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1. Introduction  

Plasmas are generated by supplying energy to a neutral gas causing the formation of charge 
carriers. Electrons and ions are produced in the gas phase when electrons or photons with 
sufficient energy collide with the neutral atoms and molecules in the feed gas (electron 
impact ionization or photoionization). The most widely used method for plasma generation 
utilizes the electrical breakdown of a neutral gas in the presence of an external electric field. 
Charge carriers accelerated in the electric field couple their energy into the plasma via 
collisions with other particles. Electrons retain most of their energy in elastic collisions with 
atoms and molecules because of their small mass and transfer their energy primarily in 
inelastic collisions. Discharges are classified as DC discharges, AC discharges, or pulsed 
discharges on the basis of the temporal behaviour of the sustaining electric field. The spatial 
and temporal characteristics of plasma depend to a large degree on the particular 
application for which the plasma will be used [1]. 

Today, plasmas are increasingly used in industry [13]. There are two types of plasma, the 
so-called thermal plasmas and cold plasmas said. The corona is a process that could lead to 
the creation of the latter. The use of techniques involving the corona tends to grow in 
importance. Indeed, they are out and already widely used in the areas of destruction of 
pollutants and waste gas, the surface treatment (cleaning and surface erosion, deposition of 
films, modifying the surface chemistry). They are also used in other applications such as 
ozone generation and elimination of static electricity. Also, to minimize development costs, 
recent research attempting to model the phenomena involved 

In this work, we study the thermodynamics of the neutral gas subjected to energy 
injection as the result of electric discharge in the considered medium. This approach to the 
problem allows considering the discharge only on its energetic aspect. The discharge 
plays the role of an injection in the gas. To define the profile of this energy injection, we 
propose a mathematical function that represents the spatial dependence of the discharge 
density. The spatio-temporal evolution of the neutral gas particles is studied on the basis 
of hydrodynamic set of equations, i.e. equations of transport for mass, momentum and 
energy [4]. The hydrodynamic set of equations is solved by the F.C.T method (Flux 
Corrected Transport). 
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2. Description of corona discharge 

Under the action of an electric field, the gas molecules undergo electron collisions, according 

to the complex mechanisms associated with shock [5]. The reactivity of the gas depends 

mainly on the shape of the energy delivered to the electrode system and generating the 

corona called "reactor ". Geometries are often very divergent and energy sources can be of 

multiple origins [6]. 

A corona discharge occurs when a current, power is created between two electrodes brought 

to a high potential and separated by an inert gas, usually air ionization plasma is created 

and the electric charges propagate through ions with neutral gas molecules. When the 

electric field at a point of a gas is sufficiently large, the gas ionizes around this point and 

becomes conductive. In particular, if one has been charged peaks, the electric field will be 

greater than elsewhere, this is usually as a corona discharge will occur, the phenomenon 

will tend to stabilize itself as the region becomes ionized conductive tip will apparently tend 

to disappear. The charged particles dissipate while under the influence of the electric force 

and neutralize an object in contact with opposite charge.  

Corona discharges therefore generally occur between an electrode of small radius of 

curvature (for example: fault of the conductor forming a point) as the electric field 

surrounding area is large enough to allow the formation of a plasma. Corona discharge can 

be positive or negative depending on the polarity of the electrode with a small radius of 

curvature. If positive, it is called positive corona, otherwise negative crown [7]. Because of 

the difference in mass between electrons (negative) and ions (positive), the physics of these 

two types of corona is radically different. 

 
 

 
 

 

Fig. 1. domain study. 
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Landfills crown are guy characterized by asymmetry of the electrodes, at least one of the 

two electrodes with high curvature. Reduces the electric field produced in the electrode gap, 

when applying a high voltage is strongly inhomogeneous. The name of corona discharge is 

the luminous halo-shaped crown that appears around the electrode with high curvature at 

the initiation of the discharge. Deferent types of geometry are used in the experiments: tip-

up, wire up, wire-wire and wire-cylinder. The high voltage applied to the electrode with 

high curvature can be positive or negative [8-9]. 

One of the main difficulties encountered with landfill type crown is the transition to the arc. 

This phenomenon is characterized by a strong rise in the current flowing in the discharge 

and a significant increase in the gas temperature. The plasma is then generated close to 

thermodynamic equilibrium [10]. 

In a point-to-plane configuration at atmospheric pressure, with the sharp electrode being 

supplied with a negative discharge DC [8], the corona discharge inception is principally due 

to the acceleration of background electrons (resulting from cosmic radiation) in the high 

electric field created by the small curvature radius of the point. The resulting space charge 

field, added to the ‘geometrical’ initial one, allows the electrons situated a little farther away 

to be accelerated [11].  

The corona discharge is initiated when the electric field near the wire is sufficient to ionize 

the gaseous species. The minimum electric field is a function of the wire radius, the 

surface roughness of the wire, Nitrogene temperature, and pressure. The free electrons 

produced in the initial ionization process are accelerated away from the wire in the 

imposed electric field. More frequent inelastic collisions of electrons and neutral gas 

molecules occur [8]. 

Numerous models of corona discharge have been proposed. In [5] a wire-to-cylinder corona 

discharge is modelled by means of electronic injectors with azimuth symmetry, assimilating 

the coaxial discharge to a succession of elementary point-to-cylinder electrical discharges 

(Fig. 2). 

 

 Nitrogene 

Negative high voltage 

Corona discharge 

 
 

Fig. 2. Corona discharge in wire cylinder electrode geometry. 
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During the inception and development of the plasma in a point to plane gas discharge [10], 

a spatio-temporel evolution of the temperature of the neutral gas occurs as a result of 

plasma-neutral molecules energy interaction [11]. The temperature gradient causes a 

phenomenon of diffusion and convection as a result of the accompanied strong 

heterogeneity in the neutral gas density and pressure [12]. The fundamental role of neutral 

heating in the inception of gas breakdown has been shown by theoretical studies [13-14], as 

well as by experimental studies [15]. The behaviour of a point to plane discharge has been 

optically and electrically analysed for a centimeter gaps in Nitrogene at atmospheric 

pressure [16].  

3. Introduction to kinetic theory 

There are many phenomena in ionized gases for which we need to consider the velocity 

distribution function of the particles, or at least of some particles such as free electrons, and 

to use a treatment called kinetic theory. In fluid theory, the velocity distribution of each 

species is assumed to be Maxwellian everywhere and is therefore uniquely specified by the 

species temperature T. Because inelastic collisions, especially between electrons and neutral 

particles, play a major role in low-temperature plasmas, significant deviations from thermal 

equilibrium are usually present in such media, which justifies the need for using the kinetic 

theory. By definition, the velocity distribution function f(r, v, t) of a given species represents 

the number of particles of that species per unit volume of the six dimensional phase space at 

position (r, v) and time t. This means that the number of particles per unit volume in 

configuration space with velocity components between vx and vx +dvx, vy and vy +dvy , and 

vz and vz +dvz at time t is: 

 x y z x y zf x y z v v v dv dv dv( , , , , , ).   (1) 

When we consider velocity distributions, we therefore have seven independent scalar 

variables (r, v, t). The density in configuration space n = n(r, t), which is a function of only 

four scalar variables, is obtained by integration of f(r, v, t) over velocity space, that is 

 x y zn r t dv dv f r v t dv( , ) ( , , )
  

  
      (2) 

The distribution function of simple speed allows us to calculate, for each position r and time 

t, the average value of certain physical properties, resulting in the so-called macroscopic or 

hydrodynamic quantities. Let A (r, v, t) a molecular property of any kind. The most general 

definition of its average value, denoted by A (r, t), is given by the expression: 

 A r t A r v t f r v t dv
n r t

31
( , ) ( , , ) ( , , )

( , )





 
    

   (3) 

3.1 The Boltzmann equation 

The Boltzmann equation is derived rigorously from the Liouville theorem,. However, we 
can get this equation quickly, but in a formal way, by first assuming the absence of collisions 
between particles and, in a second time, taking into account the effect of collisions. The 
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Boltzmann equation is useful to describe the evolution of a gas of charged particles in an 
external electromagnetic field, and it obviously implies that the particles are small enough 
density does not change the outfield. It is written as follows [17]: 

 v

coll

df f F f
v f f

dt t m t
. .

           

  
  (4) 

Here F is the force acting on the particles, and (∂f/∂t)coll is the time rate of change of f due to 
collisions. Considering, for example, free electrons, this collision term must account for 
elastic and inelastic electron–neutral collisions, and, at relatively high degrees of ionization, 

for electron–electron and electron–ion collisions. The symbol  stands, as usual, for the 

gradient in configuration space (x,y,z) while the symbol ∂/∂v or v stands for the gradient 
in velocity space. 

Here, ∂f/∂t is the rate of change due to the explicit dependence on time. The next three 

terms are just v.f while the last three terms, taking into account Newton’s third law 

m(dv/dt) = F are recognized as (F/m).(∂f/∂v). The total derivative df/dt can be interpreted 

as the rate of change as seen in a frame moving with the particles in the six dimensional (r, 

v) space. The Boltzmann equation simply says that df/dt is zero unless there are collisions. 

Collisions have the effect of removing a particle from one element of velocity space and 

replacing it in another, or even creating a new particle in the case of ionization. One 

provides for this by the collision term (∂f/∂t)coll. 

3.2 The conservation equations 

The conservation equations of density number, momentum and energy for a single species 
may be obtained by the method of moments. In this method, f (r, v, t) is multiplied with a 
function g(v) of the velocity and integrated over the entire velocity space. For the case that 

g(v) = 1, we obtain the continuity equation, if g(v) = m  v we obtain the momentum 
conservation equation, and if g(v)= mv2/2, we obtain the energy conservation equation. The 
fluid equations are simply moments of the Boltzmann equation. The lowest moment is 
obtained just by integrating this equation over velocity space [17-19]: 

 v

coll

f F f
d v v f d v f d v d v

t m t
3 3 3 3

   

   

             
  

  (5) 

where dv stands for a three-dimensional volume element in velocity space. By transforming 

the third term on the left-hand side by Green’s theorem and after straightforward 

calculations one obtains the continuity equation: 

 
n

nu S
t

( )


 



  (6) 

where u is the average (fluid) velocity: 

 u r t v f r v t dv
n r t

31
( , ) ( , , )

( , )





 
   

   (7) 
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S represents the net creation rate of particles per unit volume as a result of collisions (for 

example, in the case of electrons, this term takes into account new electrons created by 

ionization and electron losses due to recombination with ions or attachment). 

The next moment of the Boltzmann equation is obtained by multiplying it by mv and 

integrating over dv. We have:  

 v

coll

f f
m v d v m v v f d v m v F f d v d v

t t
3 3 3 3( ) ( . )

   

   

             
     

  (8) 

After calculation we obtain [4]: 

 
coll

nmu f
nuu p nF mv d v

t t
3.( ) . .





          
       

  (9) 

where  denotes the viscosity, p denotes the pressure, and F the specific external forces 

exerted on the species. The first term of (9) represents the accumulation of the specific 

momentum, which is generally nonzero in a transient system. The second term denotes the 

momentum transport caused by the flow. The third term represents the viscous forces. The 

fourth term is the pressure gradient. Formany flowing systems, including the plasmas 

treated in this work, this is the driving force that causes the various plasma species to flow. 

The fifth term represents the external forces, thus the combined action of the electric force, 

the Lorentz force and gravity. Tight-hand side term represents the momentum gained and 

lost trough collisions with other species. This may include the transfer of momentum from 

other species, or the creation of species with nonzero momentum. 

We have deduced the form of the equation of conservation of energy as a function of 

thermal energy, using the Fourier law for thermal conductivity and the ideal gas law [1,4]: 

 T

coll

nk T f
nk Tu p u u T E d v

t t
33 3

( ) . ( . ) ( )
2 2






              B

B

       
  (10) 

with kB Boltzmann’s Constant, ┣ the thermal conductivity and ET the thermal energy. By 

assuming the existence of a temperature T for the species, we implicitly assume Maxwell-

Boltzmann equilibrium. However, (10) can readily be rewritten in terms of average particle 

energies if deviations from Maxwell-Boltzmann equilibrium are relevant. 

The first term on the left-hand side of (10) denotes the accumulation of thermal energy, and 

generally is nonzero in the transient systems treated in this work. The second term 

represents the convective transport of energy by means of the systematic velocity of the 

species. The third term represents the expansion work. The fourth term is the production of 

thermal energy by viscous dissipation, which is in fact the transfer of directed kinetic energy 

to random thermal energy in the species. The fifth term represents the diffusive heat 

transport (thermal conduction).  

The term on the right side represents the transfer of thermal energy by collision 
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4. Mathematical model 

The discharge column is considered to be cylindrically symmetric and longitudinally 

uniform. It is quasi-neutral, weakly-ionized, and collision-dominated. The column is 

characterized by a current density distribution j(r,t), witch is a function of radius r as well as 

time t, and a longitudinal voltage gradient E, which is assumed independent of both 

position in the column and time. The current density j goes to zero at a fixed radius RC. The 

ionized region, which is initially diffuse, is contained in an infinite background of perfect 

gas of particle density (at t=0) uniform at N0 and T0, respectively.  

The rate at which thermal energy is added to the gas per unit volume is given by j(r,t) E(r,t). 

That is, all the input power is assumed to be transferred from the electron to the background 

gas. As the temperature increases, the gas expands and its density decreases near the axis. 

Where the gas density decreases the electrical conductivity and current density increase, 

thus enhancing the subsequent rate of heating and expansion [13]. 

The gas dynamics are described by the conservation equations for a viscous compressible 

fluid and the equation of state for a perfect gas. The equations are written in cylindrical 

coordinates, written rotational symmetry and axial uniformity, with gas flow in the radial 

direction only, and with zero body forces. The fluid equations are, for the conservation of 

masse (continuity equation). 

  rNv rN

t r r

( )1
0


 

 
  (11) 

where N is particle density, r is function of radius as will as time t and vr is the radial 

velocity.  

For momentum (equation of motion): 

 r r r r r r
r

v v v v r v vp
MN v

t r r r r r r r r r

3 1 2
2 ( )

2


                            

 (12) 

where M is the masse of a gas molecule and  is the coefficient of viscosity. 

and energy, for a perfect gas, 

 v r v r

N NT T p p
MN C v C v

t r M t M t

(1 ) (1 )          
  

 r r r rv v v vT
jE

r r r r r r r

2 2
1 4

( )
3


                       

 
(13)

 

where p is the gas pressure, Cv is the specific heat at constant volume, T temperature,  is 

the coefficient of thermal conductivity.  

The equation of state is: 

 Bp Nk T   (14) 
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where kB is Boltzmann constant  

Energy transfer by radiation has been neglected. Eliminating the time derivative of N from 

the energy equation by using the continuity equation, replacing the pressure with NkBT, and 

rearranging terms, we can rewrite the conservation equations:  

 rNv rN

t r r

( )1 
 

 
 (15) 

 r r r r r r
r

v v v v r v vk NT
v

t r MN r MN r r r r MNr r r

( ) 1 2 1 2
2 ( )

3


                        

  (16) 

and 

 r r
r

v v

Nv r kTvT T kT N
v

t t MC N r r MC N r

( )1   
   

   
  

 r r r r

v

v v v vT
jE

MNC r r r r r r r

2 2
1 1 4

( )
3


                           

  
(17)

 

If viscosity and thermal conduction are neglected, the speed of sound in the gas vs can be 
written: 

 s

kT
v

M

1 2   
 

 (18) 

Where  is the ratio Cp/Cv of the specific heat at constant pressure to that at constant volume 

[13]. 

5. Numerical analysis 

The discharge studied in our work requires that the method used to solve the equations of 

transport is efficient and has the ability to follow the strong density gradients while 

keeping a reasonable computation time. To this end, we opted for the scheme of Flux 

Corrected Transport Low phase error has already been used successfully in several areas 

such as solving the Boltzmann equation in weakly ionized gases. The diagram FCT (Flux 

Corrected Transport) is certainly one of the best choices to make while it is quite complex. 

Among its advantages are: the absence of spurious oscillations, numerical diffusion 

minimum; It can also calculate the evolution of profiles with very sharp spatial variations 

[20]. 

Our work of the simulation of the discharge in space is two-dimensional with cylindrical 

symmetry. The hydrodynamic set of equations is solved by the F.C.T method (Flux 

Corrected Transport) using the procedure of time splitting for the two space variables. An 

FCT algorithm consists conceptually of two major stages, a transport or convective stage 

(Stage I) followed by an antidiffusive or corrective stage (Stage II) [20-22]. All transport 
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equations of the charged or the neutral particles defined previously obey the same generic 

form: 

 r zr r z t v r z t v
r z t S r z t

t r r z

( , , ) ( , , )1
( , , ) ( , , )

 


 
  

  
 (19) 

where r, z are space variables, t is temporal variable, φ(r,z,t) is the transported size (density, 

momentum or energy) and S(r,z,t) indicates the source term of the corresponding transport 

equation. 

The transport equations which are narrowly coupled are discretized by the method of 

volumes finished and are corrected by the method of the finished volume and corrected by 

the method of corrections of flow developed by Boris and Book [20]. 

The transport equations were discretized on the mesh nodes using numerical schemes to 

avoid the problems of digital broadcasting, which is especially important. To simplify the 

presentation of the method we consider a time step Δt constant, we divide the two-

dimensional space into cells infinitely small. The application of this method involves three 

steps: 

- The transport step: we calculate the value of the quantity transported and distributed in 

each node of the cell. 

- The diffusion step to ensure that the solution is positive 

- The next step is to reverse the spread where it is not necessary. Such an anti-diffusion 

step is necessary to find the accuracy of the transport step 

The study domain is defined by figure 2. The limit velocity of the molecules on the surface is 

assumed equal to zero. As it is necessary to take into account the local heating effects, the 

temperature of the surface is assumed equal to the averaged temperature of the surrounding 

gas, and the temperature of the electrode body is assumed invariable and equal to the 

ambient temperature.  

 
N T v

t t t
r r r

(0,0, ) (0,0, ) (0,0, ) 0
  

  
  

 and rT K v U kV293 , 0, 12     (20)  

6. Results and discussion 

In Figs. 3-6, the spatio-temporal evolution of temperature, density, pressure and speed of 

neutrals are shown, respectively, for the case of a negative point discharge, cold wall and 

constant injection of energy. 

In Figure 3, we observe a growing neutral heating in the function of time. This transfer of 

heat is important for the discharge was near the center. Indeed  10 mm (from the point), the 

temperature passes from the value 350 K at t = 1 μs to 650 K at t6 = 50μs, whereas it remains 

almost constant near the edge and varies slowly near the cathode. 

On the other hand the temperature increases rapidly with time, there is also a shift of the 

maximum temperature in the direction of the anode 
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Fig. 3. The axial evolution of neutral temperature for several laps (negative point discharge, 
cold wall, constant injection of energy). 

Figure 4 shows the evolution of the density of neutral in the function of time and space. 

We notice on all the curves a neutral depopulation in Inter electrode space. This decline 

results from the thermal footprint caused by the passage of the streamer discharge, it is 

more important at 10 mm (from the point), where there is a rate of 40% at t6 = 50 µs , while 

there is a decline up to 5 % in t2 =1μs. In the middle of the discharge are the ionization 

phenomena responsible for the decrease in the density of neutral or figures 5 and 6, which 

represents the evolution of the pressure and the module of the neutral speed, we notice, 

because of the inertia of molecules of gas, a phase shift between the maximum module 

speed and total maximum pressure. This gap is especially well marked on the axis, and at 

the beginning of the discharge. For other parts of the field, this phase shift is less 

accentuated because the disturbance created by the discharge is less important for 

intensity. As the time elapses, the evolution of pressure and speed module becomes 

constant. 

From the moment 20 μs, we see a trend toward stationarity for all sizes (temperature, 

density, pressure and speed), because the heating in a comprehensive manner (contribution 

of all terms), decreases in intensity over time and the dissipation of energy becomes 

important. The result of all these processes, that all occurs as if a heating effect (known as 

heat wave) begins at the tip to spread towards the plan. 
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Fig. 4. The axial evolution of neutral density for several laps (negative point discharge, cold 
wall, constant injection of energy). 
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Fig. 5. The radial evolution of neutral pressure for several laps (negative point discharge, 
cold wall, constant injection of energy). 
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Fig. 6. The radial evolution of total speed module of neutral for several laps (negative peak 
discharge, cold wall constant injection of energy). 

7. Conclusion  

In this paper, we have presented numerical calculations for neutral thermal effects produced 
by the negative dc corona discharge DC at atmospheric pressure, is conducted. 

The objective of this study is to develop an efficient numerical model for solving transport 
equations. This allowed us to study the evolution of temperature and density of neutral 
particles as a function of axial distance, in the case of a negative corona discharge at 
atmospheric pressure for a better understanding of the evolution and heat transfer in 
situations of large variations in density and electric field. We completed this approach by a 
numerical parametric study on the behavior of radial profiles of pressure and velocity 
neutral particles. 

The results obtained reveal the existence of the phenomena of interaction between charged 
particles and neutral particles, which are causing instability reaction electric shocks. These 
instabilities can come from two sources: 

- Electrostatic origin since the space charge occurring in the gas, change the local electric 
field. 

- Thermal, since the energy transfer between gas ions and the neutral gas causes local 
variations in temperature and density of the neutrals. 

The results show that the stabilization of the neutral gas is mainly on the function of the 
energy injection distribution, and depopulation is more important than the plane advance. 
So, as soon as a current goes through the neutral gas, obviously a Joule heating effect 
increases the temperature locally. These results also show that: 
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- Temperature increases with time, the middle of the discharge is warmer. 
- The neutral density varies inversely as the temperature 
- The appearance of a phase difference between the maximum speed of neutral and 

maximum total pressure module, due to the inertia of the gas molecules. 

Due to its qualities of stability, accuracy and speed compared to digital technologies that 
preceded it, we can say that using the FCT method has opened new perspectives for 
modeling non-equilibrium discharges in general and in particular corona. 
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