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1. Introduction 

Eddy current testing involves exciting a coil with a fixed frequency or pulse and bringing it 
into close proximity with a conductive material. The electrical impedance of the coil changes 
due to the influence of electrical ‘eddy currents’ in the material. Using an eddy current 
technique, the sizing of surface and sub-surface defects, measurements of thickness of 
metallic plates and of conductive and non-conductive coatings on metal substrates, 
assessment of corrosion, ductility, heat treatment and measurements of electrical 
conductivity and magnetic permeability are all possible and quantifiable. The eddy current 
method has become one of the most successful non-destructive techniques for testing 
conductive coatings on conductive substrates.  

The data acquired from eddy current sensors however is affected by a large number of 
variables, which include sample conductivity; permeability; geometry and temperature as 
well as sensor lift off. The multivariable properties of sample coatings add an even greater 
level of complexity. Many of these problems have been overcome in the laboratory using 
precision wound air-cored coils, multiple excitation frequencies and theoretical inversion 
models. High levels of agreement between theoretical models and measurement however 
are only possible with accurately constructed coils, which are difficult to manufacture in 
practice. Coils are also prone to poor sensitivity, poor resolution, and a poor dynamic range 
as well as self-resonance at high frequencies, which make them unsuitable for online process 
control. Many of the problems associated with air-cored coils however can be overcome 
when the coils use ferrite cores or cup cores. 

Inversion models often make use of simplifying assumptions, which include symmetrically 
wound coils, constant current distributions in coil regions and ideal test materials. Ideal 
coils simply do not exist outside the laboratory; ideal test materials do not exist outside the 
laboratory either. An example of non-ideal test materials is hot-dip galvanising, where 
molten zinc reacts with steel to form distinct eutectic alloy layers (Langhill, 1999). Another 
example is case hardening in steel. Steel also has a magnetic permeability that is frequency 
dependent and subject to localised variation (Bowler, 2006). 

Other than non-ideal coils and test materials, a practical limit exists to the information that 
can be extracted through eddy current testing (Norton & Bowler, 1993). Eddy currents can 
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only really sense the presence of layer boundaries owing to the integrating character of eddy 
current signals. Glorieux and co-workers give an example of this, observing that sharp 
material profile features appear smooth under reconstruction (Glorieux et al, 1999). Another 
limitation, which affects coatings on steel, is the permeability-conductivity ratio and coating 
conductivity-thickness product (Becker et al, 1988). One of these quantities must be known 
prior to inspection. 

This chapter focuses on the development and testing of a new highly accurate and highly 

sensitive ferrite-cored sensor and a novel magnetic moment model of the sensor, which 

requires only the discretisation of the sensor core-air boundary interface. The chapter 

starts by developing a set of partial differential equations (PDE) to model the vector 

potential fields present in the regions bounding the sensor. Sensor regions were 

considered to be source-less with imaginary surface currents imposed at region interfaces. 

Green’s functions were determined for all bounded regions. Basis functions were then 

used to represent the sensor cores surface current distribution, which were then formed 

into a set of 2N linearly independent equations by applying the relevant boundary 

conditions. A matrix method was finally developed to solve these equations using a 

moment method. 

The matrix method was further developed in this chapter in order to calculate sensor coil 

impedance and induced voltage. An efficient material profile function m() for modelling 

the interaction between the sensor and test material was also developed and verified. A 

novel form of parameterisation was adopted for m(). The accuracy and convergence of the 

vector potentials generated by the source coil and core-air boundary surface currents was 

reviewed and a new free-space Green’s function introduced. 

2. Sensor theoretical model 

This section introduces a new ferrite-cored eddy current sensor and develops integral 

equations to characterise the source vector potential and core vector potential fields. Closed 

form solutions of the core equations are applied to the core-air boundary interface, 

generating 2N linearly independent equations with 2N unknown coefficients. The unknown 

coefficients are evaluated using the method of weighted residuals. 

2.1 Basic sensor design 

When a ferrite core is used in an eddy current sensor, the coil inductance, sensitivity and 

resolution increase significantly (Blitz, 1991, Moulder et al, 1992). A ferrite core is therefore 

incorporated into the sensor design used for this chapter, which is shown in figure 1. 

Coaxial to the ferrite core below are three coils, a central source coil, which carries a current 

I amps and two sense or pick-up coils. The sensor is a reflection sensor (or transformer style 

sensor) with pick-up coils in a differential configuration. Each coil is assumed to have nc coil 

turns per unit area with a total of Nc turns. The sensor is located in free space and positioned 

above and orthogonal to a medium, which is comprised of M planar layers. Each layer is 

considered to be linear, isotropic and homogeneous, where the ith layer has conductivity i 

and permeability i.  

www.intechopen.com



 
Numerical Modelling and Design of an Eddy Current Sensor 

 

161 

 

 
 

Fig. 1. Ferrite-Cored Eddy Current Sensor. 

Certain assumptions are made about the sensor, which are listed below: 

 The self-resonant frequency of each coil is greater than the maximum operating 

frequency of the sensor as a measuring system; corrections for coil self-capacitance or 

coil-ferrite capacitance is not considered necessary (Harrison et al, 1996). 

 The source coil is considered to be a region of constant current density. 

 Pick-up coils are matched and act into loads of infinite impedance. Pick-up coils 

generate no magnetic flux. 

 The sensor core is soft magnetic ferrite. The core is assumed to be linear, isotropic and 

homogeneous; core conductivity is assumed to be negligible. 

In order to begin an analysis of the sensor of Fig. 1, the ferrite core and pick-up coils were 

removed and the source coil replaced with a delta function coil. The free space region 

bounding the sensor was also divided into two regions, one above the plane of the delta 

function coil (region 1) and one below and extending to the surface of the medium (region 

2). See figure 2.  

Using Maxwell’s equations and the homogeneous wave equation, the PDE defining the 

source vector potential field AS in any of the regions of figure 2 is of the form: 

 tS JA 2  (1) 

 represents medium permeability and Jt is the total electric current density. If Jt is 

comprised of an impressed current density Js and an effective electric conduction current 

density Jce, then 

 )(2
cesS JJA    (2) 

 

 

Cylindrical  
ferrite core 

Source coil 
Nc turns 

Pick-up coil 
Nc turns 

Free space 

 µ0 0  

Medium 
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Fig. 2. Delta Function Source Coil Located above a Layered Medium. 

If a delta function coil φ0 aI )()( 00 zzrr   is located at (r0, z0), where  

 






 


otherwise

zzrrif

zzrr

0

)(),(,
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00

00  ,  (3) 

and current density Sce AJ j , then: 

  02  0SS IAA j .   (4) 

Using the vector identity BBB  )(2  gives 

  0)(  0SSS IAAA j    (5) 

Since the coil excitation is azimuthal and since both the media and sensor core have axial 
symmetry, then vector potential AS will also be azimuthal, hence let the source field be 

 φS aA ),( zrAS .  (6) 

Substituting the Coulomb gauge 0 SA  into PDE (5) gives 

 0 0SS IAA j    (7) 

and using:  
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r0  az 
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Medium layers 
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gives the PDE for the delta function coil: 
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.  (9) 

Equation (9) is widely recognised as the PDE first used by Dodd and Deeds (Dodd & Deeds, 
1968). If Gs(r, z; r0, z0) is the Green’s function for equation (9), then: 

 
),;,(),( 00 zrzrGzrA ss  

.  (10) 

If the coil has a rectangular cross section and a source distribution Js = Jsφ(r0, z0)aφ, then: 

  000000 ),(),;,(),( dzdrzrJzrzrGzrA sss     (11) 

The Green’s function for equation (11) first proposed by Cheng and co-workers (Cheng et al, 
1971) and forming the basis of nearly all subsequent eddy current research, is given below 
for the generalised nth media layer of figure 2: 

 

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0

1
)( )(])()([)',';,(  

drJeCeBzrzrG
z

n
z

n
n

s
nn

  

(12)

 

Bn () and Cn () are media dependent functions and J1 (αr) is a Bessel function of the first 

order and first kind;  is defined for each region as follows: 

 nnn j   22 .  (13) 

2.2 The influence of the sensor core 

The Cheng method imposes surface currents on media layer boundaries according to the 

surface equivalence theorem, where coefficients Bn() and Cn() are determined by 

enforcing boundary conditions at each layer interface. The sensor core can be treated in 

exactly the same way. Figure 3 shows surface current J impressed on closed surface S at the 

sensor core-air interface. 

Figure 3 shows the sensor core partitioned into two separate regions, an external region 

(vector potential AE) and an internal source-less region (vector potential AI). Considering 

the internal region first, let a surface current JI be impressed on the closed surface S. Let JI 

be azimuthal, and at some arbitrary point ρ on S, let the limiting value of JI be a delta 

function source: 
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   )()()( '''3  II JJ d .   (14) 

 

Fig. 3. Surface Current Distribution J on Core Surface S. 

Since JI is azimuthal it follows that vector potential AI is likewise azimuthal, which leads 

To the following PDE for the component AIφ: 
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 (15) 

with the solution for JI = JIφ(r', z')aφ 

 ( , ) ( , ; ', ') ( ', ') 'I I I I

C

A r z G r z r z J r z ds   .  (16) 

Integration is along a contour C on closed surface S. GI (r, z; r, z) and Gs (r, z; r0, z0) are 

clearly identical and differ only in media dependent functions Bn () and Cn (). A similar 

set of equations does not directly follow for the external core field AE due to the presence of 

source current Js. The field in this region must be regarded as the vector sum of the source 

field As and a source-less scattered field AR (Yildir et al, 1992): 

 sRE AAA     (17) 

Concentrating on the source-less scattered field AR and impressing a scattering current JR on 

S, leads to the following: 

 

C

RRR dszrJzrzrGzrA ')','()',';,(),(  

.   
(18)

 

GR (r, z, r, z) and GS (r, z; r0, z0) are the same function as both are determined for the same M 

+ 2 media layers. A solution to equation (18) proceeds by expanding surface current JRφ as 

follows (Balanis, 1989): 

  


N

i
iiR zrauzrJ

1
)','()','(   (19) 

Closed surface, S 

Core internal region Core external region 

Surface current 

Distribution, J Am-1 

AI AE 
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where ai represents a basis function and ui the basis function coefficient. Substituting 
equation (19) into (18) gives the following: 

  

 



N

i C

iRiR dszrazrzrGuzrA

1

')','()',';,(),( 

.  
(20)

 

Basis functions were now chosen to accurately represent the anticipated unknown function 
JRφ. A piecewise constant sub-domain function was chosen to do this, which is of the form 
shown below: 
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otherwise
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''),','('1

)','( 1111

1111

 

(21)

 

4/'' 11   iir rr  and 4/'' 11   iiz zz . 

Sub-domains were divided into N sub-intervals and evenly distributed along the sensor 
core-air interface. Observation points (r, z) were located at the centre of sub-domains (see 
figure 4) for greatest computational accuracy (Balanis, 1989). 

 

Fig. 4. Discretization of Current JR on the Sensor Core Interface. 

2.3 The total field and internal core field  

When combined the source and scattered field gives the total vector potential AEφ. For the nth 
media layer outside the sensor core: 

Observation point 
(ri, zi) 

Sensor axis 
r = 0 

Observation points (r, z) 

zi + z 

zi - z 

Sensor core-air interface 
Curve C (shown in red) 
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(22)

 

  000000
)( ),(),;,( dzdrzrJzrzrG s

n
sn     

where Jsφ is the source current distribution: 

 ))(/(),( 121200 rrllINzrJ cs    (23) 

(l2, l1) and (r2, r1) are the length and radial dimensions of the source coil, which is assumed to 
be rectangular in cross section. Since AIφ is solved in exactly the same way as scattered field 
ARφ expand JIφ into a similar N term series, letting bi represent the series basis function and vi 
the expansion coefficient. Given this bi is defined as follows: 
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Substitution of equation (24) into equation (16) gives: 

 
 



N

i C

iIiII dszrbzrzrGvzrA

1

')','()',';,(),( 

. 
(25)

 

2.4 Sensor core boundary conditions 

Unknown expansion coefficients ui and vi are determined by applying the sensor core 

boundary conditions. Since the core is rod shaped, two surfaces exist where boundary 

conditions must be met. These surfaces are shown below in figure 5 with appropriate unit 

normal vectors n: 

 

Fig. 5. Core Boundary Unit Normal Vectors n. 

 s 
 n 

 n 

AE 

 = E 

 AI 

  = I 
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If AI is the vector potential inside the core and AE outside, then the boundary conditions for 

the core-air interface can be shown to be: 

 
nAnA EI  )/1()/1( EI 

   (26) 

and 

 EI AA 
   (27) 

Substituting SRE AAA   and assuming E = 1 for free space gives: 

 nAAnA RIS  ))/1(( I   (28) 

and 

  RIS AAA  .  (29) 

Evaluating equation (28) gives the following for the core upper and lower flat faces: 

 
zzrAzrAzzrA RIIs  )),(),((),(  

  (30) 

and for the core’s central cylindrical face: 

 
)),(),(()/1(),()//1( zrAzrArrzrArr RIIs   

  (31) 

2.5 Evaluation of expansion coefficients using the method of weighted residuals 

The two sensor core boundary equations define the relationship between unknown basis 

function coefficients ui and vi. The method of weighted residuals was used to solve these 

equations, which proceeds by grouping ui and vi together into a single 2N1 column matrix 

K with the following elements: 
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. (32) 

Given K above, define a new 12N row matrix  such that: 

 `  NNkk 2211 ...  ΨK . (33) 

The following can be seen to apply for element p: 
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where q is a field point at (rq, zq),  is a source point at (r, z) in sub-domain p and n is a 

unit normal vector at field point (rq, zq) on the core boundary surface. Since 2N unknowns in 

K require the formation of 2N linearly independent equations, define a 2N1 column matrix 

F for the source field at N points  Nqzr qq ,...,1);,(   on C, with elements: 
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000000
)(



 naφ

. (35) 

In order to form 2N linearly independent equations, introduce a further 12N row matrix W 

and take the inner product ΨW
T , . Integration is along the entire length of the core-air 

interface (curve C) to minimise any residual error, giving: 

 

 














cc

dsds FWKΨW TT

. 

(36)

 

Weight vector W is selected according to one of the following methods (Sadiku, 1992): 

 Point collocation. 

 Sub-domain collocation. 

 Least square. 

 Galerkin. 

Point collocation was selected because it provided acceptable accuracy for computational 

effort (Balanis, 1989). Point collocation uses the following weight vector W: 

  )(),...,( 21 Ncccc  W ,  (37) 

Collocation points on C are chosen to coincide with basis function observation points, where 

the following applies for weight element wq: 
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Recognising that 



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i

i

x

x
i dxxx 1)(  and inserting this into row q of equation (36), gives: 
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Evaluating equation (39) for all N collocation points leads to the matrix equation for ui and vi: 
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3. Numerical model implementation 

In previous section, a set of partial differential equations were developed to model the 

vector potential fields present in the regions bounding a ferrite-cored eddy current sensor; 

sensor regions were considered to be source-less with imaginary surface currents imposed 

at region interfaces. Green’s functions were determined for all bounded regions. A novel set 

of Basis functions were introduced to reproduce the surface currents present on the sensor 

core-air interface, which were then formed into a system of 2N linearly independent 

equations. A matrix method was finally developed to solve these equations using the 

method of weighted residuals. 

The matrix method was further developed in this section in order to calculate sensor coil 

impedance and induced voltage. An efficient material profile function m() for modelling 

the interaction between the sensor and test material was also developed and verified. A 

novel form of parameterisation is adopted for m(). The accuracy and convergence of vector 

potential fields generated is reviewed and a new free-space Green’s function introduced. 

3.1 The material profile function m() for stratified layers 

Section 2.1 introduced the medium as being comprised of M planar layers. Each layer had 

medium properties that were considered to be isotropic, homogeneous and linear. Any 

change between the electrical and magnetic properties of the layers was a step change. This 

approach enabled Cheng and co-workers to successfully model non-homogeneous materials 

using piecewise constant approximations (Cheng et al, 1971). Such non-linear material 

profiles might be produced, as an example, by coating a substrate, by case hardening, heat 

treatment, ion bombardment, or by chemical processing. A recently developed alternative 

method used hyperbolic tangential profiles to represent near surface changes in 

conductivity (Uzal et al, 1993). The method proposed by Cheng was adopted here due to it 

being more flexible. Applying boundary equations (26) and (27) to Green’s function (12) for 

the nth media layer below the coil gives: 
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and 
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where: 

 1,1   nnnn    (43) 

and 

  nnn   .  (44) 

Taking the coil region (regions 1 and 2) to have the properties 0, 0 and 0, and giving 
consideration to the presence of a source give: 
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and 
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  (46) 

Cheng and co workers showed that unknown coefficients Bn and Cn were dramatically 
simplified using a matrix method (Cheng et al, 1971). This method defined the following 
matrices, a 2x1 coefficient column matrix: 
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and a 2x2 transformation matrix Tn-1,n, with the elements: 
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Successive multiplication of Tn-1,n gives the following: 
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where 

 
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
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MA .  (53) 

If ),( MnV  is a 2x2 matrix, then define: 

  M1,M1M2,M3,42,3 TTTTV   ...),( Mn    (54) 

Evaluating the above gives the Green’s functions for the regions bounding the coil: 

Region 1 
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Region 2 
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(56)

 

A new coil region (region 12) can also be defined for coils with finite length and radial 

dimensions by adding vector potential A(1) and A(2) and applying relevant boundary 

conditions on coil length Z (Dodd & Deeds, 1968). 

From the above, the following relationship is evident: 
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m    (57) 

Material profile function m is dependent only on the media properties and is independent of 

coil geometry and coil lift-off; m not only applies to the source field AS, but also to the 

scattered field AR, which makes this function a universal profile function. If the material 

under test is comprised of two layers for simplicity, a conductive coating of thickness Zc 

(region 3) deposited on a magnetic substrate (region 4), then the material profile function m 

can be shown to be (Dodd & Deeds, 1968): 
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where 
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3.2 Implementation of the material profile function 

The material profile function m is actually a function of many variables. Most of these 

variables however can be regarded as constant for a given test, making the material 

profile function a function of spatial frequency α only. For a large number of medium 

layers, at least 40 to accurately represent continuously varying profiles (Uzal et al, 1993), 

the evaluation of V12 and V22 begins to become computationally prohibitive. Not only 

does the amount of matrix algebra required to calculate m() dramatically increase, but 

this calculation must be repeated for every element of matrix equation (40). A more 

efficient approach replaces m() in its matrix form with a spline curve. The oscillatory 

nature of high degree polynomial approximations, such as least squares regression, 

discounts their use. In order to assess the suitability of cubic spline interpolation it is 

necessary to determine the general form and amount of variation expected for m(). 

Given this, consider a two layer medium defined by equation (58), where angular 

frequency  ranges from  = 2100 rads/sec to  = 23·104 rads/sec and coating 

thickness Zc (region 3) ranges from Zc = 0 m to 300 m. A worse case of copper plating 

on steel is assumed. The following two graphs show real and imaginary components of 

m() for these conditions.  

Examination of figure 6a and 6b clearly shows that m() has considerable variation below  

= 104, but that above this it is relatively smooth. Assuming that m() is defined on the 

interval   {a, b} and that a clamped boundary is used, let cubic polynomial Sj occur on 

subinterval [j, j+1]. Given this it can be shown that the maximum error occurs when: 

(Burden & Faires, 1989): 
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where 

 )(
max 4 
 m

ba
M


  and ba n   ...10 . 

From above, interpolation error can be linked with the maximum subinterval step size 

max[j, j+1] and the maximum 4th derivative of m(). Since the maximum derivative error is 

always below  = 2103 and since m() is almost linear above  = 104, it seems reasonable to 

reduce subinterval step size for low  and increase it above  = 104. This adjustment enables 

the interpolating cubic polynomials Sj to more accurately reproduce data in regions of 

maximum variation, whilst minimising the total number of subinterval domains. Empirical 

study showed that the optimum choice for j is: 

 ))1((035.0 33 jjj    (60) 

where  

j  {0, 1, … , 111}. 
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Fig. 6a. Real Component of Material Profile Function m(). 
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Fig. 6b. Imaginary Component of Material Profile Function m(). 
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3.3 Material profile function testing and evaluation 

A typical spline curve is given in figure 7 for a two layer material: substrate (region 4: 4 = 

100, 4 = 10 MS/m) and coating (region 3: 3 = 1, 3 = 58 MS/m, coating thickness Zc= 300 

m) for an excitation frequency  = 230103 rads/sec. 
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Fig. 7. Spline Approximation S() of Cheng Formula Re(m()). 

The major benefit of this approach is that the cubic polynomial coefficients for all Sj need 

only be calculated once, making the method very rapid. 

3.4 The convergence of the source coil fields 

The vector potentials required for evaluating the regions bounding the source coil are 

derived from equations (11) and (12), which are improper integrals. Since an explicit anti-

derivative does not exist for these equations, numerical quadrature was be used. The 

convergence of these integrals can be studied by considering the form of their integrand for 

large , which can be represented in the following way: 
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If n > 1 then 01 n for  . Given this equation (61) is convergent. Stephenson 

generalises this further by redefining equation (61) as (Stephenson, G. 1974): 

 





a

n

g )(
   (62) 

where g() is some arbitrary function that is bounded and non-zero. 

In this instance (62) is said to be convergent if n > 1. Given this, it seems reasonable to 

assume that a large positive value for n is required for a high rate of convergence. An 

example of this is given for the self inductance L of an air-cored coil (Dodd & Deeds, 1968): 
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(63)

 

The function shown above has a very rapid rate of convergence due to  being raised to the 

5th power. Application of the sensor core boundary equation (28) leads to five core equations 

for the source coil magnetic flux density BS , which are given below: 
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Boundary equations (64) – (68) have a rate of convergence no worse than -2. Comparison 

with that of the source coil inductance indicates that the rate of convergence of source coil 

field vectors is relatively poor. 
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3.5 Convergence of the basis function fields 

The field generated by an ith basis function located on the cylindrical face of the sensor core 

is given by: 
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where the total scattered field 
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RR zrAzrA
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If the axial coordinates of the basis function are zzl ia 2  and zzl ia 1 , with radial 

coordinate ra, equation (69) becomes: 
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Which assumes that field point (r, z) is bounded, with 12 aa lzl  . 

The components of flux density zr
*
R aaB

*
Rz

*
Rr BB   for equation (70) are: 
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It is clear that a basis function vector potential has a rate of convergence that is poor, the 

convergence of it’s flux density vector 
RB  is even worse. A significant benefit in terms of 

computational efficiency and accuracy is gained if a method can be found to improve the 

convergence of these field equations. Note that the fields above and below the basis 

function, as well as the basis functions on the end faces of the core, have been omitted for 

brevity. 

3.6 The modified free space green's function G0 (r, z; r, z) 

It is evident that field equations have a poor rate of convergence. Considering only the 

basis function fields, separate equation (72) into two parts, which are given on the 

following: 
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Assuming that all other field equations can be treated in the same way, a comparison of the 

integrands of equation (73) is shown in a normalised form in figure 8, with m() = 1.0. 
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Fig. 8. Free-Space hfs() and Material Dependent hm() Convergence. 

It is clear from Figure 8 that separating the field equations into two terms, and considering 

only the material dependent term hm() gives a function with a very rapid rate of 

convergence. An equation replacing the free-space or material independent term hfs() now 
needs to be determined. Let the delta function coil representing the material independent 

Green’s function G0 (r, z; r, z) be formed from discrete current elements IdS. See figure 9. 
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Fig. 9. Current Element IdS forming a Delta Function Coil. 

The magnetic vector potential generated by IdS is given as: 
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where  is media permeability and I is current.  

If ))sin()(cos(' yx aaS   r , zx aaS' zr   and SS'R , then the free space Green’s 

function G0 (r, z; r, z) is of the following form: 
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Integration of G0 (r, z; r, z) over r or z gives the relevant equation for the basis functions. 

Equation (75) satisfies all the requirements of the Green’s function (Sadiku, 1992). Highly 
accurate calculations of field quantities were found to be possible using this equation. 

4. Testing and evaluation 

Nearly all eddy current investigations are conducted in the sensor coil region by 
determining coil impedance. Given this, if the source coil is densely and uniformly wound 
with a rectangular cross section, having the radial and axial dimensions (r2, r1) and (l2, l1), 
the induced voltage V across the coil will be equal to: 
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where Nc is the number of turns on the source coil. Coil impedance Z can be found by 
simply dividing V by source current I.  

Evaluation of the sensor model proceeded by defining the dimensional and physical 
properties of the sensor of section 2, which are shown below in table 1. Note that no 
information for the two pickup coils is given as this is the subject of future work. 

 

Sensor Core Sensor Source Coil 

Sensor Lift-off: 0.50 mm Source Coil r1: 1.45 mm 

Core Radius: 0.99 mm Source Coil r2: 3.175 mm 

Core Length: 6 mm Source Coil l1: 3.005 mm 

Core Permeability 1000 Source Coil l2: 3.845 mm 

  Source Coil Turns Nc: 294 

Table 1. Sensor Properties. 

Matrix equation (40) was solved for coefficients ui and vi using Mathcad, version 11.0a and 
source coil impedance determined from equation (76). It was found empirically that 80 
collocation points spread evenly along the core-air interface C provided good results.  

Source coil self inductance L and resistance R was calculated for differing sensor lift off over 

steel with the following properties: relative permeability r = 95.6 and conductivity  = 
8.4x106 S/m. As a comparison, the sensor model of table 1 was also simulated using the 
commercial FEM solver MagNet, version 6.25. The results of this, displayed in the form of a 
normalised impedance plane diagram, are shown in figure 10. 
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Fig. 10. Normalised Impedance Plane Diagram of Sensor. 

www.intechopen.com



 
Numerical Modelling 

 

180 

Changes to the value of core permeability r were also simulated for the sensor held in 

free space, positioned above a solid copper substrate (f = 30 kHz) and finally above 100 

m of copper plating on steel (f = 10 kHz). The results of this simulation are displayed in 

figure 11. 
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Fig. 11. Source Coil Inductance as a Function of Core Permeability. 

5. Conclusion 

The benefits of the magnetic moment method developed in this work are: 

 Only points on the closed surface bounding the sensor core are discretised.  

 The use of a spline function to replace the material dependent matrices 

V(M,1)12/V(M,1)22 of Cheng, Dodd and Deeds (Equation 7), allows for a potentially 

infinite number of stratified layers to be used to represent non-linear material profiles, 

with no penalty in terms of computation time or accuracy. 

 Separating the basis functions into free-space static and substrate dependent dynamic 

terms, allows for more efficient computation of magnetic fields on the equivalent 

boundary surface. Static field components (free space components) only need to be 

computed once for any given simulation session. 

 For a given lift-off and material profile function m(), probe tip permeability i can be 

varied without the need to recalculate basis function fields.  
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Future work entails implementing a Galerkin method of weighted residuals to replace the 

current collocation method and conducting detailed tests on non-linear material profiles. 
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