest is then used to establish the algebraic system (36) which the solution lead 

to the values of the magnetic vector potential, stator windings currents and the rotor bars 

voltages.  

The stator windings currents wave forms corresponded to the electromagnetic transient 

state of the no-load and nominal conditions are respectively shown in Fig. 9 and Fig. 10. We 

note that, in agreement with the theory a high starting currents are obtained which 

decreases quickly because of the small electromagnetic durations. Electromagnetic torque 

for the no-load and nominal electromagnetic transient operations is given by the Fig. 11. 

After a brief transient duration the torque is stabilized at 4.5 N.m and 37.3 N.m values 

respectively for no load and nominal conditions.  
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Fig. 9. Stator currents in no-load mode. 

 

Fig. 10. Stator currents nominal mode. 

www.intechopen.com



 
Finite Element Method Applied to the Modelling and Analysis of Induction Motors 221 

 
 
 

 
 

 

Fig. 11. Electromagnetic torque at no-load and nominal modes. 

6.4 Electromagnetic-mechanical transient operating with direct start 

Results of this part concern the transient electromagnetic-mechanical general simulation, at 

no load and load direct start operation modes. The solution process detailed by the Fig.6 is 

summarized by the following steps. Firstly, the algebraic equation system (37) is solved to 

get the magnetic reluctivity associated to the voltage level at each step time. Secondly, the 

algebraic equation system (36) is solved, which permit us to know the stator windings 

currents, the rotor bar voltages, and the magnetic vector potential which lead to deduce the 

magnetic flux density, and permit the computation of the electromagnetic torque. The latest 

is introduced in the mechanical model, which solution leads to the speed and angular 

displacement of the rotor. Since the mechanical phenomena is considered, the rotor 

displacement is taken into account, the air-gap-element matrix corresponded to each rotor 

position is calculated at each displacement step.  

The motor simulations concerns a direct start loaded condition with load torque of 10 N.m. 

The stator windings currents wave forms are given by the Fig. 12 and Fig. 13. Motor angular 

speed, and electromagnetic torque are given by the Fig. 14, and Fig. 15, respectively.  
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Fig. 12. Stator windings currents for direct start loaded motor. 
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Fig. 13. Steady state stator windings currents for loaded direct start motor. 
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Fig. 14. Speed for loaded direct start motor. 

 

Fig. 15. Electromagnetic torque for loaded direct stat motor. 
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From the transient stator currents results given by the Fig. 12 we note a high starting 

currents which reach to nominal steady state values after average half periods such as given 

by the Fig. 13. The several ascillation of the currents transients behavior is due to the strong 

electromagnetic and mechanical interaction through theirs corresponded time constants.For 

the rotor speed given by the Fig.14, we note that after some modulations at the motor start, 

gthe speed increase linearely till it steady state values according to mechanical first order 

differential equation. The Fig. 15 of electromagnetic torque show that after some periods oft 

he magnetic duration the torque reach to it steady state value of average 37.3 N.m.  

7. Conclusion 

This chapter goal is to present a detailed finite element method use to solved partial 

differential equation of electromagnetic phenomena occurred in induction motor. The 

magnetic field equation expressed in term of magnetic vector potential strongly coupled 

with the electric circuits equations of the stator windings and rotor cage are solved using the 

nodal based finite element process. The resulting nonlinear time-dependent algebraic 

differential equations system obtained from the finite element formulation is solved using 

step-by-step numerical integration based on the Crank-Nicholson scheme, combined to the 

Newton-Raphson iterative process for handling the magnetic material non-linearity. The 

electromagnetic and mechanic interaction is considered firstly by the computation of the 

electromagnetic torque by the Maxwell stress tensor responsible of the rotor displacement, 

and secondly by solving the mechanical motional equation to get the new rotor angular 

position. Since the motor is meshed only once, the rotor movement is taking into account by 

the macro-element method which lead to an air-gap matrix of the movement. The validation 

of the model is performed through simulation of an induction motor in no-load and loaded 

direct start operating modes. The numerical results are in good agreement with 

corresponding results appearing in the recent literature. The contribution of this work can 

be applied to analyze a large class of electrical machines, and offers an important support 

for students, teachers and industrial employers for understanding the basis of numerical 

modelling of electrical machines. 
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