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1. Introduction 

It is well understood that the limitations of hydrological measurement techniques warrants for 
modeling of hydrological processes in a basin. However, most hydrologic systems are 
extremely complex and modeling them with the available limited measurements is a difficult 
task. The basic purpose of a model is to simulate and predict the operation of the system that is 
unduly complex, and also to predict the effect of changes on this operation. It is well known, of 
various hydrological processes, the rainfall-runoff process is the most complex hydrologic 
phenomenon to comprehend due to tremendous spatial and temporal variability of basin 
characteristics and rainfall patterns, as well as a number of other variables associated in 
modeling the physical processes (Tokar and Markus, 2000). The transformation from rainfall to 
basin runoff involves many hydrologic components that are believed to be highly nonlinear, 
time varying, spatially distributed, and not easily described by simple models. The artificial 
neural network (ANN) and Fuzzy Inference System (FIS) approaches are becoming 
increasingly popular in the context rainfall-runoff modeling due to their various advantages. 
This Chapter discusses an effective integration of these two models in a different manner. 

It is a common belief that the ANN (and FIS models to an extent) models of the rainfall 
runoff process are purely black models as they do not explain the process being modeled, 
but for a few recent studies (Wilby et al., 2003; Jain et al., 2004; Sudheer, 2005). However, it 
must be realized that the hydro-meteorological data that are employed in developing 
rainfall runoff models (ANN, FIS or conceptual) contain important information about the 
physical process being modeled, and this information gets embedded or captured inside the 
model. For instance, a flow hydrograph, which is normally used as the output variable in an 
ANN rainfall runoff model, consists of various components that result from different 
physical processes in a watershed.  

For example, the rising limb of a runoff hydrograph is the result of the gradual release of 
water from various storage elements of a watershed due to gradual repletion of the storage 
due to the rainfall input. The rising limb of the hydrograph is influenced by varying 
infiltration capacities, watershed storage characteristics, and the nature of the input i.e. 
intensity and duration of the rainfall, and not so much by the climatic factors such as 
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temperature and evapotranspiration etc. (Zhang and Govindaraju, 2000). On the other hand, 
the falling limb of a watershed is the result of the gradual release of water from various 
storages of the watershed after the rainfall input has stopped, and is influenced more by the 
storage characteristics of the watershed and climatic characteristics to some extent. Further, 
the falling limb of a flow hydrograph can be divided into three parts: initial portion just 
after the peak, middle portion, and the final portion. The initial portion of the falling limb of 
a flow hydrograph is influenced more by the quick-flow (or interflow), the middle portion 
of the falling limb is more dominated by the delayed surface flow, and the final portion of 
the falling limb (of smaller magnitudes) is dominated by the base flow. Hence it is apparent 
that a local approximation technique, which maps the changing dynamics using different 
functions, would be an effective way to model the rainfall runoff process. Local 
approximation refers to the concept of breaking up the domain into several small 
neighbourhood regions and analysing these separately. This argument is supported by the 
results of Sudheer (2005), wherein he proposes a procedure to extract knowledge from 
trained ANN river flow models. 

Farmer and Sidorowitch (1987) have found that chaotic time series prediction using local 

approximation techniques is several orders of magnitude better. In their approach, the time 

series is first embedded in a state space using delay coordinates, and the underlying nonlinear 

mapping is inferred by a local approximation using only nearby states. This approach can be 

easily extended to higher order local polynomial approximations. Singer et al. (1992) derived 

the local approximation as a state dependant autoregressive modelling. However, this 

becomes complex with large data sets as the inefficient computation of nearby state search 

makes the implementation much harder. In order to overcome this limitation we proposed to 

simplify the signal representation (input) with a vector clustering procedure. That is, the local 

model fitting is based on statistically averaged prototypes instead of the original state vector 

samples. Also, the nearby state search can be significantly simplified with all prototypes 

organized according to a certain metric such as pattern similarity.  

Most of the applications of local approximation technique (e.g. FIS) employ linear 

relationship as an effective local approximation. However, the rainfall runoff process being 

highly nonlinear, a nonlinear local approximation would be a better approach. The objective 

of this Chapter is to illustrate that a nonlinear local approximation approach in modelling 

the rainfall-runoff process may offer better accuracy in the context of river flow forecasting. 

More specifically, the chapter discusses about subdividing the data into subspaces and 

evaluates the limitations of linear and nonlinear local approximations. The proposed 

approach is illustrated through a real world case study on two river basins. Both the 

applications are developed for river flow forecasting, one on a daily time step and the other 

on an hourly time step.  

2. Theoretical considerations of local approximation 

Consider modeling a river flow time series such that tx( , )ty f  , where it is required to 

forecast the value of flow (yt) and xt is the input vector to the model at time t. Generally, the 

modeler uses a set of n ‘candidate’ examples of the form (xi, yi), i=1,2,…,n, and finds an 

optimal set of parameter vector (  ) by calibrating an appropriate model. The inputs to the 

model typically are the previous values of the time series and the output will be the forecast 

www.intechopen.com



 
Fuzzy Nonlinear Function Approximation (FNLLA) Model for River Flow Forecasting 

 

111 

value. The model is normally trained and tested on training and testing sets extracted from 

the historical time series. In addition to previous time series values, one can utilize the 

values or forecasts of other time series (or external variables) that have a correlation or 

causal relationship with the series to be forecasted as inputs. For a river flow forecasting 

problem, such exogenous time series could be the rainfall or evaporation over the basin. 

Each additional input unit in a model adds another dimension to the space in which the 

data cases reside, thereby making the function to be mapped more complex. The model 

attempts to fit a response surface to these data.  

For many applications in data driven modeling (regression, classification etc.) an estimate of 

expected response (output) is desired at or close to one fixed predictor (input) vector. This 

estimate should depend heavily on predictor vectors in the sample which are close to the 

given fixed predictor vector. The predictive relationship between the current state xt and the 

next value of the time series can then be expressed as: 

 0( ) ( ( ))Ty t T f x t   (1) 

where T is the prediction time horizon. The problem of one step ahead (T=1) predictive 

modeling is to find the mapping 0 1: N
Tf R to R . In local approximation, a local predictor is 

constructed based on the nearby neighbors of xt, that is, fitting a polynomial to the pairs 

(x(ti), y(ti+T)) with x(ti) being the nearest neighbors of x(t) for ti<t. The original signal can 

also be viewed as an evolution of the state x(t) of a dynamical system in RN. The signal 

history (input samples) compose the map from state space of dimension N to a scalar space, 

the parameters of the mapping can be estimated by interpolating f(x) from noisy signal 

samples. The local modeling is superior and simpler under the condition that the given 

dynamics is locally smooth and a long enough signal history is available (Singer et al., 1992). 

Under this condition, f(x) can be approximated by the first few terms of multi dimensional 

Taylor series expansion, resulting in, 

 f(x) = aTx + b (2) 

Based on the fuzzy modeling approach originally developed by Takagi and Sugeno (1985), 

the global operation of a nonlinear process is divided into several local operating regions. 

Within each local region, Ri, a reduced order linear model is used to represent the processes 

behavior. Fuzzy sets are used to define the process operating conditions such that the 

dynamic model of a nonlinear p`rocess can be described in the following way: 

Ri: IF operating condition i 

 THEN 
1 1

( ) ( ) ( )
no ni

ij iji
j j

y t a y t j b u t j
 

      (i=1, 2, 3, …, nr) (3) 

The final model output is obtained by firing strength  

  
1 1

( ) [ ( )]/( )
nr nr

i ii
i i

y t y t 
 

    (4) 
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where y is the process output, y  is the model prediction, u is the process exogenous input, 


i
y  is the prediction of the processes output in the ith operating region, nr is the number of 

fuzzy operating regions, ni and no are the time lags in the input and the output respectively, 

i  is the membership function for the ith model, aij and bij are the local linear parameters, 

and t represents the discrete time. 

Operating regions of a process can be defined by one or several process variables. A number 
of fuzzy sets, such as ‘low, medium and high’ are defined for each of these process variables. 
An operating condition is constructed through logical combinations of these variables which 
are used to define the process operating regions and assigned the fuzzy sets: ‘low, medium 
and high’.  

 

Fig. 1. Takagi-Sugeno fuzzy model computational procedure 

The graphical representation for computational procedure for TS fuzzy model is presented 

for sine curve (Fig 1). From the figure it can be observed that if MFs can be developed for a 

given data set, then using the membership grade of each predictor variable, local linear 

models can be developed and their parameters can be estimated. The overlapping of 

different MFs and different local fuzzy regions are graphically presented in Fig 2. From the 

figure it is seen that different local linear models are developed from different fuzzy regions 

and fuzzy reasoning is applied to estimate the model output. Fuzzy regions are represented 

with different membership grade used in the fuzzy-if- then rules which is the crux of fuzzy 

modeling approach. Therefore, classification of different local regions in an input/output 

data set is very important in fuzzy modeling approach and fuzzy clustering technique is 

widely used for such purposes. In the clustering approach, classification is carried out using 

different distance measures. The degree of similarity can be calculated by using a suitable 

distance measure. Based on the similarity, data vectors are clustered such that the data 

within a cluster are as similar as possible, and data from different clusters are as dissimilar 

as possible. 

Fig 3 gives an example of two clusters in 2 with prototypes v1 and v2. The partitioning of 

the data is expressed in the fuzzy partition matrix U = [µij] whose elements are the   
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Fig. 2. Fuzzy local liner model developments 

 

Fig. 3. Identification of membership functions through fuzzy clustering. 

membership degrees of the data vectors xk in the fuzzy clusters with prototypes vj. The 

antecedent membership functions are then extracted by projecting the clusters onto the 

individual variables. The performance of models of this kind depends heavily on the 

definition of neighboring state space. Euclidian distance is the most commonly employed 
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measure of closeness to find out the neighboring state space. However, it is not usually an 

appropriate measure of closeness due to the curse of dimensionality. For instance, consider 

that the predictor distribution is uniform on a ball of radius unity in D dimensional space. 

For an expected response at or close to origin of the ball, it would be reasonable to use only 

sample vectors inside a ball of radius  < 1, assuming Euclidean distance as a measure of 

closeness. But, since the probability of a sample vector lying in the smaller ball is D , it is 

necessary that sample sizes are exponential in D to get enough close vectors for accurate 

estimation. To avoid this curse, we might assume that fi(x) has a ridge approximation (i 

corresponds to the fuzzy region), 

 x
1

( ) ( )
l

T
i n n

n

f c g a x


  (5) 

in which gn is a transformation function of the linear combiner of x; Ta , nc are the 

parameters of the ridge function; l is the number of sub domains. Also note that the linear 

local approximation is valid under the condition that the dynamics of f(x) is locally smooth. 

However, equation 5 typically accounts for the nonlinear local dynamics of f(x). A close 

examination of equation 5 reveals that the ridge function is an ANN with single hidden 

layer having l nodes, and a linear transfer function on the output layer. 

Hence it is apparent that if the state space is classified into sub-domains, and each of these 

domains is modeled independently by a neural network approach, which when combined 

together, the resulting model may provide a better global modeling of the nonlinear 

dynamics in the state space. It appears that this heuristic has not been addressed or 

confirmed by empirical trials. The present study illustrates this heuristic by comparing the 

performance of models developed using the proposed approach, local linear approximation 

and a global nonlinear approach. 

3. Methodology  

In general, the above discussed nonlinear local model fitting is composed of two steps: a set 

of nearby state searches over the signal history and model parameter fitting. For a given 

signal, this procedure results in a set of local model parameters which when combined 

together provide a single function over the entire space. Since the neighborhood search is 

performed over the whole signal history a lot of redundant computation results which in 

turn hinders effective implementation of this approach. These redundant computations can 

be avoided by classifying the state spaces into homogenous subspaces by means of an 

appropriate vector clustering technique.  

4. Clustering for classification 

The objective of cluster analysis is the classification of objects according to similarities 

among them, and organizing of data into groups. Clustering techniques are among the 

unsupervised methods, they do not use prior class identifiers. The main potential of 

clustering is to detect the underlying structure in data, not only for classification and pattern 
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recognition, but for model reduction and optimization. Various definitions of a cluster can 

be formulated, depending on the objective of clustering. Generally, one may accept the view 

that a cluster is a group of objects that are more similar to one another than to members of 

other clusters. The term "similarity" should be understood as mathematical similarity, 

measured in some well-defined sense. In metric spaces, similarity is often defined by means 

of a distance norm. Distance can be measured among the data vectors themselves, or as a 

distance from a data vector to some prototypical object of the cluster. 

Since clusters can formally be seen as subsets of the data set, one possible classification of 

clustering methods can be according to whether the subsets are fuzzy or crisp (hard). Hard 

clustering methods are based on classical set theory, and require that an object either does or 

does not belong to a cluster. Hard clustering in a data set X means partitioning the data into 

a specified number of mutually exclusive subsets of X. The number of subsets (clusters) is 

denoted by c. Fuzzy clustering methods allow objects to belong to several clusters 

simultaneously, with different degrees of membership. The data set X is thus partitioned 

into c fuzzy subsets. In many real situations, fuzzy clustering is more natural than hard 

clustering, as objects on the boundaries between several classes are not forced to fully 

belong to one of the classes, but rather are assigned membership degrees between 0 and 1 

indicating their partial memberships. Fuzzy clustering can be used to obtain a partitioning 

the data where the transitions between the subsets are gradual rather than abrupt. Most 

analytical fuzzy clustering algorithm is fuzzy c-means (FCM) clustering. The FCM 

clustering algorithm is based on the minimization of an objective function called C-means 

functional. In the current study subtractive clustering algorithm is used for classification. 

Subtractive clustering method (Chiu, 1994) is an extension of the FCM and mountain 

clustering method (Yager and Filev, 1994), where the potential is calculated for the data 

rather than the grid points defined on the data space. As a result, clusters are elected from 

the system training data according to their potential. Subtractive clustering compared to 

mountain clustering has an advantage that there is no need to estimate a resolution for the 

grid.  

5. Fuzzy non linear local approximation model 

As discussed earlier a novel hybrid model is proposed herein which performs independent 

nonlinear local approximation, and combines each of them using the fuzzy framework. The 

architecture of the proposed model is presented in Fig 4. The method is based on the 

concept that the input space is divided into sub regions of similar dynamics using an 

appropriate clustering algorithm (subtractive clustering algorithm in this study), and 

modeling of each of these regions is carried out using nonlinear local function 

approximation (ANN in this study). The proposed model is termed as Fuzzy Non Linear 

Local Approximation (FNLLA) model, which is based on fuzzy concept and neural 

technique is applied for nonlinear local function approximation.  

In Fig 4, the gating is done to identify the membership grade associated with any given 

input vector for each of the clusters. This input vector will be passed to each of the 

developed ANN, and the output from each ANN is combined by computing the weighted 

mean with the membership grade in each cluster.  
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Fig. 4. Schematic representation of the proposed FNLLA model 

 

Fig. 5. Computational architecture of the proposed FNLLA model 

The architecture of FNLLA is depicted in Fig 5, in which the fuzzy computing scheme is 
represented in an adaptive neural network structure. The consequent part of each of the 
fuzzy rule is a nonlinear function (ANN in this case). The computations are performed in 4 
layers in FNLLA. In the layer 1, (L1), the incoming input vector (x) is passed to different sub 
regions (C1, C2 and C3) and the associated MFs are computed as: 
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 j ix x
2

j e
  

  (6) 

in which xi is the ith input vector, x is the cluster centre and j the sub-region number, and   

is a function of the cluster radius. In layer 2 (L2), the weights of the hidden nodes of the 

ANN consequent models are estimated, and the output from each ANN consequent model 

is arrived at layer 3 (L3). At layer 4 (L4), each of these consequent outputs are combined to 

arrive at the final output. 

6. Demonstrative case examples 

The proposed model is illustrated through two examples by developing rainfall-runoff 
models: (a) for Kolar basin up to the Satrana gauging site in India, (b) the Kentucky basin, 
USA. The Kolar River is a tributary of the river Narmada that drains an area of about 1350 
sq km before its confluence with Narmada near Neelkanth. In the present study the 
catchment area up to the Satrana gauging site is considered, which constitutes an area of 
903.87 sq km (Fig 6). The 75.3 km long river course lies between north latitude 21009’ to 
23017’ and east longitude 77001’ to 77029’. For the study, rainfall and runoff data on an 
hourly interval during the monsoon season (July, August, and September) for three years 
(1987–1989) are used. The rainfall data available were in the form of areal average values in 
the basin. The total available data has been divided into two sets, calibration set (data 
during the years 1987–1988) and validation set (data during the year 1989). Different models 
for lead times of up to 6 hours have been developed in the study.  

 

Fig. 6. Map of Kolar River basin, India 
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Fig. 7. Study area map of Kentucky River basin in USA 

The Kentucky River basin covers over 4.4 million acres of the state of Kentucky. Forty 

separate counties lie either completely or partially within the boundaries of the river basin. 

The Kentucky River is the sole water source for several water supply companies of the state. 

There is a series of fourteen locks and dams on the Kentucky River, which are owned and 

operated by the US Army Corps of Engineers. The drainage area of the Kentucky River at 

Lock and Dam 10 (LD10) near Winchester, Kentucky is approximately 6,300 km2 (Fig 7). 

The data used in the study presented in this paper include average daily streamflow (m3/s) 

from the Kentucky River at LD10, and daily average rainfall (mm) from five rain gauges 

(Manchester, Hyden, Jackson, Heidelberg, and Lexington Airport) scattered throughout the 

Kentucky River Basin. The total length of the available rainfall runoff data was 26 years 

(1960-1989 with data in some years missing).  

The input vector identified, according to Sudheer et al. (2002) for modeling the river flow in 

Kolar, included a total number of 4 variables. Accordingly, the functional form of the model, 

in the case of Kolar, for rainfall runoff modeling is given by: 

 ( ) [ ( 9), ( 8), ( 7), ( 1)]Q t f R t R t R t Q t      (7) 

where Q(t) and R(t) are river flow and rainfall respectively at any time t in hour.  

The functional form for rainfall-runoff dynamic for Kentucky River basin is given by: 

 ( ) [ ( ), ( 1), ( 2), ( 2), ( 1)]Q t f R t R t R t Q t Q t      (8) 
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Different statistical indices that are employed to estimate the model performance include 

coefficient of correlation (CORR), efficiency (EFF), root mean square error (RMSE) and noise 

to signal ration (NS). 

7. Results and discussions 

7.1 Parameter Estimation in FNLLA 

The optimal number of clusters in FNLLA has been obtained by varying cluster radius in 

the subtractive clustering algorithm, combined with the ANN model development. Different 

ANN models are developed for different clusters of input space changing hidden neuron 

from 2 to 10. Single hidden layer with sigmoid function nodes is used in the ANN. The 

sigmoid activation function is considered in the output layer also. A standard back 

propagation algorithm with adaptive learning rate and momentum factor has been 

employed to estimate the network parameters for different clusters. In order to have a true 

evaluation of the proposed nonlinear local approximation in fuzzy models, the result 

obtained for both the basins from FNLLA was compared with FIS, which performs a linear 

local approximation. In FIS model, subtractive clustering has been used for fuzzy model 

identification which includes optimal number of if-then-rule generation and consequent 

parameters are optimized using least square error (LSE) technique.  

 

Kolar River basin Kentucky River basin 

Cluster Radius 
Number of 

clusters 
Cluster Radius Number of clusters 

0.050 - 0.060 7 0.0010 - 0.0080 4 

0.061 - 0.074 6 0.0081 - 0.0100 3 

0.075 - 0.079 5 0.0110 - 0.2000 2 

0.080 - 0.100 4 0.2100 - 1.0000 1 

0.110 - 0.200  3  

0.210 - 0.300 2 

0.030 - 1.000 1 

Table 1. Partition of input space for Kolar and Kentucky basin 

In the analysis, the radius of influence (ra) of the cluster centre is fixed by various trials, 

which is the foremost interest for the current study. The value of ra is varied from 0.001 to 

1.0 with a step size of 0.01; at each stage number of clusters is estimated. From the current 

data set 1 to 7 clusters are found while changing the cluster radius from 0.05 to 1 for Kolar 

river basin and maximum 4 clusters are observed by changing radius from 0.001 to 1 for 

Kentucky basin. The number of clusters identified corresponding to various radiuses for 

both the basins are presented in Table 1. It is evident from Table 1 that as the cluster radius 

increases, the number of cluster decreases. Different ANN models are developed for data 

belonging to different clusters (effectively representing different ranges of flow), and as 

discussed earlier hidden neurons are by trial and error procedure. The stopping criteria for 

ANN model building was maximum efficiency. 
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Fig. 8. Variation of Efficiency Plot for three clusters with respect to hidden neurons 

It was observed that model performance was good when input space is classified into 3 

clusters for both the basins. The efficiency plots with respect to different hidden neurons for 

3 ranges of flows are presented in Fig.8 for Kolar basin. From the Fig 8 it is observed that the 

maximum efficiency is for the models having hidden neurons are 4, 4 and 8 for individual 

clusters for Kolar River basin. Similar procedure has been followed for optimization of 

model parameter for Kentucky River basin. The optimum hidden neuron obtained 3, 3 and 3 

for Kentucky basin. The identified optimal clustering radius with number of if-then rules for 

Kolar and Kentucky basin are furnished in Table 2. 

 

Model Kolar River basin Kentucky River basin 

FIS 0.20 [3 rules] 0.008 [4 rules] 

FNLLA 0.12 [3 ranges/rules] 0.010 [3 ranges/rules] 

Table 2. Optimal model structure for three sub-domains for Kolar and Kentucky basin 

The summary statistics of the flow data belonging to each of the identified clusters are 
presented in Table 3. It is clear from Table 3 that the clustering based on the input vector 
clearly identifies distinct clusters that have different nonlinear dynamics. This is evident 
from overlapping clusters; the cluster C1 contain flow range from 4.67 m3/s to 240.55 m3/s, 
and the cluster C2 contain flow range from 3.63 m3/s to 240.24 m3/s, in the case of Kentucky 
river basin data. A similar observation is found in the case of Kolar basin data too. It is 
worth mentioning that the consequent ANN models for each of these clusters preserve the 
summary statistics much effectively in both basins (see Table 3). Also, it is evident that the 
classification of the data into different clusters is according to the range of flow, though not 
exclusively forced by the FNLLA. 
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Statistic 
C1 C2 C3 

Observed Computed Observed Computed Observed Computed  

Kentucky River Basin 

Mean 13.45 13.19 32.25 32.13 239.16 239.08 

Standard Deviation 13.08 12.05 25.83 20.79 281.21 272.51 

Minimum 3.63 4.67 9.61 15.09 15.99 31.55 

Maximum 240.24 240.55 297.43 266.96 2553.90 2293.20 

Kolar River Basin 

Mean 4.09 4.07 12.47 12.43 142.73 138.69 

Standard Deviation 1.94 1.74 4.55 4.27 308.65 290.72 

Minimum 1.62 1.58 6.83 7.04 0.88 19.26 

Maximum 29.03 28.86 125.57 124.84 2427.70 2062.40 

Table 3. Summary statistics of the river flow in the identified sub-domain by FNLLA Model 

Lead time 1-hour 3-hour 6-hour 

Cluster C1 C2 C3 C1 C2 C3 C1 C2 C3 

Calibration 

Correlation 0.82 0.98 0.91 0.64 0.90 0.82 0.94 0.77 0.91 

Efficiency (%) 66.91 95.40 83.33 39.21 79.58 67.56 24.49 53.18 53.35 

RMSE 2.62 66.18 0.79 5.88 139.41 1.92 11.03 210.71 3.43 

Noise to Signal Ratio 0.58 0.21 0.41 0.78 0.45 0.57 0.39 0.69 0.41 

Validation 

Correlation 0.93 0.98 0.45 0.63 0.87 0.48 0.91 0.75 0.74 

Efficiency (%) 87.08 95.28 81.82 37.41 74.55 64.24 30.15 52.98 55.06 

RMSE (m3/s) 1.43 53.97 1.50 4.03 125.44 2.43 9.45 170.65 3.15 

Noise to Signal Ratio 0.36 0.22 0.96 0.79 0.51 0.93 0.49 0.69 0.43 

Table 4. Cluster wise FNLLA performance for Kolar Basin 

The results of the FNLLA were first analyzed for its effectiveness in capturing the nonlinear 
dynamics at local level. In order to achieve this, the performance indices were computed for 
each sub-domain for Kolar basin for the calibration and the validation period, and are 
presented in the Table 4. Note that in the study the FNLLA model classified 1975, 1782 and 
593 patterns as low, medium and high flow respectively using the subtractive clustering 
algorithm. It is evident from the Table 4 that the nonlinear consequent models of the FNLLA 
are effective in capturing the nonlinear dynamics in each sub regions.  

7.2 Performance of FNLLA at 1 step-ahead forecast 

The values of various evaluation measures during calibration and validation period for 
FNLLA and FIS for both the basins for 1-hour lead forecast are summarized in the Table 5, 
from which it can be observed that both the models possess high value of correlation (0.96 
and more) between the forecasted and the observed river flow at 1-hour ahead. The high 
value for the efficiency index indicates a very satisfactory model performance in capturing 
the nonlinear dynamics involved in the rainfall-runoff processes. Note that the FNLLA 
performs with higher efficiency in the case of Kolar basin compared to the FIS model. The 
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value of RMSE varies from 24 m3/sec to 42 m3/sec for Kolar basin indicating a very good 
performance by both the model; the RMSE values are relatively less in Kentucky basin for 
FNLLA model. It is also noted that the NS ratio for the FNLLA model is less than that 
corresponding to the FIS model. 

 

Statistical Indices FNLLA FIS 

Calibration Validation Calibration Validation 

Kolar River Basin

Correlation 0.98 0.99 0.98 0.98 

Efficiency  95.84 96.72 95.91 96.61 

RMSE (m3/s) 42.39 23.29 42.06 24.31 

Noise to Signal ratio 0.20 0.11 0.34 0.12 

Kentucky River Basin

Correlation 0.98 0.97 0.96 0.96 

Efficiency  95.68 93.87 92.17 91.68 

RMSE (m3/s) 50.12 51.87 67.45 60.41 

Noise to Signal ratio 0.21 0.25 0.28 0.29 

Table 5. Statistical Indices for 1-hour and 1- day lead forecast for Kolar and Kentucky basin 

The scatter plots of flows for 1-hour lead forecast validation period for both the models are 

presented in Fig 9 for Kolar basin (Fig 10 for Kentucky basin for 1 day lead). These plots give 

clear indication of the simulation ability of the developed model across the full range of 

flows. It is noted that most of the flows tend to fall close to the 450 line (reduced scattering), 

showing a good agreement between observed and forecasted flows. From the plot it is 

observed that both the models are quite competent in forecasting river flow at 1 hour/day 

lead time. In general it is noted that the mapping of the low flow region is relatively better 

compared to high flow region. 
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Fig. 9. Scatter plots for observed and computed flows by both models at 1 hour lead time for 
Kolar basin (a) FIS (b) FNLLA  
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Fig. 10. Scatter plots for observed and computed flows (a) FIS (b) FNLLA model for 1 day 
lead forecast for Kentucky basin 
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Fig. 11. Comparison plot between FIS and FNLLA model for a typical storm event for (a) 
Kolar basin (b) Kentucky basin 

The forecasted hydrograph for a typical flood event (during validation period) for both the 

basins by both the models are presented along with its observed counterpart in Fig 11. It can 

be observed from Fig 11 that FNLLA is preserving the peak flows effectively than the FIS for 
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1 hour/day lead forecast for Kolar and Kentucky basin, while in low and medium ranges of 

flow the performance of both models is similar. This observation effectively brings out the 

capturing of nonlinear dynamics at the local regions of the input space. 

7.3 Performance of FNLLA at higher lead time forecasts 

Both the models are further evaluated for their effectiveness to forecast flows at higher lead 

times. The statistical indices for higher lead forecasting are presented in Table 6 for both the 

basins. The superior performance of the FNLLA compared to FIS is clearly visible at higher 

lead times from the results presented in Table 6. It is observed that even though the 

performance of FNLLA deteriorates as the lead time increases, it falls down to only 79.15% 

efficiency at 6 hours ahead, while FIS shows only 51.00% efficiency at the same lead time. A 

similar behavior is exhibited by FNLLA in the case of Kentucky basin also, as the efficiency 

is 77.23% at 3 days ahead compared to 46.92% in the case of FIS. A similar argument holds 

well in the case of other performance indices too. 

 

 FNLLA FIS 

Kolar River Basin 

Forecast Lead time 1 hour 3 hour 6 hour 1 hour 3 hour 6 hour 

Calibration 

Efficiency (%) 95.84 81.52 79.15 95.91 57.79 51.00 

RMSE (m3/s) 42.39 89.40 94.95 42.06 135.11 145.70 

Noise to Signal ratio 0.20 0.43 0.923 0.34 0.65 1.95 

Validation 

Efficiency (%) 96.72 79.95 77.73 96.61 50.54 46.92 

RMSE (m3/s) 23.29 60.45 62.37 24.31 92.12 96.48 

Noise to Signal ratio 0.11 0.35 0.39 0.12 0.77 0.83 

Kentucky River Basin 

Forecast Lead time 1 day 2 day 3 day 1 day 2 day 3 day 

Calibration 

Efficiency (%) 95.68 84.21 64.88 92.17 73.58 52.50 

RMSE (m3/s) 50.12 95.82 142.9 67.45 123.93 166.20 

Noise to Signal ratio 0.21 0.40 0.59 0.28 0.51 0.69 

Validation 

Efficiency (%) 93.87 78.68 58.66 91.68 73.14 50.56 

RMSE (m3/s) 51.87 96.68 134.63 60.41 108.53 147.24 

Noise to Signal ratio 0.25 0.46 0.64 0.29 0.52 0.70 

Table 6. Performance indices for FIS and FNLLA model at higher forecast lead times 

8. Summary and conclusions 

The objective of this chapter was to present and illustrate a nonlinear local approximation 
approach in modelling the rainfall-runoff process which offers better accuracy in the context 
of river flow forecasting. Based on the theoretical considerations of the fuzzy modelling in 
the state space (input-output), it is clear that if the state space is classified into sub-domains 
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and each of these domains is modeled independently by a neural network approach which 
are combined together, it may provide a better global modeling of the nonlinear dynamics 
in the state space. In general, the proposed nonlinear local model fitting is composed of two 
steps: a set of nearby state searches over the signal history and model parameter fitting. For 
a given signal, this procedure results in a set of local model parameters which when 
combined together provide a single function over the entire space. Since the neighborhood 
search is performed over the whole signal history, a lot of redundant computations result 
which in turn hinders effective implementation of this approach. These redundant 
computations can be avoided by classifying the state spaces into homogenous subspaces by 
means of an appropriate vector clustering technique. The proposed model is termed as 
Fuzzy Non Linear Local Approximation (FNLLA) model, which is based on fuzzy concept 
and neural technique is applied for nonlinear local function approximation. The partition of 
the state space is achieved by subtractive clustering algorithm and nonlinear local function 
approximation is by ANN in the proposed method. The antecedent parameters of the model 
are simultaneously estimated during clustering, and the standard back propagation 
algorithm is employed for ANN parameter estimation. 

The potential of FNLLA is illustrated using two case examples: (i) data pertaining to Kolar 
River basin, and (ii) data corresponding to Kentucky River basin. The optimal architecture 
of the FNLLA model, which is defined by the number of sub-regions in the data and the 
structure of each ANN, is arrived after a trial and error procedure. When the performance of 
the FNLLA is compared with that of a pure FIS, it is observed that the FNLLA certainly 
possesses the advantages of nonlinear mapping. Though both the models perform similar at 
1 step-ahead forecasts, the FNLLA performs much better than FIS at higher lead times. 
Overall, the results of the study confirm the heuristic that a nonlinear local approximation is 
a better approach in fuzzy modeling especially when complex nonlinear functions are being 
mapped.  
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