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1. Introduction 

Filling processes occur in a wide range of industries, ranging from packaging of consumer 
products to manufacturing processes for making polymeric, metal and ceramic components. 
These processes involve the complex interplay of extrusion of a viscous liquid into a mould 
or container where it displaces a gas phase. Numerical modelling based on computational 
fluid dynamics can be useful for understanding the filling process. However, complexity 
arises in that the fluid dynamics in both the viscous liquid and gas phase must be resolved 
while concurrently determining the location of the fluid-gas interface and the interaction of 
this interface with the solid surface, i.e., the wetting behaviour. Determining the free surface 
location and wetting behaviour is an integral part of the numerical method.  

Numerical methods have been applied to bottle and container filling for consumer products 
where the rheology can include shear thinning and viscoelastic effects and instabilities such 
as buckling and coiling may be prevalent [Tome, et al., 2001; Oishi et al., 2008; Roberts & 
Rao, 2011; Ville et al., 2011]. In metal casting simulations, the fluids are generally 
Newtonian, but complexity arises from the high injection rates leading to turbulent flow and 
temperature-dependent behaviour such as solidification [Ilinca & Hetu, 2000; Cross et al, 
2006]. For injection moulding of polymers, time- and temperature-dependent effects are 
seen in conjunction with non-Newtonian rheology [Ilinca & Hetu, 2001; Kumar & 
Ghoshdastidar, 2002]. In powder injection moulding for ceramic and metal forming, a 
suspension of particles is injected into a mould to create a green part, which later sees 
further processing steps to produce the final part [Hwang & Kwon, 2002; Ilinca & Hetu, 
2008]. Numerical methods for these problems range from finite difference, to finite volume, 
and finite element.  

General classes of algorithms for determining the location of the free surface include 
Eulerian, Lagrangian and arbitrary Lagrangian-Eulerian (ALE) descriptions. Eulerian 
methods use a fixed-grid with an interface capturing technique such as the volume of fluid 
[Hirt & Nichols, 1981] or level-set method [Sethian, 1999] to determine the location of the 
free surface. Traditional Lagrangian methods use a moving mesh as a material interface that 
advects with the fluid. These methods often require multiple remeshing steps to avoid mesh 
distortion and tangling [see for instance, Bach & Hassager, 1985; R. Radovitzky & M. Ortiz, 
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1998; Zhang & Khayat, 2001]. To avoid these problems, Lagrangian mesh-free methods have 
been developed using smooth particle hydrodynamics or the material point method to 
avoid meshing issues [Kulasegaram et al, 2006; Kauzlaric et a;., 2011; Love & Sulsky, 2006]. 
These methods work well for being able to capture a moving interface with topological 
changes, but have difficulty in accurately solving the base physics, e.g. viscosity, and 
applying boundary conditions such as surface tension. ALE methods are hybrid techniques 
that seek to exploit the benefits of both the Eulerian and Lagrangian description in a hybrid 
manner, to determine the location of the interface [i.e. Sackinger et al, 1996; Lewis et al., 
1998; Nithiarasu, 2005]. 

Injection loading of a ceramic paste is a high-rate process used to create green ceramic parts, 

which subsequently experience binder burnout and sintering to produce the final ceramic 

part. In the process of interest, the mould is a rectangular cavity, with an inflow from a coat 

hanger die that should distribute the flow evenly across the mould inflow. The cavity is 

small with dimensions of 1.3 cm by 3.6 cm in plane and a height of 0.4 cm. The inflow tube 

to the distributer has a diameter of 0.5cm. Figure 1 shows short shots (or incomplete filling 

of a mould) for the injection loading process, illustrating some of the defects that can occur 

when a fluid with complex shear and temperature-dependent rheology interacts with a high 

rate process.  

 

Fig. 1. Short shots of injection loading of a ceramic paste in a part are shown [Rao et al, 
2006]. The photo on the left is injection loading using a slow injection speed, while the photo 
on the right uses a higher injection speed. At low filling speed, the paste acts like a solid 
material. Even at high filling rates, when the paste begins to act as a fluid, pooling at the 
centre of the mould is seen and the desired mould shape is not achieved. 

Temperature control and high-rate processing can limit the folding instability seen on the 

left of Figure 1. However, the pooling phenomenon shown on the right of Figure 1 occurs 

when optimal processing conditions are used, indicating that the design of the distributer 

may be responsible for material building up in the centre of the die. The complex shear-rate 

and temperature-dependent rheology of the ceramic paste was determined to follow a 

power-law dependence on shear rate and a Williams-Landau-Ferry temperature 

dependence [Rao et al., 2006]. The material shear thinned quickly to a constant viscosity 

value at moderate shear rates. Thus, because of the high shear rates in the injection loader, it 

was determined that the rheology was essentially Newtonian as long as the temperature 

remained constant at the processing temperature. Therefore, a study was undertaken to 

better understand the filling dynamics and reduce pooling by changing the distributer 

design using a Newtonian fluid.  
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1.1 Dynamic wetting models and mould filling 

Understanding dynamic wetting, or the interaction between the free surface and the mould 
walls, has been the subject of numerous experimental and theoretical studies and is still an 
outstanding research topic [see for instance Blake, 2006; Ren et al, 2011]. The difficulty arises 
from the contradiction of a moving contact line at the fluid-gas interface and the no slip 
boundary conditions traditionally applied at solid surfaces. How can the contact line 
advance when the velocity vanishes at the solid surface? Highly viscous materials such as 
polymers and particle suspensions have large capillary numbers (a measure of the ratio of 
viscous forces to capillary forces) and are often hypothesized to obey a rolling motion 
condition with an 180o dynamic contact angle. Numerically, this approach is difficult to 
apply and other methods have been proposed.  The simplest models use a Navier slip 
condition to allow either slip on the entire solid surface, slip for the gas phase only, or slip 
only at the dynamic contact line. These models are ad hoc and ignore any thermodynamics 
considerations such as the static contact angle and surface energy. More advanced wetting 
models generally give dynamic contact angle as a function of the local Ca, the static 
contact angle and other material properties of the fluid and the solid surface [see Schunk 
et al., 2006 for a brief review of this work]. Hoffman [1975] used experimental 
measurements to develop a universal correlation for the dynamic contact angle as a 
function of static contact angle and a local capillary number, while Cox [1986] developed a 
competing model using asymptotic analysis. Kistler [1983] used a linear model that was easy 
to implement in numerical computer codes. Shikhmurzaev [1994] used hydrodynamic theory 
and included a surface phase as part of the wetting model. Blake [1969] developed a molecular 
kinetic theory that reduces to a linear model for small contact angles. Blake noted that the 
advancing angle is a monotonically increasing function of Ca. The degree of velocity 
dependence will however increase steeply as viscosity increases or surface tension decreases.   

To model dynamic contact for the filling process, the dynamic angle is tied to the balance of 
forces at the advancing wetting line, namely the tangential wetting line force, liquid-gas 
surface tension force, and fluid viscous force. Here, a version of the Blake model is used that is 
straightforward to populate with experiments. The dynamic contact angle is measured in the 
laboratory as a function of the velocity of the wetting line for the fluids and surface used in our 
experiments as input to the wetting model.  The Blake model is also easy to implement 
numerically, since the wetting speed can be written as a function of the dynamic and static 
contact angles. The performance of the Blake model at the high capillary number limit may be 
suspect, since it exhibits an unbounded dynamic contact angle while more physical models 
such as Cox and Hoffman reach a limit of 180o for large capillary numbers [Schunk et al, 2006]. 

1.2 Mould design 

Because the initial design of the mould exhibited pooling of the fluid in the centre of the cavity 
and this would lead to poor filling (see Figure 1), we tried two minor redesigns to the 
distributor to see if we could improve the flow into the mould and reduce pooling. Ideally, we 
would like to see a flat profile coming out of the distributor and a more one-dimensional front 
shape. Figure 2 shows the original mesh, Mesh 1, and a variation, Mesh 2, with a longer 
distributor, and Mesh 3 with a longer-taller distributor. The idea behind Mesh 2 was to give a 
longer length for the flow to develop a flat profile and fill up the distributor before entering the 
main cavity. Mesh 3 kept this longer distributor and made it wider on inflow to ease the fluid 
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entering the cavity. These ideas were inspired by discussions in Sartor [1990] about die design. 
The meshes themselves all have the same cavity size and a similar amount of refinement, 
though Mesh 2 and Mesh 3 have more elements and unknowns due to the longer distributor. 

Mesh 1: Original Geometry Mesh 2: Longer Distributor Mesh 3: Longer-Taller Distributor  

Fig. 2. Geometries to be investigated: Mesh 1 is the original design, Mesh 2 incorporates a 
longer distributer, and Mesh 3 incorporates a longer distributer with a wider inflow to the 
cavity. 

1.3 Chapter organization 

In this chapter, we investigate the design of an injection loading mould using flow 
visualization experiments and numerical models. The finite element method is used to 
understand the interaction of the inflowing viscous liquid with the geometry and the 
displaced gas phase. Filling dynamics are determined with a diffuse-interface 
implementation of the level set method [Sethian 1999]. The Blake wetting model is used to 
represent the interaction of the free surface with the mould surface at the dynamic contact 
line [Blake & Haynes, 1969; Blake, 2006]. The flow visualization experiments are carried out 
under isothermal conditions using an acrylic mould and a viscous Newtonian fluid. Three 
different moulds are examined in two different orientations with gravity. Simulation results 
are given for these six cases. 

The chapter is organized in the following manner. First, the equations and numerical 
method are presented. Next, the experimental methods used to provide input parameters 
for the models and flow visualization studies to better understand the filling dynamics and 
provide confidence in the numerical method are discussed. In the subsequent section, the 
results for injection moulding process are given for a Newtonian fluid into a coat hanger die 
distributer and a rectangular cavity, where the 3D level set simulations are compared to 
experiments. We conclude by summarizing the results and discussing future efforts.  

2. Equations and method 

2.1 Equations of motion 

We can write the equations of motion for a single-phase fluid and then generalize them for 
our multiphase flow problem, where a viscous fluid displaces a gas. The fluids of interest 
are assumed to be incompressible and have a constant density, meaning that the velocity 
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field, u, will be solenoidal and the continuity equation contains no density or pressure 
variables. (Note, this is a good assumption  for the viscous liquid but a simplification for the 
gas phase, which is actually compressible.) 

 0u   (1) 

Conservation of momentum for a Newtonian fluid takes into account gradients in the fluid 
stress tensor, T, defined as the product of the viscosity and the shear rate tensor, ( )tu u   , 

gradients in the pressure, p, as well as gravitational effects and inertial terms that can be 
dependent on time, t, and the fluid density, . Note that gravity, g, can be an important 
body force in filling processes and most filling processes fill counter to gravity. 

 

2( )
u
u u u p g

t
  

     


  (2) 

Because we have a viscous fluid displacing a gas phase, the location of the interface between 
fluids is unknown a priori. To determine the location of the free surface as it evolves in time, 
we use an Eulerian interface-capturing scheme based on the level set method, the details of 
which are included in the following section. 

2.2 Interface capturing 

We use the level set method of Sethian [1999] to determine the evolution of the interface 
with time. The level set is a scalar distance function, the zero of which coincides with the 
free surface or fluid-gas interface, e.g. 

 ( , , ) 0x y z   (3) 

We initialize this function to have a zero value at the fluid-gas interface, with negative 
distances residing in the fluid phase and positive distances in the gas phase. An advection 
equation is then used to determine the location of the interface over time. 

 
0v

t

 
  


  (4) 

Derivatives of the level set function can give us surface normal, n, and curvature, , at the 
interface, which is useful for applying boundary conditions. 

 

2
















n
 

(5)
 

We use the equations of motion described in the previous section, but vary the material 
properties across the phase interface. This variation is handled using a smooth Heaviside 
function that modulates material properties to account for the change in phase.  
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This is a diffuse interface implementation of the level set method, which allows for an 

interfacial zone of length 2. This zone is usually chosen to be four to six elements wide. 
Equation averaging is done using a Heaviside for the gas and viscous fluid equations. 
Because the properties are linear, this process results in Heaviside-averaged properties in a 
single momentum equation and an unchanged continuity equation: 

 2( )

0

average average average

u
u u u p g

t

u

  
     


 





 
(7)

 

The properties have fluid properties in some regions and gas properties in other regions as 

modulated by the numerical Heaviside. In the diffuse interface region, the properties are 

averaged between fluid and gas values. Figure 3 shows a schematic representation of the 

Heaviside function. 

 average gas gas fluid fluid

average gas gas fluid fluid

H H

H H

  

  

 

 
 (8) 

 

Fig. 3. Numerical Heaviside for averaging material properties. 

The regularized Dirac delta function, which is defined as 

 ( )
( ) (1 cos( ))

2

dH

d


  
  

   , (9) 

is used to apply surface tension and capillary boundary conditions via a continuous surface 

force approach [Brackbill et al, 1992]. This applies surface tension as a volumetric body force 

on the momentum equation, which is distributed throughout the interfacial zone region 

through the regularized Dirac delta function. 

  ( ) ( ( ) ) 2 ( )t

ga s flu id n u u n          (10) 
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2.3 Finite element implementation 

The equations of motion (7) and the level set advection (4) were solved using a finite 
element method as implemented in ARIA [Notz et al., 2006]. Bilinear shape functions were 
used for the three velocity components, pressure, and level set. The LBB requirement on the 
velocity and pressure space was circumvented using Dohrmann-Bochev pressure stabilized 
pressure-projection (PSPP) [Dohrmann and Bochev, 2004] to allow for this equal order, 
bilinear, interpolation of all variables. (LBB compliant elements have the velocity space higher 
than the pressure space [Hughes, 2000].) The velocity vector and pressure unknowns were 
solved in the same matrix, while the level set equation was solved in a separate matrix, but at 
the same time step intervals. The level set equation was stabilized using a Taylor-Galerkin 
method [Donea, 1985]. The PSPP stabilization method greatly improved the condition number 
of the discretized matrix equations when compared to LBB elements or other stabilization 
methods, allowing for the use of an ILU preconditioner with a BiCGStab Krylov iterative 
solver. Further details of the modelling approach and equations, the numerical methods used 
and the finite element implementation can be found in Rao et al. [2011].   

2.4 Contact-line wetting model 

Boundary conditions for the dynamic contact line where the free surface and wall intersects 
are handled with a Blake wetting condition [Blake and Haynes, 1969; Blake, 2006]. 
Parameters for the model are informed by goniometer experiments that determine the 
wetting speed, vwet as a function of the dynamic contact angle, θ, and the static contact 
angle, θs for the various fluids and surfaces of interest [Mondy et al., 2007]. 

 sinh( (cos cos )) wet
wet o s

v
v v

t
      


  (11) 

The dynamic contact angle can be calculated from the level set function. 

 cos /wn       (12) 

When we integrate the stress, T, by parts in the finite element implementation of the 
momentum equation, a surface term is created as a natural boundary condition. We exploit 
the surface stress term and add on a Navier slip condition that includes the wetting speed 
from the Blake model. 

 
1

( ( ) )

( ) 1 , ;0,

wet

v
n T v f v t

t

f





 
 


     



     

     

  
 

 (13)
 

The value of the tangential wall velocity ramps from zero at a level set length scale away 
from the contact line to vwet from equation (11) at the contact line. Away from the contact 
line, we revert to no slip for the tangential wall velocity boundary condition. The normal 
velocity is enforced as no penetration everywhere. The shape of this ramp must be smooth 
in order to get a realistic wetting line that shows a smooth transition from the contact line to 
the bulk flow. For a sharp transition from slip to Blake, we ended up with unphysical 
looking cusps in the interface shape near the wall. The transient terms introduce dynamics 
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into the wetting line motion and allow smooth movement of the contact line. The  

parameter is taken to be approximately the time step. The  parameter is generally small so 
that equation (13) functions almost like a Dirichlet requirement on the fluid velocity. 

3. Experiments 

It was decided to visually record the flow of a simple, single phase, Newtonian liquid 
through transparent moulds to build confidence in the front tracking and wetting models 
used in the computations. Details of the geometries, experimental conditions, and properties 
of the materials used in each test will be given in the following sections. 

3.1 Geometries 

For these tests, we built transparent acrylic moulds identical to the three mesh geometries 
(Figure 2). The strength of the acrylic material making up the transparent moulds dictated 
that we inject at a lower injection pressure and lower operating temperature than the actual 
injection loading process. To mimic the actual injection process, we used a pressure driven 
syringe held at a constant pressure of 29.95 ± 0.10 psig during injection. The syringe of liquid 
was degassed in a vacuum chamber prior to the experiment. The syringe was modified to 
prevent leakage around the plunger and subsequent bubble formation.  However, this 
resulted in more friction and a flow rate that varied somewhat from experiment to 
experiment.  Hence, the time to fill the moulds varied from test to test, but was determined 
and recorded for each test. Reported below is the median and spread of the measured filling 
time for four repeated experiments in each geometry.  

The tests were conducted at a room temperature that ranged from 23 to 24oC.  To minimize 
the effect of temperature on the viscosity, the liquid was held in a water bath set to 23.5oC 
after degassing and before being used in an experiment. These conditions resulted in an 
injection rate that was approximately ten times slower than the actual process.  However, 
the  Reynolds number for the actual process and the validation experiments were similar 
and in the Stokes regime of much smaller than one. For an average fill time of 20 s, a cavity 
volume of 1.87 cm3, and characteristic length scale from the inflow port of 0.5cm, the 
Reynolds number was 0.0006 and the capillary number was 4.5. 

3.2 Materials and properties 

We chose a liquid, UCON 75-H-90,000 (oxyethylene/oxypropylenes from Dow Chemical) as 
our model fluid. This UCON was chosen since its viscosity is an order of magnitude lower 
than the ceramic paste at processing conditions. Combined with an order of magnitude 
decrease in the injection rate compared to the real system, this gives a similar Reynolds 
number. The liquid surface tension and wetting properties of the UCON lubricant were 
determined at 23.5°C. The viscosity of the lubricant was measured with a Rheologica™ 
constant stress rheometer and was equal to 390 Poise over a shear rate ranging from 0.1 to 10 
sec-1, indicating Newtonian rheological behaviour. The density of the liquid was measured 
with a densitometer to be 1.09 g/cm3. The surface tension measured with a Du Noüy ring 

(mean circumference of 5.935 cm) was 42.40.1 dyne/cm.  

The dynamic contact angle on acrylic was measured with a feed-through goniometer 
[Mondy et al., 2007], in which liquid can be continuously injected to achieve “high” 
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velocities, or the sessile drop can be allowed to relax to obtain “low” velocities. Figure 4 
shows a schematic of the experimental apparatus and the results of this wetting test.  During 
each experiment, the angle of contact and the location of the triple point of contact was 
recorded.  The wetting line speed was then determined from the location of the triple point 
with time. The data fit to the Blake model (equation 9) gives a wetting constant vo of 

0.00130cm/s and scale factor  of  2.29 with a static contact angle θ of 37.3°.    

 

Fig. 4. Sketch of apparatus for wetting parameter measurements (left). Dynamic wetting 
measurements of contact angle vs. velocity for 75-H-90000 UCON on acrylic (right). 

3.3 Flow tests 

Figures 5 through 7 are representative frames from the video recordings of the fill process 
using a vertical alignment of the mould as in the proposed ceramic injection process.  The time 
it took to completely fill the original geometry, Mesh 1, (defined by the time when the liquid 
began to exit along the entire length of the vent) was 24.6 ± 1.2 s, to fill the geometry of Mesh 2 
was 26.9 ± 2.0 s, and to fill the geometry of Mesh 3 was 24.6 ± 2.3 s. Because the fill rates varied, 
the time is shown in these figures in a nondimensional form.  The initial time is taken to be 
when the front passes a line in the square entry channel 0.16 cm from the entrance of the 
distributor. Here, one can see the effects of changing the distributor geometry. In Figure 5 the 
liquid has just filled the distributor.  All of the modified geometries help flatten the leading 
front, especially Mesh 2.  Mesh 2 fills the distributor with the fastest relative time.   

 
Mesh 1 
Time/total time=0.32 

Mesh 2 
Time/total time=0.13 

Mesh 3 
Time/total time=0.24 

Fig. 5. Comparison of the effect of distributor geometry on the shape of the fluid front 
entering the mould for vertical mould orientation.    
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Figure 6 shows the times at which the leading front hits the wall opposite the injection port.   

In this case, the front in Mesh 2 takes the longest relative time to reach this stage.  The other 

geometries once again follow the same pattern as before, with Mesh 2 giving the flattest 

flow profile and the original mesh the displaying the most curvature of the interface. At this 

point, the fluid has wetted more of the side walls with the Mesh 2 geometry and the front is 

flatter. Because Mesh 2 has a flatter profile, it takes the longest time to reach the top wall 

compared to Mesh 1 and Mesh 3. 

 

 
 Mesh 1 
 Time/total time=0.80 

  Mesh 2 
  Time/total time=0.86 

Mesh 3 
Time/total time=0.82 

Fig. 6. Comparison of the effect of distributor geometry on the time it takes to reach the wall 

farthest from the injection port for vertical mould orientation. 

Figure 7 shows the locations of the voids remaining in the mould once filled but without 

any over pressure (a relative time of 1).  Small bubbles away from the corners are artefacts of 

the syringe loading process. The voids in geometries with redesigned distributors remain in 

the same locations as those seen in the original geometry. The relative areas of the bubbles 

on the images, which reflect the volume of air trapped, were determined and compared 

quantitatively in Table 1.  One pixel resolution represents about 1×10-5 cm2.  All redesigned 

distributors result in smaller bubbles in the upper corners than those in the original mesh.  

The lower bubbles of Mesh 2 are also smaller, whereas those in Mesh 3 are approximately 

the same as those in the original geometry.  

 

 
Mesh 1   Mesh 2      Mesh 3 

Fig. 7. Voids remain in the front upper and lower corners of each geometry for the vertical 

mould orientation. Each frame consists of two views of the mould (top view and side view). 

These voids can be seen more easily from the side view. 
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Geometry 
Area Upper Corners  

(cm2) 
Area Lower Corners  

(cm2) 

Original 0.0153 ± 0.0012 0.0020 ± 0.0005 

Mesh 2 0.0086 ± 0.0007 0.0012 ± 0.0002 

Mesh 3 0.0128 ± 0.0005 0.0021 ± 0.0001 
 

Table 1. Bubble sizes remaining in the corners for vertical mould orientation. 

Next, we experimented with the orientation of the mould.  Moulds were turned so that 

the distributor was perpendicular to gravity on the lower surface and the vent was moved 

to be on the upper surface. In other words, the flow direction and gravity are now 

perpendicular, with gravity acting in the thinnest cavity direction. Results for the original 

mesh showed that orientation with respect to gravity had a large impact on the likelihood 

of voids remaining in the corners of the mould.  Figure 8 shows representative video 

frames at three stages of the fill: 1) when the distributor was completely filled, 2) when the 

front hit the far wall, and 3) when the liquid began to exit through the vent and the sides 

had completely wetted. Because the fill rates varied, the time is shown in a 

nondimensional form.  The time it took to completely fill the original geometry in the 

horizontal position was 23.3 ± 0.9 s, to fill the geometry of Mesh 2 was 28.9 ± 1.5 s, and to 

fill the geometry of Mesh 3 was 27.3 ± 1.8 s. 

The top views of the horizontal orientation show that the liquid wets the top later than the 

bottom.  The oval area of the middle image in Figure 8 indicates where the liquid has wetted 

the upper surface. The side views are more difficult to interpret because of the lighting 

challenges accompanying trying to see through the thickest section of the mould. However, 

the dark areas of the side view are where the liquid has wetted the sides.  

It is interesting to note that the horizontal alignment causes the front to hit the far wall 

before even wetting the sides at all. In other words, the front was less “flat” entering the 

mould from the distributor. Nevertheless, the results also show that the horizontal 

orientation, with the vent on top and the distributor entrance on bottom, resulted in 

bubbles only in the upper corners nearest the distributor.  When oriented vertically, 

bubbles are trapped in corners both opposite the distributor and opposite the vent.  The 

bubbles nearest the distributor with the horizontal orientation are approximately the same 

size as the bubbles trapped in the upper corners opposite the vent in the vertical 

orientation.  

The effect of distributor geometry on the filling in the horizontal orientation is shown in 

Figure 9 and Figure 10, which correspond to Figure 5 and Figure 6 in the vertical 

orientation. Again, the geometry of Mesh 2 results in the flattest front entering the mould 

from the distributor (Figure 9). The front reaches the back wall at approximately the same 

time using the distributors of Mesh 2 and 3. By the time the front reaches the back wall both 

modified geometries result in more liquid filling the mould than with the original geometry; 

however, Mesh 2 results in somewhat more than Mesh 3 (Figure 10).  
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Fig. 8. Original geometry (Mesh 1) oriented horizontally (A) and vertically (B).  Images on 

the left show when the distributor fills completely, middle images show when the front first 

hits the back wall, and images on the right show when the part is filled to the point that the 

fluid leaves the vent area through the entire length of the vent. Bubbles left in the corners 

are circled in red. 

 
 
 

Mesh 1
Time/total time=0.26

Mesh 2
Time/total time=0.13

Mesh 3
Time/total time=0.22  

 

Fig. 9. Comparison of the effect of distributor geometry on the shape of the fluid front 
entering the mould in a horizontal orientation. The flow direction and gravity are 
perpendicular, with gravity acting in the thinnest cavity direction. 

A 

Time/total time=0.26  Time/total time=0.82 Time/total time=1.0 

B 

Time/total time=0.33 Time/total time=1.0 Time/total time=0.81 
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 Mesh 1 
 Time/total time=0.82 

Mesh 2 
Time/total time=0.71 

Mesh 3 
Time/total time=0.70 

Fig. 10. Comparison of the effect of distributor geometry on the time it takes to reach the 
wall farthest from the injection port in a horizontal orientation. 

Sizes of the bubbles left in the various geometries in the horizontal orientation are listed in 
Table 2. Comparing these values with the measurements in Table 1, one can see that the 
amount of gas left in the vertical orientation is roughly the same as that in the horizontal 
orientation, although in the horizontal orientation there are fewer bubbles. Bubbles observed 
in other locations than the corners are almost always artefacts of the syringe loading process.  

 

Geometry  Area (cm2) 

Original 0.0189 ± 0.0002 

Mesh 2 0.0111 ± 0.0002 

Mesh 3 0.0123 ± 0.0017 

Table 2. Bubble sizes remaining in horizontal orientation. 

4. Simulations 

The simulations runs were made on 64 processors of Thunderbird (Sandia National 
Laboratories capacity computing platform) and ran in less than 3.5 hours. This allowed us to 
do real time design and sensitivity calculations for parameters such as wetting speed, 
second phase viscosity, level set length scale and inflow pressure. Properties for the liquid 
used for the validation simulations were the measured values discussed in the experimental 
section above. The density and viscosity of the displaced gas phase were taken as fictitious 
values of one thousand times smaller than the liquid phase density and viscosity. These 
values are summarized in Table 3.  

  

Material Property Value 

Density of liquid 1.09 g/cm3 

Viscosity of liquid 390 Poise 

Density of gas 0.0011 g/cm3 

Viscosity of gas 0.39 Poise 

Wetting speed, vo 0.0013 cm/s 

Blake scale factor,  2.29 

Static contact angle 37.3o 

Surface tension 42.4 dyne/cm 

Inflow pressure 1.0x106 dyne/cm2 

Table 3. Material properties used for validation simulations. 
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At 25oC, the viscosity of air is 2.0x10-4 Poise and the density of air is 0.0012 g/cm3, thus our 

second phase properties are very close for density, but three orders of magnitude too high 

for viscosity. The numerical method fails to converge for values of the liquid/gas viscosity 

ratio of more than 1000 for a diffuse interface implementation of the level set equations, so 

this is a necessary expedient requiring us to adhere to this fictitious viscosity value. 

For the inflow condition, we used a constant inflow pressure of 1.0x106 dyne/cm2. This 

value was chosen to match the horizontal fill time of 23 seconds in the original mesh and 

then used for all other meshes and geometries. A shooting method was used, where 

different values of the inflow pressure were used and the solution was examined to see if it 

filled in the correct time. This required many simulations to be run. It is believed that the 

actual boundary condition for the experiments is somewhere between a constant velocity 

and constant pressure condition, but this is hard to replicate numerically. From the 

simulations, we found that the velocity changed quickly in the beginning for the pressure 

inflow boundary condition and subsequently reached a steady value. 

The initial 3D mesh and boundary conditions are given Figure 11 for the mould filling 

simulations. We assume symmetry about the centreline and only solve half the problem to 

improve the computational efficiency. The mesh contains 6744 8-Node hexahedral elements 

giving 41300 total degrees of freedom for bilinear velocity/bilinear pressure interpolation. 

This mesh was shown to be adequate, as a more refined version of this mesh gave the same 

fill times and meniscus shapes [Rao et al., 2006]. 

 

�Extra slides

Flow In

Centerline Symmetry

No penetration / no slip, except 

near contact region
Outflow occurs at edges of 

mold chamber

Z

Y
X

Z

Y
X

 

Fig. 11. Initial mesh and boundary conditions for 3D level set simulations. The outflow vent 
is on the same side as the distributor for vertical simulations and opposite the distributor for 
horizontal simulations. 
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The time to fill the mould for the vertical orientation for Mesh 1, Mesh 2, and Mesh 3 are 

15.2s, 17.5s, and 13.2s, which was much faster than the experimental values of 24.6s, 26.9s, 

and 24.6s. We defined our fill time as when the vent had filled completely to a distance of 

the half the level-set length-scale or two elements. Unfortunately, the numerical fill times are 

difficult to obtain accurately as the gas phase viscosity makes a large difference in how fast a 

simulation will fill for the same value of pressure. For instance, when we reduced the 

second phase viscosity by a factor of 10 we got an increase in the inflow velocity when 

keeping all other parameters constant. Thus, the fact that the gas phase is harder to push out 

than it is for the experiments, adds a great deal of uncertainty to the fill times. However, we 

hope to be able to predict trends. Figure 12 shows the effect of the distributor geometry on 

the meniscus shape for Mesh 1, Mesh 2, and Mesh 3 in a vertical orientation. 

Mesh 1

Time/total time = 0.42
Mesh 2

Time/total time = 0.18
Mesh 3

Time/total time = 0.24

Mesh 1

Time/total time = 0.42
Mesh 2

Time/total time = 0.18

Mesh 1

Time/total time = 0.42

Mesh 1

Time/total time = 0.42
Mesh 2

Time/total time = 0.18

Mesh 2

Time/total time = 0.18
Mesh 3

Time/total time = 0.24

Mesh 3

Time/total time = 0.24
 

Fig. 12. Free surface profile after filling the distributor for Mesh 1, Mesh 2, and Mesh 3 for 
vertical mould orientation. 

Comparing Figure 12 and Figure 5, the numerical and experimental version of this profile, 

we can see that the simulations are exhibiting the physically correct trends. The original 

mesh takes the longest fractional time to fill the distributor, 42%, and gives the most bulging 

front shape. Mesh 2 is an improvement, taking 18% of the time to fill the distributor, while 

Mesh 3 is somewhere in between at 24%. The values for the experimental distributor 

dimensionless fill times are 32%, 13%, and 24%, so the simulations are also capturing the 

correct trends for fill time though they are not quantitative. The shape of the meniscus for 

Mesh 1 has more of a bulge at the edge of the distributor than the experimental meniscus, 

which looks as if the front is pinned at the distributor. 

We can also look at the profiles and dimensionless time to hit the back wall. These results 

are given in Figure 13. 

www.intechopen.com



 
Numerical Modelling 

 

18

 
Mesh 1 
Time/total time = .60 

Mesh 2 
Time/total time = 0.70 

Mesh 3 
Time/total time = 0.55 

Fig. 13. Free surface profile after hitting the back wall for Mesh 1, Mesh 2, and Mesh 3 for 
vertical mould orientation. 

Comparing Figure 13 to Figure 6, for the simulation versus experiment, we can see 
differences in the meniscus shape. The numerical interface reaches the back wall for Mesh 1 
and Mesh 3, before it wets the sidewall and Mesh 2 has a flatter profile in the experiments 
than the simulations. The percentage time to reach the back wall for the simulations on 
Mesh 1, Mesh 2, and Mesh 3 are 60%, 70%, and 55% compared to 80%, 86% and 82% for the 
experiments. Again, we capture the correct trends, but are still unable to match the data 
quantitatively. Figure 14 shows the full meniscus shape and void locations for the 
simulations on Mesh 1, Mesh 2, and Mesh 3. 

 
Mesh 1 
Time/total time = 1.0 

Mesh 2 
Time/total time = 1.0 

Mesh 3 
Time/total time = 1.0 

Fig. 14. Final void location and front profile for Mesh 1, Mesh 2, and Mesh 3. 

www.intechopen.com



 
3D Numerical Modelling of Mould Filling of a Coat Hanger Distributer and Rectangular Cavity 

 

19 

The void in the corner near the distributor does eventually fill in, since its size is less than the 
level-set length scale and we are using a diffuse interface method. The larger void at the vent 
never fills in as the viscous gas phase is trapped away from the vent by the fluid. For the 
numerical solutions it is hard to make any predictions about void size, though we can say that 
for similar values of the dimensionless time the voids for Mesh 2 will be smaller than Mesh 1, 
with Mesh 3 being somewhere in between, which does follow the experimental trend. 

We also examined the horizontal orientation numerically, which gave fill times for Mesh 1, 
Mesh 2, and Mesh 3 of 21.4s, 23.1s, and 22.2s compared to 23.3s, 28.9s, and 27.3s for the 
experiments. Again, we follow the trends of the experiment, but do not match 
quantitatively. Mesh 2 seems to take a longer time to fill for the experiment than one would 
predict numerically. Figure 15 shows a comparison of the profiles for Mesh 1 in a vertical 
and horizontal orientation. 

 
Mesh1 
Time/total time = .29 

Mesh 1 
Time/total time = .41 

Mesh 1 
Time/total time = 1.0 

 
Mesh 1 
Time/total time = 0.42 

Mesh 1 
Time/total time = 0.60 

Mesh 1 
Time/total time = 1.0 

Fig. 15. Mesh 1 oriented horizontally (A) and vertically (B). Leftmost pictures show profiles 
when the distributor is filled, middle shows profile when the fluid hits the back wall, and 
rightmost pictures show final profile. Both front and side views are given to highlight void 
location. 

A 

B 
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Comparing Figure 15 to the experimental equivalent, Figure 8, we can see that we have 

quantitative differences but do match some trends. The numerical meniscus shape leaving 

the distributor looks similar to the experimental profile as it bulges more in the centre for 

the horizontal orientation, though the simulation is less dramatic. The numerical profiles 

when the fluid first hits the back wall are flatter for the vertical orientation than the 

horizontal, though the vertical should be even flatter to match the data. The numerical 

solutions predict two voids for each orientation, though the experiments do not show a 

second void for the horizontal orientation near the vent. However, this void may just be 

difficult to see experimentally. Conversely, the horizontal void at the outflow may be an 

artefact of the numerical method as we have a difficult balance at the outflow between 

wetting forces, gravity, the gas phase viscosity, and the material flowing out the vent. Also, 

our numerical vent is not identical to the experimental one and exhibits a slightly different 

area and shape. 

Figure 16 shows the meniscus profiles for Mesh 1, Mesh 2, and Mesh 3 after filling the 

distributor for the horizontal orientation. 

 
 
 
 

 
 

Mesh 1 
Time/total time = .29 

Mesh 2 
Time/total time = .15 

Mesh 3 
Time/total time = .21 

 

 

Fig. 16. Free surface profile after filling the distributor for Mesh 1, Mesh 2, and Mesh 3 for 
horizontal mould orientation. 
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Comparing Figure 16 and Figure 9, the numerical and experimental version of this profile, 

we can see that the simulations are again exhibiting the correct trends of the physical 

situation. Mesh 1 shows the most pooling at the centre of the mould, Mesh 2 has a flatter 

profile as does Mesh 3. The experiments predict filling times for Mesh 3 to be in between 

Mesh 1 and Mesh 2, and the simulations follow this trend. The dimensionless times to fill 

the distributor numerically for Mesh 1, Mesh 2, and Mesh 3 are 29%, 15%, and 21% 

compared to 26%, 13% and 22% for the experiments. In general, the simulations predict the 

vertical filling to be faster overall than the horizontal by several seconds for each of the 

geometries, whereas the experiments are faster in the vertical for Mesh 2 and 3, but slower 

for Mesh 1. This could have resulted from some experimental errors or from the uncertainty 

in injection rates and flow profiles from the experiments to the simulations. 

Figure 17 shows the free surface profile as the fluid hits the back wall for Mesh 1, Mesh 2, 

and Mesh 3 in the horizontal orientation. The dimensionless times it takes to hit the back 

wall for Mesh 1, Mesh 2, and Mesh 3 are 41%, 55%, and 52% compared to values of 82%, 

71%, and 70% for the experiments seen in Figure 10. 

 
 
 
 

 
 
 

Mesh 1 
Time/total time = .41 

Mesh 2 
Time/total time = .55 

Mesh 3 
Time/total time = .52 

 
 

Fig. 17. Free surface profile after hitting the back wall for Mesh 1, Mesh 2, and Mesh 3 for 
horizontal mould orientation. 
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For the simulations, Mesh 1 hits the back wall for the smallest dimensionless time while 

Mesh 2 and Mesh 3 take about the same time. For the experiments, Mesh 1 takes the longest 

time, while Mesh 2 and Mesh 3 do take about the same time. Thus for this case, we are 

capturing one trend, but not the differences between Mesh 1 and Mesh 2. 

Table 4 summarizes the fill times to reach the distributor, back wall, and complete mould 

for the simulations and experiments for vertical and horizontal orientations on all three 

meshes.  

 
 
 
 

Mesh Orientation 

Expt. 

Time -

Full 

Expt. % 

Time -

Dist 

Expt. % 

Time -

Wall 

Sim. 

Time-

Full 

Sim. % 

Time -

Dist 

Sim. % 

Time -

Wall 

1 Vertical 24.6s 32% 80% 15.2s 42% 60% 

2 Vertical 26.9s 13% 86% 17.5s 18% 70% 

3 Vertical 24.6s 24% 82% 13.2s 24% 55% 

1 Horizontal 23.3s 26% 82% 21.4s 29% 41% 

2 Horizontal 28.9s 13% 71% 23.1s 15% 55% 

3 Horizontal 27.3s 22% 71% 15.6s 21% 52% 
 

 
 

Table 4. Summary of fill times for experiment and simulations to reach the distributor, the 
wall and completely full. 

From Table 4 we can see that we capture some of the correct trends, especially for the 

vertical orientation, though some features elude us like the time to fill to the back wall for 

Mesh 1 in the horizontal orientation. Sources of uncertainty in the simulations include: 1) 

Lack of clarity of inflow conditions from the experiment to the simulation, since it is 

somewhere in between constant pressure and constant velocity, 2) Possible poor 

performance of the Blake wetting model at moderate capillary number and large dynamic 

contact angles,  3) Possible poor performance of the wetting model at wetting speed higher 

than experiments used to populate the model. Sources of error in the simulations include: 

1) Numerically expedient of high gas phase viscosity, 2) Lack of compressibility for the 

gas dynamics, 3) The use of a diffuse interface model that smears out material property 

jumps, allowing viscous bleed through of the liquid phase into the gas phase. For future 

work, we will try to reduce these uncertainties and errors by using some of the advanced 

features in ARIA, which should be available soon, to allow for smaller values of the gas 

phase viscosity, such as sharp integration and a compressible gas phase. The optimal 

choice of wetting model for moderate to high capillary numbers continues to be an 

ongoing focus of our research. 
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5. Conclusion 

A diffuse interface finite element/level-set algorithm has been used to investigate filling 

behaviour for injection loading using a Blake wetting model. The modelling has been 

successful in matching experimental data qualitatively, but quantitative agreement is still 

lacking especially for the wetting dynamics and meniscus shape. For future work, we will 

investigate an advanced version of the level set method termed the conformal 

decomposition finite element method (CDFEM). CDFEM is a hybrid moving boundary 

algorithm, which uses a level set field to determine the location of the fluid-fluid interface 

and then dynamically adds mesh on the interface to facilitate the resolution of 

discontinuous material properties and fields, as well as the application of boundary 

conditions such as capillarity. This is a sharp interface method, where it is possible to 

apply jumps in material properties, material models, and field variables [Noble et al, 

2010]. We believe this algorithm, which should be available soon, will lead to better 

agreement with experiments and should allow for straightforward inclusion of a 

compressible gas phase. 
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