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1. Introduction 

Pollution and management of the environment are serious problems which concern the 

entire planet; the main responsibility should be attributed to human activities that 

contribute significantly to damage the environment, leading to an imbalance of natural 

ecosystems. In recent years, numerous studies focused on the three environmental 

compartments: soil, water and air. The pollution of groundwater is a widespread problem. 

The causes of pollution are often linked to human activities, including waste disposal. 

Solid waste management has become an important environmental issue in industrialized 

countries. The most serious problems are related to solid waste disposal. Landfill is still the 

most used disposal technique but not the safest. In fact, a breakdown of containment 

elements could easily occur even in controlled landfills. This breakdown could cause 

contamination of aquifer that is environmental pollution. Such contamination can be 

mitigated by performing remediation and environmental restoration. The assessment of 

environmental pollution risk can be performed with different degrees of detail and 

precision. 

Various statistical and mathematical models can be used for a qualitative risk assessment. 

The planning of a program for environmental remediation and restoration can be supported 

by expeditious methodologies that allow us to obtain a hierarchical classification of 

contaminated sites. The literature offers some expeditious and qualitative methods 

including fuzzy logic (Zadeh, 1965), neural networks and neuro-fuzzy networks, which are 

more objective methods. The three artificial intelligence systems differ among themselves in 

some respects: fuzzy inference system learns knowledge of data only through the fuzzy 

rules; neural network is able to learn knowledge of data using the weights of synaptic 

connections; neuro-fuzzy systems are able to learn knowledge of neural data with neural 

paradigm and represent it in the form of fuzzy rules. 

Fuzzy logic was founded in 1965 by Zadeh. The first applications date back to the nineties. 
They were mainly used to control industrial processes, household electrical appliances and 
means of transport. Later, this approach was used in several fields including the 
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environment. In fact, it could be used for assessing environmental risk related to 
contamination of groundwater. The fuzzy approach is advantageous because it allows us a 
quick assessment of the risk, but is disadvantageous because of the increasing  complexity in 
the definition of fuzzy rules along with the increasing of the number of parameters. In many 
situations, when the number of parameters are considered high in the analysis, application 
of these techniques is cumbersome and complex and could be used for neuro-fuzzy models. 
These models reduce the complexity because they use  training data. The neuro-fuzzy model 
was supported by a sensitivity analysis in order to address the problem of subjectivity and 
uncertainty of model input data. 

1.1 Fuzzy logic 

Fuzzy logic is a binary logic, which is inspired by Buddhist philosophy, which considers the 

world as something continuous. The  fuzzy logic theory derives from the Persian-American 

engineer, Lotfi Zadeh, who theorized it in 1965 in an article entitled "Information and 

Control”. In traditional logic, Aristotelian principles of non-contradiction and the excluded 

middle are valid. The principle of non-contradiction states that if X is a generic set and x a 

generic element, then x may belong to the whole X or not. The fuzzy systems deal with data 

and their manipulation with greater flexibility than traditional systems. The binary logic (or 

classical) is only concerned with what is completely true and, as a result, with what is 

completely false. Fuzzy logic instead extends its interest even to what is not completely true, 

what is probable or uncertain. The fuzzy logic is based on a linguistic approach, in which 

words or phrases of natural language are used instead of numbers. This approach simplifies 

complex situations and concepts which may use the traditional logic. In particular, the fuzzy 

logic operates on mathematical entities that are fuzzy sets. Fuzzy sets obey rules, structures 

and axioms which are very similar to those of classical sets; the difference is that an object 

can simultaneously belong to several subsets, in contrast to the classical theory. In the fuzzy  

world, membership to a subset is associated to a degree of membership. The set of 

deduction rules to be applied to a given system to achieve results through the use of fuzzy 

logic is defined the fuzzy inference process. Main phases of the fuzzy approach (Fig. 1) are 

the following: definition of membership functions, fuzzification, inference and fuzzy output.  

Definition of membership functions is the main step on which all the other subsequent 

operations are based. Such functions, representing the fuzzy sets, can take different shapes 

(trapezoidal, triangular, Gaussian, etc.) according to the situations, and by convention can 

take values included between 0 and 1. 

The fuzzification is the process by which input variables are converted to fuzzy measures 

belonging to certain classes such as Very Low, Low, Medium, High, Very High. This 

operation normalizes all the data in the interval [0-1]. In this way, comparisons between 

different amounts, measured in different scales are also possible. 

The inference is the phase in which rules of combination of fuzzy sets are applied and it is 

possible to deduce a result. The rules are linguistic expressions that are translated into a 

mathematical formalism with the exspression "if ... then" of the logic itself. 

The output is a fuzzy membership value that can be used "pure" as a qualitative property or 

"defuzzificated", as a real number compatible with non-fuzzy approaches (Silvert, 2000). 
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"Defuzzification” can be done using different methods, the most widely used one is the 
center of gravity, which calculates the center of gravity of the final fuzzy set and returns the 
value of abscissa. 

 

Fig. 1. Flow chart of the developed Fuzzy Inference System. 

1.1.1 Fuzzification  

Fuzzification is a procedure through which the input variables are turned into fuzzy 

measures of their membership to given classes. Such a conversion from deterministic sizes 

to fuzzy sizes is performed through the membership functions pre-set for those classes. A 

membership function (Fig.2) is a function which associates a value (usually numerical) with 

the level of  membership to the set. By convention, the real number which represents the 

level of membership [µ (x)] takes a 0 value when the element does not belong to the set, and 

1 when it belongs to it completely. 

 

Fig. 2. Membership function. 
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Membership functions can be of several types: the simplest are made up of straight lines, 
while the most used are the triangular (Fig. 3)  and trapezoidal (Fig. 4) functions; the former 
are characterized by a triangular trend while the latter by a trapezoidal one. The advantage 
of these functions is in their simplicity. The triangular  membership function depends on 
three scalar parameters a, b and c and is given by the following expression: 
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while the trapezoidal one depends on four scalar parameters (a, b, c and d), as shown in the 
following formula: 
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Fig. 3. Triangular membership function. 

 

 

Fig. 4. Trapezoidal membership function. 

There are other more complex functions, i.e. the Gauss function made up of a simple 
Gaussian curve (Fig. 5) which depends on parameters r and c (Eq. (3)); and the Gauss2 
function (Fig. 6) given by the fusion of two different Gaussian functions and depending on 
four parameters: r1 and c1, which define the shape of the function in the left part, and r2 e c2, 
which define the shape of the function in the right part. Moreover, between these types of 
functions, there is the bell membership function (Gbell) (Fig. 7) which is a hybrid of the 
Gaussian function; it is mainly used to manage non-fuzzy sets and depends on three 
parameters: a, b and c (Eq. (4)) 
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Fig. 5. Gauss membership function. 

 

Fig. 6. Gauss2 membership function. 

 

Fig. 7. Generalized bell (Gbell) membership function. 

Despite their simplicity, such functions cannot be used to represent asymmetry, which is 
important in some applications. 

In order to face a possible asymmetry, we can use another type of function, such as the 
sigmoid function (Fig. 8), which may have left or right asymmetry and a horizontal 
asymptote. This function is ruled by parameters a and c (Eq. (5))
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In addition to this function, we have further asymmetric functions, the Dsigm and Psigm 
membership functions represented in Fig. 9 and10 and described by Eq. (6), depending on 
four parameters  a1, c1, a2 and c2.  
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Fig. 8. Sigmoidale (Sig) membership function. 

 

Fig. 9. Dsig membership function. 

 

Fig. 10. Psig membership function. 

Three more membership functions correlated with them are functions Z (Eq. (7)), S and Pi. 
The first one is an asymmetric function  open to the left, the second is open to the right, 
while the third one is asymmetric but closed at both ends (Fig. 11-13). 

 

Fig. 11. Z membership function. 
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Fig. 12. Pi membership function. 

 

Fig. 13. S membership function. 

1.1.2 Fuzzy inference 

After the definition of the fuzzy data which comes from the fuzzification process, it is 

necessary to insert in the decisional engine the rules which supply the fuzzy output. The 

rules are usually made up of an if–then–else structure, which in its turn is made up of an 

antecedent which defines the conditions, and a consequent which defines the action. For 

each input variable of the model, in the antecedent we have a clause of the type (x is L) 

where L is a linguistic label revealing a fuzzy set. In this way, the antecedent supplies a 

characterization of the condition of the system we want to model, namely its description in 

quantitative terms. Usually the antecedent includes a conjunction of clauses, one for each 

observed variable, while the condition of the consequent determines the condition of 

outputs. 

In conclusion, a fuzzy system can be considered as a non-linear function which transforms a 

certain number of input variables into output ones through a set of fuzzy rules. In the 

application of rules, some of them often lead to the same consequence with different levels 

of strength: in these cases the common custom is choosing the highest value. Following this 

phase, which is defined fuzzy inference, it is necessary to turn the data coming from the 

evaluation of rules into real numerical data: this process is the opposite of input 

fuzzification, in fact it is called either output fuzzification or defuzzification. 

1.1.3 Defuzzification  

Defuzzification consists in drawing the output deterministic value from the fuzzy model. A 

careful analysis of the problem is at the basis of a correct defuzzification: it can be linguistic, 

when the output is a predicate to which a level of membership is associated, or numerical, of 

‘‘crisp” type (non-fuzzy) (used in fuzzy control). Many criteria of defuzzification exist: often in 

engineering the choice depends on computational simplicity. The most used defuzzification 

methods are the following: 
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 Centroid method: the chosen numerical value for the output is calculated as the centre 
of mass of the fuzzy set. 

 Bisector method: the output is the abscissa of the bisector of the area subtended to the 
fuzzy data set.  

 Middle of maximum method: the output value is determined as the average of 
maximum values (Mom: middle of maximum). 

 Largest of maximum method: the output numerical value is calculated as the maximum 
of the maximum (Lom: Largest of maximum). 

 Smallest of maximum method: the output value is represented by the output minimum 
value (Som: Smallest of maximum). 

Among the methods found in literature, the most common are the centroid and maximum 
methods. 

In the middle of the maximum method, output is obtained as the arithmetic mean of the 
values of “y” where fuzzy set  height is maximum.  

B' is the fuzzy set inferred by rules and   

 ' '
'
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y B
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is the set value of “y” for which height “µB'(y)” is maximum. 

Therefore, it has  
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whose geometric significance is shown in Figure 14: 

 

Fig. 14. Geometric significance of the Middle of maximum defuzzification method. 

The output of the Centroid method is obtained as the abscissa of the center of gravity inferred 
from the rules in the space of fuzzy sets of algorithm output. The formula in the case of 
continuous function is: 
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Whereas, the formula for discrete function is: 
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In Largest of maximum, the precise value of the variable output  is one of which the fuzzy 
subset has the maximum truth value. The main disadvantage of this method is that it does 
not consider the distribution of membership function. 

However, the smallest of maximum method obtained the minimum value in fuzzy set as 
output. 

2. Fuzzy neural network 

The fuzzy neural network essentially fills the gaps in the fuzzy systems as well as other 

neurals. The fuzzy inference requires heuristics and does not acquire knowledge from input-

output relationships as do neural networks. The advantage of a fuzzy neural network 

compared to a neural structure is that it can be represented by "linguistic rules". The nodes 

that form a neuro-fuzzy network have weights which do not  commonly occur in a system 

based on a neural network. The network training is done using back-propagation 

algorithms. The Anfis models (Zimmermann 1991) acquire knowledge from data using 

algorithms typical of neural networks. This is represented using fuzzy rules. Substantially, 

neural networks are structured on different levels, starting from the input and output 

related systems which generate fuzzy rules that guide the process of construction output. As 

in fuzzy logic, the end result is linked to the fuzzy rules and membership functions. The 

membership functions can be of various types. The simplest consists of straight lines, while 

the most used functions are triangular and trapezoidal. There are more complex functions 

such as the Gauss function which consists of a simple Gaussian curve and function Gauss2 

formed by the merger of two different Gaussian functions. In addition, among the functions 

of this kind, there is a bell membership function (Gbell) which is a hybrid of Gaussian 

function, and is used primarily to manage non-fuzzy sets. In order to meet any asymmetry, 

other functions can be used, such as Dsigm, Psigm and Pi. 

The scientific literature has various applications of fuzzy neural network from the classical  

management of Humanoid Robots that will replace humans in dangerous jobs in the 

medical field or in the field of services (Dusko Katic et al., 2003). The fuzzy neural network 

was also used in the study of time series of solar activity (Abdel-Fattah Attia et al., 2005), in 

the assessment of noise in the workplace (Zaheeruddin Garima, 2006) and many others. 

2.1 Architecture of a neuro-fuzzy network 

The proposed forecasting model for assessing the environmental risk of contamination of 
aquifers is based on an Adaptive Neural Network Fuzzy Inference System (ANFIS) 
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(Zimmermann 1991; Jang. 1993). ANFIS algorithm allowed us to calibrate membership 
functions of the fuzzy inference training the Artificial Neural Network. In order to perform 
the training, the definition of a matrix of input parameters, a single output value and the 
number of times (numbers interpolating the training matrix) was necessary. 

However, ANFIS models acquire knowledge from data using the typical neural networks 
algorithms but represent it using fuzzy rules. 

TThese kind of neural networks are basically structured on five different levels which 
autonomously generate systems of fuzzy rules that guide the process of construction of the 
outputs, starting from related inputs and outputs. 

Each node of the first level integrates the membership function associated with the 
represented fuzzy term. Variables Xi are the linguistic variables that are associated with 
terms  placed in the nodes (A11 = Low, A21 = High  etc.). 

 

Fig. 15. Architecture of a neuro-fuzzy network. 

Nodes of the second level incorporate the antecedents of fuzzy rules. Within these nodes, 
only an AND logical operation between the active inputs is performed. 

In the third level, each node calculates the degree of fulfillment of each rule and returns a 
weighted term which enters as input in the corresponding node of the next level. 

The nodes of this layer incorporate the resulting rules instead. Each node accepts the 
corresponding weight that comes from the previous level in input, in addition to all the 
input variables to the first level. 

The fifth and last node simply performs the sum of all inputs and returns the final output of 
the system. 

3 Case study 

3.1 Fuzzy and neuro-fuzzy models for groundwater pollution risk assessment 

This study proposes two methods for environmental risk assessment: fuzzy logic and fuzzy-

neural networks. Fuzzy and neuro-fuzzy models have been used to assess environmental 

risk in landfills, by using  groundwater intrinsic vulnerability of landfill hazard (Fig. 17). 
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Groundwater intrinsic vulnerability has been assessed by a method of zoning for 

homogeneous areas:  the GNDCI-CNR method (M. Civita, 1990). However, landfills hazard 

has been determined through the use of fuzzy logic and neuro-fuzzy parameters (input 

data) by considering morphological, hydrological and environmental parameters for each 

site, such as: water table depth, leachate production, volume and type of waste, landfill 

coverage, landfill activity and proximity to river. Some of these were obtained using GIS 

applications. 

SENSITIVITY 

ANALYSIS

LANDFILL HAZARD
GROUNDWATER 

VULNERABILITY

FUZZY 

LOGIC/NEURO-

FUZZY SYSTEM 

GROUNDWATER 

POLLUTION RISK
 

Fig. 16. Fuzzy and neuro-fuzzy models for the groundwater pollution risk. 

For the simple management algorithm, the parameters previously indicated were used to 
define three different fuzzy inferences, as shown in the conceptual scheme in Figure 17. The 
results obtained through the first two fuzzy inferences, defined as site vulnerability and 
landfill potentiality respectively, were then aggregated to the crisp parameter called landfill 
conditions, by obtaining the hazard index of each landfill. 

As shown in Figure 17, site vulnerability, defined through acclivity, depth to water table and 

watercourse proximity, allowed us to obtain the site's predisposition to suffer from 

contamination, namely the site's propensity to be contaminated because of a possible leachate 

seepage. The increase in vulnerability is favoured by low slopes, proximity to surface 

watercourses (meant as index, so the higher the index the higher the site vulnerability) and 

reduced depth of the water table. Thus, the values of the three parameters are low when the 

trend to undergo contamination is high. On the contrary, the landfill potential evaluates the 

potential of a landfill to release contaminants by virtue of the waste volume and the leachate 

production. Therefore, with the increase of these two factors such potential will increase. 

The procedure to determine the landfill hazard index combines the results obtained by the 

two previous fuzzy diagrams with the addition of the landfill conditions. The array of 

required training algorithm has been constructed, considering that the increase in values of the 

three parameters in the subset result in an increase in the hazard of landfills. The end result of 

the neuro-fuzzy process has been achieved through the training data which provided a 

numerical value between 0 and 1 representing the hazard index. In addition to training data 

that facilitates the definition of fuzzy rules, it is necessary to determine for each of the three 

fuzzy inferences the following: the type of membership function and the classes (very high, 

high, medium, low, very low). In conclusion, the results relating to site vulnerability, the 

landfill potential and the landfill hazard have been obtained. 
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Among the three output values for each landfill, our attention was mostly focused on the 
landfill hazard.  

 

Fig. 17. Conceptual diagram of the implemented fuzzy model. 

In addition, to address the risk of subjectivity and to overcome the problem of uncertainty, 

linked to input data and to the developed models, sensitivity analysis has been used, 

through which different fuzzy and  neuro -fuzzy schemes  have been compared. The various 

fuzzy schemes differ in the type of membership functions and defuzzification methods. 

Then, each fuzzy scheme  is characterized by “if-then” fuzzy rules, membership functions 

and defuzzification method. The fuzzy rules have been defined considering that 

groundwater pollution risk rises with the increase of groundwater intrinsic vulnerability 

and landfill hazard. 

However, the neuro-fuzzy schemes differ only in the type of membership functions, while 

the fuzzy rules are automatically generated by the algorithm using the assigned training 

matrix. The results obtained from the simulations of both models were compared with  

input data to identify the best fuzzy and neuro-fuzzy scheme.  

The proposed algorithms have been applied to some uncontrolled landfills present in the 

Basilicata Region, detected through the 2002 census (“Corpo Forestale dello Stato [Forest 

Rangers]” and “Regional Reclamation Plan”), which identified 469 areas needing 

reclamation actions, environmental recovery and/or safety measures: 315 in the province of 

Potenza and 204 in the province of Matera. Among these areas, 290 are illegal landfills (Fig. 

18): 122 in the province of Matera and 168 in the province of Potenza. 

The comparison of each fuzzy and neuro-fuzzy scheme has been performed by applying 

statistical tests to the distributions of output data (environmental risk index). The results 

show that the best scheme for the fuzzy model is characterized by Gauss2 membership 

functions and Centroid defuzzification method, and the best scheme of neuro-fuzzy model 

is marked by Gauss membership function. The final results show the environmental risk 

index and have been recalculated for a classification of groundwater pollution risk in 

linguistic terms by using a cumulative frequency distribution curve (Fig. 19 and 20). 
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Fig. 18. Location of the uncontrolled landfills in the Basilicata Region. 
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Fig. 19. Cumulated frequency curve of groundwater pollution risk for neuro-fuzzy model. 
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Fig. 20. Cumulated frequency curve of groundwater pollution risk for fuzzy model. 

3.2 Comparison between environmental risk results obtained from the fuzzy and 
neuro-fuzzy models 

The two designed models applied to some aquifers in Basilicata region have provided 

different results. For this reason, we next performed a statistical comparison. Visual analysis of 

histograms representing the percentage of aquifers falling in different classes of risk (fuzzy 

and neuro-fuzzy models) shows that distributions give different classes of risk (Fig. 21). 
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Fig. 21. Distributions of aquifers in classes of risk for fuzzy and neuro-fuzzy models. 

We have evaluated the risk indices obtained from the two models for a more appropriate 
comparison. The assessment of the risk index without the subdivision into classes has 
demonstrated that the performance of the two distributions is very similar (Fig. 22) as 
confirmed by the box-plots (Fig. 23). 
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Fig. 22. Variation of the environmental risk index for each site. 
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Fig. 23. Box-plots of the distributions of output data for fuzzy and neuro-fuzzy models. 

R² = 0.780

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

Fig. 24. Scatter plot between the environmental risk index obtained from the fuzzy and 
neuro-fuzzy models.  

In fact, even the scatter plot (Fig. 24) shows a good correlation as evaluated by the coefficient 
of determination R2,which is the square of the correlation coefficient R = 0.8832. Moreover, 
similarity between results of the two models can also be inferred from the comparison 
between variances and standard distributions and F test (Table 1). 

 

 Environmental risk index       
(Fuzzy model) 

Environmental risk index          
(Neuro-fuzzy model) 

Standard deviation 0.136 0.133 

Variance 0.018 0.018 

F test 0.870 

Table 1. Statistical indices and test F results. 
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4. Conclusion 

The fuzzy and neuro-fuzzy approaches used for the realization of models of environmental 
risk assessment have been fast, effective and affordable methods and at the same time useful 
support for decisions. The neuro-fuzzy model is faster in the application because by using 
training data, it is able to generate the fuzzy rules, which are particularly complex and 
increases  along with the number of parameters assigned to the model. 

In addition, integration of sensitivity analysis in the two models is a positive element 
because it is able to mitigate the problems of subjectivity and arbitrariness of the evaluation 
based on fuzzy approaches commonly found in literature, in particular with regards to the 
choice of membership functions. The case study proposed, in fact, shows that by varying the 
choice of the membership functions very different results if not contradictory can be 
obtained.  

In conclusion, a model can be substituted with the exception of the neuro-fuzzy model that 
is rapidly applicable in case you have data available for training a neuro-fuzzy network. 

The fuzzy method is advantageous because it allows a rapid and efficient risk assessment 
and is an inexpensive and expeditious planning tool for a program of remediation. 
However, it is disadvantageous due to the complexity in the definition of fuzzy rules 
especially  when the number of parameters is high. In fact, in many situations when the 
number of parameters of the analysis is high, the application of these techniques is 
cumbersome and complex; in these cases, neuro-fuzzy models, that reduce the complexity of 
the models thanks to the training data,  could be used. Using the adaptive methods of fuzzy 
inference neural networks, you can easily manage fuzzy rules of the analysis and  reduce the 
artifices of fuzzy and neural models (Iyatomi et al., 2004). 

The use  of this kind of analysis with respect to neural models does not provide very 
different results, as assessed and analyzed even by Vieira et al. in 2004, but only a different  
training time influenced by the order of the model. 
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