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Predicting Corporate Forward 2 Month Earnings 

Michael F. Korns 
The Shang Grand Tower U17E, Makati, Manila,  

Philippines 

1. Introduction 

The discipline of Symbolic Regression (SR) has matured significantly in the last few years. 
There is at least one commercial package on the market for several years 
(http://www.rmltech.com/). There is now at least one well documented commercial 
symbolic regression package available for Mathematica (www.evolved-analytics.com). 
There is at least one very well done open source symbolic regression package available for 
free down load (http://ccsl.mae.cornell.edu/eureqa). 

In addition to our own ARC system [6], currently used internally for massive financial data 
nonlinear regressions, there are a number of other mature symbolic regression packages 
currently used in industry including [8] and [9]. Plus there is an interesting work in progress 
by McConaghy [10]. 

Nonlinear symbolic regression (SR) has not been widely applied to financial problems 
because of SR’s difficulties optimizing imbedded constants. Optimizing imbedded constants 
is often a critical requirement in many financial applications. However, recent integrations 
of swarm intelligence (SI) with symbolic regression support a level of maturity and 
sophistication making nonlinear regression and nonlinear CART available for real world 
financial applications. 

In this chapter we investigate the integration of two popular swarm intelligence algorithms 
(Bees, and Particle Swarm), and one popular evolutionary computation algorithm 
(Differential Evolution) with standard genetic programming symbolic regression to help 
optimize imbedded constants in a real world financial application: the prediction of forward 
12 month earnings per share. We make the observations: that standard genetic 
programming does not optimize imbedded constants well; that swarm intelligence 
algorithms are adept at optimizing constants; and that allowing imbedded constants in SR 
greatly increases the size of the search space.  

In the body of the chapter it is shown that the differences between the three popular 
constant managing algorithms is minimal for optimizing imbedded constants; yet without 
any swarm intelligence standard GP symbolic regression fails to optimize imbedded 
constants effectively. 

We proceed with a general introduction to symbolic regression and the size of the search space. 

Symbolic Regression is an approach to general nonlinear regression which is the subject of 
many scholarly articles in the Genetic Programming community. A broad generalization of 
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general nonlinear regression is embodied as the class of Generalized Linear Models (GLMs) as 
described in [11]. A GLM is a linear combination of I basis functions Bi; i = 1,2, … I, a 
dependent variable y, and an independent data point with M features x = <x1, x2, x3, …xm>: 
such that 

1 y = γ(x) = c0 +  
1

x
I

i i
i

c B

 + err 

As a broad generalization, GLMs can represent any possible nonlinear formula. However 
the format of the GLM makes it amenable to existing linear regression theory and tools since 
the GLM model is linear on each of the basis functions Bi. 

For a given vector of dependent variables, Y, and a vector of independent data points, X, 
symbolic regression will search for a set of basis functions and coefficients which minimize 
err. In [12] the basis functions selected by symbolic regression will be formulas as in the 
following examples: 

2 B1 = x3 
3 B2 = x1+x4 
4 B3 = sqrt(x2)/tan(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 

If we are minimizing the least squared error, LSE, once a suitable set of basis functions {B} 
have been selected, we can discover the proper set of coefficients {C} deterministically using 
standard univariate or multivariate regression. The value of the GLM model is that one can 
use standard regression techniques and theory. Viewing the problem in this fashion, we 
gain an important insight. Symbolic regression does not add anything to the standard 
techniques of regression. The value added by symbolic regression lies in its abilities as a 
search technique: how quickly and how accurately can SR find an optimal set of basis 
functions {B}. 

The immense size of the search space provides ample need for improved search techniques In 
standard Koza-style tree-based Genetic Programming [12] the genome and the individual are 
the same Lisp s-expression which is usually illustrated as a tree. Of course the tree-view of an 
s-expression is a visual aid, since a Lisp s-expression is normally a list which is a special Lisp 
data structure. Without altering or restricting standard tree-based GP in any way, we can view 
the individuals not as trees but instead as s-expressions such as this depth 2 binary tree s-exp: 
(/ (+ x2 3.45) (* x0 x2)), or this depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0). 

In standard GP, applied to symbolic regression, the non-terminal nodes are all operators 
(implemented as Lisp function calls), and the terminal nodes are always either real number 
constants or features. The maximum depth of a GP individual is limited by the available 
computational resources; but, it is standard practice to limit the maximum depth of a GP 
individual to some manageable limit at the start of a symbolic regression run. 

Given any selected maximum depth k, it is an easy process to construct a maximal binary 
tree s-expression Uk, which can be produced by the GP system without violating the 
selected maximum depth limit. As long as we are reminded that each f represents a function 
node while each t represents a terminal node, the construction algorithm is simple and 
recursive as follows. 
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U0: t 
U1: (f t t) 
U2: (f (f t t) (f t t)) 
U3: (f (f (f t t) (f t t)) (f (f t t) (f t t))) 
Uk: (f Uk-1 Uk-1) 

Any basis function produced by the standard GP system will be represented by at least one 
element of Uk. In fact, Uk is isomorphic to the set of all possible basis functions generated by 
the standard GP system. 

Given this formalism of the search space, it is easy to compute the size of the search space, 

and it is easy to see that the search space is huge even for rather simple basis functions. 

For our use in this chapter the function set will be the following functions: F = {+ - * / abs 

sqrt square cube cos sin tan tanh log exp max min ℵ} (where ℵ岫a,b岻 =  ℵ岫a岻 = a). The 

terminal set is the features x0 thru xm and the real constant c, which we shall consider to 

be 264 in size. Where |F| = 17, M=20, and k=0 , the search space is S0 = M+264 = 20+264 = 

1.84x1019. Where k=1, the search space is S1 = |F|*S0*S0 = 5.78x1039. Where k=2, the search 

space grows to S2 = |F|*S1*S1 = 5.68x1080. For k=3, the search space grows to S3 = 

|F|*S2*S2 = 5.5x10162. Finally if we allow three basis functions B=3 for financial 

applications, then the final size of the search space is S3*S3*S3 = 5.5x10486. 

Clearly even for three simple basis functions, with only 20 features and very limited 

depth, the size of the search space is already very large; and, the presence of real constants 

accounts for a significant portion of that size. For instance, without real constants, S0 = 20, 

S3 = 1.054x1019, and with B=3 the final size of the search space is 1.054x1057. It is our 

contention that since real constants account for such a significant portion of the search 

space, symbolic regression would benefit from special constant evolutionary operations. 

Since standard GP does not offer such operations, we investigate the enhancement of 

symbolic regression with swarm intelligence algorithms specifically designed to evolve 

real constants. 

As we apply our enhanced symbolic regression to an important real world investment 
finance application, the prediction of forward 12 month earnings per share, we discover a 
number of accuracy, believability, and regulatory issues which must be addressed. Solutions 
for those issues are provided and we proceed to apply an enhanced symbolic regression 
algorithm to the problem of estimating forward corporate earnings per share. 

This chapter begins with a discussion of Symbolic Regression theory in Section (2) and with 

important theoretical issues in Section (3). Methodology is discussed in Section (4), then 

Sections (5) through (10) discuss the algorithms for Standard GP Symbolic Regression and 

the enhancements for merging swarm intelligence with standard GP symbolic regression. In 

Section (11) we compare the performance of standard GP symbolic regression with 

enhanced symbolic regression on a set of illustrative sample test problems. Sections (12) thru 

(15) give a background in investing and discuss the essential requirements for applying 

symbolic regression to predicting forward 12 month earnings in a real world financial 

setting. Finally, Sections (17) thru (19) compare the performance of enhanced symbolic 

regression with the swarm algorithm being Differential Evolution, the bees Algorithm, or 

Particle Swarm. 
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2. Symbolic regression theory 

In standard Koza-style symbolic regression [12], a Lisp s-expression is manipulated via the 
evolutionary techniques of mutation and crossover to produce a new s-expression which 
can be tested, as a basis function candidate in a GLM. Basis function candidates that produce 
better fitting GLMs are promoted. 

Mutation inserts a random s-expression in a random location in the starting s-expression. 
For example, mutating s-expression (4) we obtain s-expression (4.1) wherein the sub 
expression “tan” has been randomly replaced with the sub expression “cube”. Similarly, 
mutating s-expression (5) we obtain s-expression (5.1) wherein the sub expression 
“cos(x2*.2)” has been randomly replaced with the sub expression “abs(x2+ x5)”. 

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.1 B5 = cos(x2)/cube(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.1 B6 = tanh(abs(x2+ x5)*cube(x5+abs(x1))) 

Crossover combines portions of a mother s-expression and a father s-expression to produce a 
child s-expression. Crossover inserts a randomly selected sub expression from the father into 
a randomly selected location in the mother. For example, crossing s-expression (5) with s-
expression (4) we obtain child s-expression (5.2) wherein the sub expression “cos(x2*.2)” has 
been randomly replaced with the sub expression “tan(x5/4.56)”. Similarly, again crossing s-
expression (5) with s-expression (4) we obtain another child s-expression (5.3) wherein the 
sub expression “x5+abs(x1)” has been randomly replaced with the sub expression “sqrt(x2)”. 

4 B3 = sqrt(x2)/tan(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.2 B7 = tanh(tan(x5/4.56)*cube(x5+abs(x1))) 
5.3 B8 = tanh(cos(x2*.2)*cube(sqrt(x2))) 

These mutation and crossover operations are the main tools of standard GP, which functions 
as described in Algorithm 2, randomly creating a population of candidate basis functions, 
mutating and crossing over those basis functions repeatedly while consistently promoting 
the most fit basis functions. The winners being the collection of basis functions which 
receive the most favorable least square error in a GLM with standard regression techniques. 

3. Theoretical issue 

A theoretical issue with standard GP symbolic regression is the poor optimization of 

embedded constants under the mutation and crossover operators. Notice that in basis 

functions (4) and (5) there are real constants embedded inside the formulas. These 

embedded constants, 4.56 and .2, are quite important. That is to say that basis function (4) 

behaves quite differently than basis function (4.2) while basis function (5) behaves quite 

differently than basis function (5.4).   

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.2 B9 = sqrt(x2)/tan(x5) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.4 B10 = tanh(cos(x2)*cube(x5+abs(x1))) 

www.intechopen.com



 
Predicting Corporate Forward 2 Month Earnings 

 

167 

The behavior can be quite startling. For instance, if we generate a set of random independent 
variables for <x1, x2, x3, …xm> and we set the dependent variable, y = sqrt(x2)/tan(x5/4.56), 
then a regression on y = sqrt(x2)/tan(x5) returns a very bad LSE. In fact the bad regression fit 
continues until one regresses on y = sqrt(x2)/tan(x5/4.5). It is only until one regresses on y = 
sqrt(x2)/tan(x5/4.55) that we get a reasonable LSE with an R-Square of .56. Regressing on  
y = sqrt(x2)/tan(x5/4.555) achieves a better LSE with an R-Square of .74. Of course 
regressing on y = sqrt(x2)/tan(x5/4.56) returns a perfect LSE with an R-Square of 1.0.  

Clearly, in many cases of embedded constants, there is a very small neighborhood, around 
the correct embedded constant, within which an acceptable LSE can be achieved.  

In standard Koza-style symbolic regression [12], the mutation and crossover operators are 
quite cumbersome in optimizing constants. As standard GP offers no constant manipulation 
operators per se, the mutation and crossover operators must work doubly hard to optimize 
constants. For instance, the only way to optimize the embedded constant in s-expression (5) 
would be to have a series of mutations or crossovers which resulted in an s-expression with 
multiple iterative additions and subtractions as follows [12]. 

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.2 B3 = sqrt(x2)/tan(x5/(1.0+3.2)) 
4.3 B3 = sqrt(x2)/tan(x5/((1.0+3.2)+.3)) 
4.4 B3 = sqrt(x2)/tan(x5/(((1.0+3.2)+.3)+.07)) 
4.4 B3 = sqrt(x2)/tan(x5/((((1.0+3.2)+.3)+.07)-.01)) 

Characteristically, the repeated mutation and crossover operations which finally realize an 
optimized embedded constant also greatly bloat the resulting basis function with byzantine 
operator sequences [18]. On the other hand swarm intelligence techniques are quite good at 
optimizing vectors of real numbers. So the challenge is how to collect the embedded 
constants found in a GP s-expression into a vector so they can be easily optimized by swarm 
intelligence techniques. 

Recent advances in symbolic regression technology including Abstract Expression 
Grammars (AEGs) [3], [4], [5], [6], and [13] can be used to control bloat, specify complex 
search constraints, and expose the embedded constants in a basis function so they are 
available for manipulation by various swarm intelligence techniques suitable for the 
manipulation of real numeric values. This presents an opportunity to combine standard 
genetic programming techniques together with swarm intelligence techniques into a 
seamless, unified algorithm for pursuing symbolic regression. 

The focus of this chapter will be an investigation of swarm intelligence techniques, used in 
connection with AEGs, which can improve the speed and accuracy of symbolic regression 
search, especially in cases where embedded numeric constants are an issue hindering 
performance. 

4. Methodology 

Our methodology is influenced by the practical issues in applying symbolic regression to a 
real world investment finance problem. First there is the issue that current standard GP 
symbolic regression cannot solve selected simple test problems required for the successful 
application of SR to predicting forward corporate earnings per share. This includes the 
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methodological challenge of enhancing standard GP with swarm intelligence and modifying 
the necessary encodings to accommodate both GP and swarm intelligence algorithms. 
Second there is the issue of adapting symbolic regression to run in a real world financial 
application with massive amounts of data. Third there is the issue of modifying symbolic 
regression, as practiced in academia, to conform to the very difficult U.S. Securities 
Exchange Commission regulatory environment. 

Sections (5) thru (10) discuss the methodological challenge of enhancing standard GP 
symbolic regression so that it can be effective when applied to the real world problem of 
predicting forward 12 month corporate earnings per share. In Section (11), the behavior of 
GP symbolic regression with and without the enhancement of swarm intelligence is 
compared on a few sample test problems. 

For the sample test problems, we will use only statistical best practices out-of-sample testing 
methodology. A matrix of independent variables will be filled with random numbers. Then 
the model will be applied to produce the dependent variable. These steps will create the 
training data. A symbolic regression will be run on the training data to produce a champion 
estimator. Next a matrix of independent variables will be filled with random numbers. Then 
the model will be applied to produce the dependent variable. These steps will create the 
testing data. The estimator will be regressed against the testing data producing the final LSE 
and R-Square scores for comparison. 

Sections (17) thru (19) compare the behavior of GP symbolic regression with and without 
swarm intelligence on a real world problem namely the forward estimation of corporate 
earnings on a database of stocks from 1990 thru 2009. 

For the forward estimation of corporate earnings, this paper uses an historical database of 
approximately 1200 to 1500 stocks with daily price and volume data, weekly analyst 
estimates, and quarterly financial data from Jan 1986 to the present. The data has been 
assembled from reports published at the time, so the database is highly representative of 
what information was realistically available at the point when trading decisions were 
actually made.  

From all of this historical data, twenty years (1990 thru 2009) have been used to support the 
results shown in this research. This two decade period includes a historically significant bull 
market decade followed by an equally historically significant bear market decade. 

Multiple vendor sources have been used in assembling the data so that single vendor bias 
can be eliminated. The construction of this point in time database has focused on collecting 
weekly consolidated data tables, collected every Friday from Jan 3, 1986 to the present, 
representing detailed point in time input to this study and cover approximately 1200 to 1500 
stocks on a weekly basis. Each stock record contains daily price and volume data, weekly 
analyst estimates and rankings, plus quarterly financial data as reported. The primary focus 
is on gross and net revenues. 

The efficacy of several different swarm intelligence techniques are examined by running a 
full experimental protocol for each technique. Standard genetic programming, without swarm 
intelligence techniques, will be the base line for this study. We are interested in determining if 
the addition of swarm intelligence techniques improves symbolic regression performance – 
and if so, which swarm techniques perform best. 
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Our historical database contains 1040 weeks of data between January 1990 and December 
2009. In a full training and testing protocol there is a separate symbolic regression run for 
each of these 1040 weeks. Each SR run consists of predicting the ftmEPS for each of the 1200 
to 1500 stocks available in that week. A sliding training/testing window will be constructed 
to follow a strict statistical out-of-sample testing protocol. 

For each of the 1040 weeks, the training examples will be extracted from records in the 
historical trailing five years behind the selected record BUT not including any data from the 
selected week or ahead in time. The training dependent variable will be extracted from the 
historical data record exactly 52 weeks forward in time from the selected record BUT not 
including any data from the selected week or ahead in time. Thus, as a practical observation, the 
training will not include any records in the first 52 weeks prior to the selected record – 
because that would require a training dependent variable which was not available at the time. 

For each of the 1040 weeks, the testing samples will be extracted from records in the 
historical trailing five years behind the selected record including all data from the selected week 
BUT not ahead in time. The testing dependent variable will be extracted from the historical 
data record exactly 52 weeks forward in time from the selected record.  

Each experimental protocol will produce 1040 symbolic regression runs over an average 

of 275,000 records for each training run and between 1200 and 1500 records for each 

testing run. Three hours will be allocated for training. Of course 1040 X 2 (training and 

testing) separate R-Square statistics will be produced for each experimental protocol. We 

will examine the R-Square statistics for evidence favoring the addition of swarm 

intelligence over the base line and for evidence favoring one swarm intelligence technique 

over another.  

Finally we will need to adapt our methodology to conform to the rigorous United States 

Securities and Exchange Commission oversight and regulations on investment managers. 

The SEC mandates that every investment firm have a compliance officer. For any automated 

forward earnings prediction algorithm, which would be used as the basis for later stock 

recommendations to external clients or internal portfolio managers, the computer software code 

used in each prediction, the historical data used in each prediction, and each historical 

prediction itself, must be filed with the compliance officer in such form and manner so as to 

allow a surprise SEC compliance audit to reproduce each individual forward prediction 

exactly as it was at the original time of publication to external clients or internal portfolio 

managers. 

Of course this means that we must provide a copy of all code, all data, and each forward 
prediction for each stock in each of the 1040 weeks, to our compliance officer. Once 
management accepts our symbolic regression system, we will also have to provide a copy of 
all forward predictions on an ongoing basis to the compliance officer. 

Furthermore there is an additional challenge in meeting these SEC compliance details. The 
normal manner of operating GP, SI, and symbolic regression systems in academia will not 
be acceptable in a real world compliance environment. Normally, in academia, we recognize 
that symbolic regression is a heuristic search process and so we perform multiple SR runs, 
each starting with a different random number seed. We then report based on a statistical 
analysis of results across multiple runs. This approach produces different results each time 
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the SR system is run. In a real world compliance environment such practice would subject 
us to serious monetary fines and also to jail time. 

The SEC compliance requirements are far from arbitrary. Once management accepts such an 
SR system, the weekly automated predictions will influence the flow of millions and even 
billions of dollars into one stock or another and the historical back testing results will be 
used to sell prospective external clients and internal portfolio managers on using the 
system’s predictions going forward.  

First the authorities want to make sure that as time goes forward, in the event that the 
predictions begin to perform poorly, we will not simply rerun the original predictions again and 
again, with a different random number seed, until we obtain better historical performance 
and then substitute the new better performing historical performance results in our sales 
material.  

Second the authorities want to make sure that, in the event our firm should own many shares of 
the subsequently poorly performing stock of “ABC” Corp, that we do not simply rerun the 
current week’s predictions again and again, with a different random number seed, until we 
obtain a higher ranking for “ABC” stock thus improperly influencing our external clients 
and internal portfolio managers to drive the price of “ABC” stock higher. 

In order to meet SEC compliance regulations we have altered our symbolic regression 
system, used in this chapter across all experiments, to use a pseudo random number 
generator with a pre-specified starting seed. Multiple runs always produce exactly the same 
results.  

5. GP and swarm in symbolic regression 

In standard Koza-style tree-based Genetic Programming [12] the genome and the individual 
are the same Lisp s-expression which is usually illustrated as a tree. Of course the tree-view 
of an s-expression is only a visual aid, since a Lisp s-expression is normally a list which is a 
special Lisp data structure. Without altering or restricting standard tree-based GP in any 
way, we can view the individuals not as trees but instead as s-expressions. 

6 depth 0 binary tree s-exp: 3.45 
7 depth 1 binary tree s-exp: (+ x2 3.45) 
8 depth 2 binary tree s-exp: (/ (+ x2 3.45) (* x0 x2)) 
9 depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0) 

Up until this point we have not altered or restricted standard GP in any way; but, now we 
are about to make a slight alteration so that the standard GP s-expression can be made 
swarm friendly. Let us use the following s-expression. 

10 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 

In this individual (10), the real constants are embedded within the s-expression and are 
inconvenient for swarm algorithms. So we are going to add an annotation to the individual 
(10). We are going to add enumerated constant nodes, and we are going to add a constant 
chromosome vector creating a new individual (11). The individual (11) will now have three 
components: an abstract s-expression (11), the original s-expression (11.1), and a constant 
chromosome (11.2) as follows. 
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11 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2]))) 
11.1 s-exp: (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
11.2 c: <3.45  1.31  2.1> 

Individual (11) evaluates to the exact same value as (10). Each real number constant in (10) 
has been replaced with an indexed vector reference of the type c[i], where c is a vector of 
real numbers containing the same real numbers originally found in (10). While this process 
adds some annotation overhead to (10), it does expose all of the real number constants in a 
vector which is swarm intelligence friendly. 

At this point let us take a brief pause. Examine the original s-expression (10) also (11.1) and 
compare it to the new annotated abstract version (11). Walk through the evaluation process 
for each version. Satisfy yourself that the concrete s-expression (11.1) and the abstract 
annotated (11) both evaluate to exactly the same interim and final values. 

We have made no restrictive or destructive changes in the original individual (10). Slightly 
altered to handle the new constant vector references and the new chromosome annotations, 
any standard GP system will behave as it did before. Prove it to yourself this way. Take the 
annotated individual (11), and replace each indirect reference with the proper value from 
the constant vector. This converts the abstract annotated (11) back into the concrete s-
expression (11.1). Let your standard GP system operate on (11.1) any way it wishes to 
produce a new individual (11^.1). Now convert (11^.1) back into an abstract annotated 
version with the same process we used to annotate (10). 

Furthermore, if we have a compiled a machine register optimized version, γ(x), of (10), we 
do not even have to perform expensive recompilation in order to change a value in the 
constant chromosome. We need only alter the values in the constant chromosome and re-
evaluate the already compiled and optimized γ(x).  

Armed with these newly annotated individuals, let’s take a fresh look at how we might 

improve the standard process of genetic programming during a symbolic regression run. 

Consider the following survivor population in a standard GP island.   

12.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
12.2 (cos (/ (- x4 2.3) (min x0 x2))) 
12.3 (* (/ (- x0 5.15) (+ x0 x2)) (/ (- x5 -2.21) (* x0 9.32))) 
12.4 (sin (/ (- x4 2.3) (min x0 x2))) 
12.5 (sin (/ (- x4 2.3) (avg x0 x2))) 
12.6 (* (/ (- x0 3.23) (+ x0 x2)) (/ (- x5 -6.31) (* x0 7.12))) 
12.7 (* (/ (- x0 2.13) (+ x0 x2)) (/ (- x5 3.01) (* x0 2.12))) 

First of all, the GP mutation and crossover operators do not have any special knowledge of 

real numbers. They have a difficult time isolating and optimizing numeric constants. But the 

situation gets worse.  

As generation after generation of training has passed, the surviving individuals in the island 

population have become specialized in common and predictable ways. Individuals (12.2), 

(12.4), and (12.5) are all close mutations of each other. Evolution has found a form that is 

pretty good and is trying to search for a more optimal version. GP is fairly good at exploring 

the search space around these individuals.  
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However, (12.1), (12.3), (12.6), and (12.7) are all identical forms with the exception of the 
values of their embedded numeric constants. As time passes, the survivor population will 
become increasingly dominated by variants of (12.1) and in time its progeny may crowd out 
all other survivors. GP has a difficult time exploring the search space around (12.1) largely 
because the form is already optimized – it is the constant values which need additional 
optimization. 

In swarm friendly AEG enhanced symbolic regression system, the individuals (12.1), (12.3), 
(12.6), and (12.7) are all viewed as constant homeomorphs and they are stored in the 
survivor pool as one individual with another annotation: a swarm constant pool as follows.  

13.1 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2]))) 
 13.1.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
 13.1.2 c: <3.45  1.31  2.1> 
 13.1.3 Swarm Constant Pool 
 13.1.3[0] <3.45  1.31  2.1> 
 13.1.3[1] <5.15  -2.21  9.32> 
 13.1.3[2] <3.23  -6.31  7.12> 
 13.1.3[3] <2.13  3.01  2.12> 
13.2 (cos (/ (- x4 2.3) (min x0 x2))) {annotations omitted} 
13.3 (sin (/ (- x4 2.3) (min x0 x2))) {annotations omitted} 
13.4 (sin (/ (- x4 2.3) (avg x0 x2))) {annotations omitted} 

The AEG enhanced SR system has combined the individuals (12.1), (12.3), (12.6), and (12.7) 
into a single constant homeomorphic canonical version (13.1) with all of the constants stored 
in a swarm constant pool inside the individual. Now the GP island population does not 
become dominated inappropriately. Plus, we are free to apply swarm intelligence 
algorithms to the constants inside (13.1) without otherwise hindering the GP algorithms in 
any way.  

The remainder of this chapter is devoted to comparing the effects of several hybrid 
algorithms on symbolic regression accuracy in predicting forward twelve month corporate 
earnings. The chosen algorithms are Standard Koza-style GP, GP with Particle Swarm, GP 
with Differential Evolution, and GP with the Bees algorithm. 

6. AEG conversion algorithm 

The Abstract Expression Grammar constant conversion algorithm is a straight forward 
search and replace type algorithm in which a standard Koza-style s-expression is converted 
into an annotated AEG individual as shown in Algorithm (1). 

Algorithm 1: AEG Conversion 

1 Input: in // Koza-style s-expression 
2 Output: out // AEG annotated individual 
3 Parameters: k, r, n, N 

Summary: AEG Conversion removes all of the constants from an input s-expression and places them 
in a vector where swarm intelligence algorithms can easily optimize them. The output is a constant 
vector and the original s-expression modified to refer indirectly into the constant vector instead of 
referencing the constants directly. 
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4   set out = <aexp,sexp,c,pool>  // empty AEG individual 
5   set out.aexp = in 
6   set out.sexp = in 
7   set out.c = <..empty vector of reals..> 
8   set out.pool = <..empty vector of vectors..> 
9   set N  = length of out.aexp 
10 for n from 0 until N do 
11   if  out.aexp[n] is a real number constant then 

12      set r = out.aexp[n] 
13      set k = length of out.c 
14      set out.c[k] = r 
15      set out.aexp[n] = “c[k]” // replace r with c indexed reference 
16   end if 

17 set out.pool[0] = out.c 
18 return out 

7. GP algorithm 

Symbolic Regression with standard GP [8], [9], [10], and [12] evolves the GLM’s basis 
functions as Lisp s-expressions. Evolution is achieved via the population operators of 
mutation, and crossover. We use a simple elitist GP algorithm which is outlined in 
Algorithm (2). The inputs are a vector of N training points, X, a vector of N dependent 
variables, Y, and the number of generations to train, G. Each point in X is a member of RM = 
<x1,x2,…,xm>. The fitness score is the root mean squared error divided by the standard 
deviation of Y, NLSE.  

Algorithm 2: Standard GP 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: G // Number of generations to train 
4   Output: champ // Champion s-expression individual 
5   Parameters: K, P 

Summary: Standard GP searches for a champion s-expression by randomly growing and scoring a 
large number of candidate s-expressions, then iteratively creating and scoring new candidate s-
expressions via mutation and crossover. After each iteration, the population of candidate s-
expressions is truncated to those with the best score. After the final iteration, the champion is the s-
expression with the best score. 

6   function: mutateSExp(me) 

Summary: mutateSExp randomly alters an input s-expression by replacing a randomly selected sub 
expression with a new randomly grown sub expression. 

7     me = copy(me) 
8     set L = number of nodes in me // me is a list of Lisp Pairs 
9     set s = generate random s-expression 
10   set n = random integer between 0 and L 
11   set me[n] = s  // Replaces nth node with s 
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12   return me 
13 end fun 
14 function: crossoverSExp(mom,dad) 

Summary: crossoverSExp randomly alters a mom input s-expression by replacing a randomly 

selected sub expression in mom with a randomly selected sub expression from dad. 

15   dad = copy(dad) 

16   mom = copy(mom) 

17   set Ld = number of nodes in dad // dad is a list of Pairs 

18   set Lm = number of nodes in mom // mom is a list of Pairs 

19   set n = random integer between 0 and Lm 

20   set m = random integer between 0 and Ld 

21   set mom[n] = dad[m]  // Replaces nth node with mth node 

22   return mom 

23 end fun 

24 main logic 

25 for k from 0 until K do // Initialize population 

26   set w = generate random s-expression 

27   set population.last = score(w) 

28 end for k 

29 sort population by fitness score 

30 truncate population to P most fit individuals 

31 set champ = population.first 

32 for g from 0 until G do // Main evolution loop 

33   for p from 0 until P do // Main evolution loop 

34     set w = mutateSExp(population[p]) 

35     set population.last = score(w) 

36     set dad = population[p] 

37     set i = random integer between p and P 

38     set mom = population[i] 

39     set w = crossoverSExp(dad,mom) 

40     set population.last = score(w) 

41   end for p 

42   sort population by fitness score 

43   truncate population to P most fit individuals 

44   set champ = population.first 

45  end for g 

46 return champ 

Adding Abstract Expression Grammars to standard GP Symbolic Regression [3], [4], [5], and 

[6] evolves the GLM’s basis functions as AEG individuals. Our simple modified elitist GP 

Algorithm (3) is outlined below. The inputs are a vector of N training points, X, a vector of 

N dependent variables, Y, and the number of generations to train, G. Each point in X is a 

member of RM = <x1,x2,…,xm>. The fitness score is the root mean squared error divided by 

the standard deviation of Y, NLSE.  
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Algorithm 3: AEG GP with Swarm 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: G // Number of generations to train 
4   Output: champ // Champion AEG individual 
5   Parameters: K, P, S 

Summary: AEG GP with swarm searches for a champion s-expression as in standard GP (see 
Algorithm 2). However, before inserting s-expression candidates into the survivor population they are 
converted into AEGs and then merged with any similar AEGs (s-expressions with matching constant 
positions), then iteratively creating and scoring new candidate s-expressions via mutation, crossover, 
and swarm. After each iteration, the population of candidate AEG s-expressions is truncated to those 
with the best score. After the final iteration, the champion is the AEG s-expression with the best score. 

6   function: swarm(X,Y,aeg) // aeg = <aexp,sexp,c,pool> 
7     …see Algorithm 5, 6, or 7… 
8     return aeg 
9   end fun 
10 function: convertToAEG(sexp) 
11   …see Algorithm 1… 
12   return aeg 
13 function: convertToSExp(aeg) // aeg = <aexp,sexp,c,pool> 
14   …see Algorithm 4… 
12   return sexp 
15 function: insertInPop(aeg) // aeg = <aexp,sexp,c,pool> 

Summary: insertInPop accepts an input AEG s-expression then searches the population of AEG 
candidate s-expressions for a constant homeomorphic AEG s-expression (an AEG with matching 
form and constant locations … although the value of the constants may be different). If a constant 
homeomorphic AEG is found, the input AEG is merged with the existing canonical version already in 
the population; otherwise, the input AEG is inserted in the population in order of its score.  

16   I = length of population 
17   for i from 0 until I do // Search population 
18     set w = population[i] 
19     if (w.aexp = aeg.aexp) then  
20       set w.pool = append(w.pool,aeg.pool) 
21       sort w.pool by fitness score 
22       truncate w.pool to S most fit constant vectors 
23       set w.c = w.pool.first 
24       set w.sexp = convertToSExp(w) 
25       return population 
26     end if 
27   end for i 
28   set population.last = aeg 
29   return population 
30 function: mutateSExp(me) // me = <aexp,sexp,c,pool> 

Summary: mutateSExp randomly alters an input s-expression by replacing a randomly selected sub 
expression with a new randomly grown sub expression. 
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31   me = copy(me.sexp) 
32   set L = number of nodes in me // me is a list of Lisp Pairs 
33   set s = generate random s-expression 
34   set n = random integer between 0 and L 
35   set me[n] = s  // Replaces nth node with s 
36   set me = convertToAEG(me) 
37   return me 
38 end fun 
39 function: crossoverSExp(dad,mom) 

Summary: crossoverSExp randomly alters a mom input s-expression by replacing a randomly 
selected sub expression in mom with a randomly selected sub expression from dad. 

40   dad = copy(dad.sexp) 
41   mom = copy(mom.sexp) 
42   set Ld = number of nodes in dad // dad is a list of Pairs 
43   set Lm = number of nodes in mom // mom is a list of Pairs 
44   set n = random integer between 0 and Ld 
45   set m = random integer between 0 and Lm 
46   set dad[n] = mom[m]  // Replaces nth node with mth node 
47   set dad = convertToAEG(dad) 
48   return dad 
49 end fun 
50 main logic 
51 for k from 0 until K do // Initialize population 
52   set w = generate random s-expression 
53   w = score(convertToAEG(w)) 
54   set population = insertInPop(w) 
55 end for k 
56 sort population by fitness score 
57 truncate population to P most fit individuals 
58 set champ = population.first 
59 for g from 0 until G do // Main evolution loop 
60   for p from 0 until P do // Main evolution loop 
61     set w = swarm(population[p]) 
62     set w = mutateSExp(population[p]) 
63     set population = insertInPop(score(w)) 
64     set dad = population[p] 
65     set i = random integer between p and P 
66    set mom = population[i] 
67     set w = crossoverSExp(dad,mom) 
68     set population = insertInPop(score(w)) 
69   end for p 
70   sort population by fitness score 
71   truncate population to P most fit individuals 
72   set champ = population.first 
73  end for g 
74 return champ 
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Conversion from an AEG individual back to a standard s-expression is accomplished as 
outlined in Algorithm (4).  

Algorithm 4: AEG To S-Expression Conversion 

1   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
2   Output: out // Koza-style s-expression 
3   Parameters: k, r, n, N 

Summary: AEG To S-Expression Conversion accepts an AEG annotated individual and returns a 
Koza-style s-expression with all of the indirect constant references replaced with the direct constant 
values taken from the AEG constant vector. 

4   set out = copy(in.aexp) 
9   set N  = length of out.aexp 
10 for n from 0 until N do 
11   if  out[n] is a constant reference “c[k]” then 

12      set r = in.aexp.c[k] 
14      set out[n] = r  // replace constant reference with constant 
16   end if 
18 return out 

8. AEG differential evolution 

Abstract Expression Grammar GP can be used with differential evolution [7] which evolves 
the GLM’s basis functions as AEG individuals. The DE algorithm encodes each individual as 
a constant vector. Each AEG <aexp,sexp,c,pool> stores the population of DE individuals in 
its constant pool and the current most fit champion as its constant vector c.  In Algorithm (3) 
swarm evolution is seamlessly merged with standard GP and our AEG differential 
evolution algorithm is outlined In Algorithm (5). 

The Differential Evolution algorithm is a straightforward attempt to keep a sorted list of the 
best constant vectors seen so far. Pairs of these constant vectors are selected at random along 
with the best constant vector seen so far. The algorithm then averages the differences 
between these constant vectors, in several obvious ways, to move closer to a global 
optimum.  

Algorithm 5: AEG Differential Evolution 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
4   Output: in AEG annotated individual <aexp,sexp,c,pool> 
5   Parameters: S 

Summary: AEG Differential Evolution optimizes a pool of vectors by selecting the best scoring 

vector along with a randomly selected pair of constant vectors, then the distances between these 

vectors are averaged in various ways to produce a new candidate vector to be scored. After scoring, 

the population of vectors is truncated to those with the best scores.  

6   function: randomNudge(c) // constant vector = <c0,c2,…,cj> 
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Summary: randomNudge accepts an input constant vector then produces a new constant vector by 
adding or subtracting small random increments from each constant in the input vector.  

7   var (defaultSkew .90) (defaultRange .20) 
8   c = copy(c) 
9   I = length of c 
10 for i from 0 until I do 
11   set r = random number from 0 to defaultRange 
12   set r = defaultSkew + r 
13   set c[i] = r*c[i] 
14 end for i 
15 end fun 

16 function: search(a,b,c) 

Summary: search accepts a, b, and c constant vectors in an input vector pool in. A new output 

constant vector w is created by randomly averaging the distances between the three vectors. The new 

vector w is used to score the AEG whose constant pool is being optimized. After scoring, the in pool 

is truncate to the constant vectors with the best scores. The score of the AEG is set to the score of the 

best constant vector in its pool. 

17  var (F .50) 
18  w = copy(a) 
19  I = length of a 
20  for i from 0 until I do 
21    set r = random number from 0 to 1.0 
22    set r = F + r 
23    set w[i] = a[i] + (r*(b[i]-c[i])) 
24  end for i 

25  set in.pool.last = w 
26  set in.c = w 
27  score(in) 
28  sort in.pool by fitness score 

29  truncate in.pool to S most fit constant vectors 

30  set in.c = in.pool.first 

31  set in.sexp = convertToSExp(in) 

32  return in 

33 end fun 

34 main logic 

35 set I length of in.pool 
36 if (I=0) then return in end if  
37 set best = in.pool[0] 
38 set j1 = random integer from 0 until I 
39 set j2 = random integer from j1 until I 
40 set b1 = in.pool[j1] 
41 if (j1=0) then set b1 = randomNudge(best) 
42 set b2 = in.pool[j2] 
43 if (j2= j1) then set b2 = randomNudge(b2) 
44 set r = random number from 0 until 1.0 
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45 // Modest momentum 
46 if (r<.50) then search(best,best,b1)  
47 // Aggressive momentum 
48 else if (r<.80) then search(best,best,b2) 
49 // Modest Mediation 
50 else if (r<.85) then search(b1,best,b1) 
51 // Aggressive mediation 
52 else if (r<.90) then search(b2,best,b2) 
53 // Wandering up 
54 else if (r<.95) then search(b2,b1,b2) 
55 // Wandering down 
56 else set in.pool = search(b1,b2,b1) 
57 return in 

9. AEG Bees algorithm 

Abstract Expression Grammar GP can be used with Bees algorithm [14] and [15] which 

evolves the GLM’s basis functions as AEG individuals. Each AEG <aexp,sexp,c,pool> stores 

the population of Bees individuals in its constant pool and the current most fit champion as 

its constant vector c.  In Algorithm (3) swarm evolution is seamlessly merged with standard 

GP and our AEG bees algorithm is outlined in Algorithm (6) below.  

Our Bees algorithm has been modified to fit within the larger framework of an evolving GP 

environment. Therefore, the evolutionary loop is in the GP algorithm and has been removed 

from the Bees algorithm. Instead the Bees algorithm is repeatedly called from the main GP 

loop during evolution. Furthermore, we must execute the Bees algorithm on all AEG 

individuals with a non-empty constant pool; therefore, care must be taken such that any one 

AEG individual does not monopolize the search process. 

The Bees algorithm gets its inspiration from the cooperative behavior of bees foraging for 

food. There is the concept of a visited food site (which in our case is one of the constant 

vectors in the constant pool) and a bee which searches these food sites and assigns them a 

fitness value (in our case a bee is the AEG individual wrapped around and evaluating the 

constant vector). Since we have only one bee (the AEG individual), when multiple bees are 

required, we will have our single AEG individual search multiple times.  

In the original Bees algorithm, there are S food sites selected for search (in our case the 
AEG’s constant pool). Of the S selected sites, the E fittest sites are “elite” sites and the 
remaining (S-E) sites are “non-elite” sites. In the original Bees algorithm there are B bees. 
Since we have only one bee (the AEG individual), we will have our AEG individual search B 
times. Of the total B bees available, BEP bees are recruited to search the neighborhood 
around each elite food site, and BSP bees are recruited to search the neighborhood around 
each non-elite food site. The remaining BRP bees search at random anywhere they please. 
This all assumes that B = BEP+BSP+BRP.  

In the original Bees algorithm, for each elite food site there are BEP neighborhood searches 
performed, for each non-elite food site there are BSP neighborhood searches performed, and 
there are BRP random searches performed in each iteration of the main evolutionary loop. 
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Thus the total number of searches devoted to all elite food sites can be expressed as (E*BEP), 
while the total number of searches devoted to all non-elite food sites can be expressed as ((S-
E)*BSP), and the total number of random searches can be expressed by the fraction BRP. 
From these counts of total searches performed, we can derive the probability that an elite 
site will be searched, that a non-elite site will be searched, and that a random search will be 
performed. These computed percentages will be the parameters of our modified Bees 
algorithm: BEp, BSp, and BRp. 

Algorithm 6: AEG Bees Algorithm 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
4   Output: in AEG annotated individual <aexp,sexp,c,pool> 
5   Parameters: BEp, BSp, BRp, E, S 

Summary: AEG Bees Algorithm optimizes a pool of vectors by incrementally selecting each vector 
from the pool of constant vectors, then either producing a new candidate vector in a random 
neighborhood around the selected vector or producing a new random vector. The new vector is scored. 
After scoring, the population of vectors is truncated to those with the best scores.  

6   function: neighborSearch(c) // constant vector = <c0,c2,…,cj> 

Summary: neighborSearch accepts an input constant vector then produces a new constant vector by 
adding or subtracting small random increments from each constant in the input vector. The new 
vector is scored and inserted into the constant pool. 

7   w = copy(c) 
8   d = copy(c) 
9   I = length of c 
10 J = length of in.Pool 
11 // compute local neighborhood radius vector 
12 for j from 1 until J do 
13    for i from 0 until I do 
14     set d[i] += (abs(in.Pool[j-1][i]-in.Pool[j][i])/(J-1)) 
15   end for i 
16  end for j 

17  // Search the local neighborhood 
18 for i from 0 until I do 
19   set r = random number from 0 to (2*d[i]) 
20   set r = r – d[i] 
21   set w[i] = w[i]+r; 
22 end for i 
23  set in.pool.last = w 
24  set in.c = w 
25  score(in) 
26  sort in.pool by fitness score 
27  truncate in.pool to S most fit constant vectors 
28  set in.c = in.pool.first 
29  set in.sexp = convertToSExp(in) 
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30 end fun 
31 function: randomSearch() 

Summary: randomSearch produces a new constant vector by randomly setting a value to each 
constant in the new vector. The new vector is scored and inserted into the constant pool. 

32  w = random constant vector 
33  set in.pool.last = w 
34  set in.c = w 
35  score(in) 
36  sort in.pool by fitness score 
37  truncate in.pool to S most fit constant vectors 
38  set in.c = in.pool.first 
39  set in.sexp = convertToSExp(in) 
40  return in 
41 end fun 

42 main logic 
43 vars (Ie starts at 0) (If starts at E) 
44 set I length of in.pool 
45 if (I=0) then return in end if 
46 set ce = if (Ie<E) then in.pool[Ie] else in.pool.first end if 

47 set Ie = Ie + 1 
48 if (Ie>=E) then set Ie = 0 end if 
49 set cf = if (If<I) then in.pool[If] else in.pool.first end if 
50 set If = If + 1 
51 if (If>=I) then set If = E end if 
52 set choice = random integer between 0 and 1.0 
53 if (choice<BEp) then neighborSearch(ce) end if  
54 if (choice<BSp) then neighborSearch(cf) end if  
55 if (choice<BRp) then randomSearch() end if  
56 return in 

10. AEG particle swarm 

Abstract Expression Grammar GP can be used with particle swarm [2] which evolves the 
GLM’s basis functions as AEG individuals. In Algorithm (3) swarm evolution is seamlessly 
merged with standard GP and our AEG particle swarm algorithm is outlined in Algorithm 
(7) below. 

Our Particle Swarm (PSO) algorithm has also been modified to fit within the larger 
framework of an evolving GP environment. Therefore, the evolutionary loop is in the GP 
algorithm and has been removed from the PSO algorithm. Instead the PSO algorithm is 
repeatedly called from the main GP loop during evolution. Furthermore, we must execute 
the PSO algorithm on all AEG individuals with a non-empty constant pool; therefore, care 
must be taken such that any one AEG individual does not monopolize the search process. 

The PSO algorithm gets its inspiration from the clustering behavior of birds or insects as 
they fly in formation. There is the concept of an individual swarm member called a particle, 
the current position of each particle, the best position ever visited by each particle, a velocity 
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for each particle, and the best position every visited by any particle (the global best). In our 
case, each particle will be one of the constant vectors in our AEG individual’s constant pool. 
A fitness value will be assigned to each constant by wrapping the AEG individual around 
the constant vector and scoring.  

Each AEG <aexp,sexp,c,pool> stores the population of PSO individuals in its constant pool 

and the current most fit champion as its constant vector c.  However, implementing the PSO 

algorithm requires adding a few new items to our AEG individual. Let aeg be an AEG 

individual in our system. The best position ever visited by any particle will be designated as 

aeg.best (global best). The best position ever visited by each particle, i, will be designated as  

aeg.pool[i]→best (local best). The velocity of each particle, i, will be designated as  

aeg.pool[i]→v. The score of a constant vector, c, will be designated as fitness(c). And, of 

course, each particle, i, is nothing more than one of the constant vectors in the AEG 

individual’s constant pool aeg.pool[i]. 

Algorithm 7: AEG Particle Swarm 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
4   Output: in AEG annotated individual <aexp,sexp,c,pool> 
5   Parameters: WL, WG, WV, S 

Summary: AEG Particle Swarm optimizes a pool of vectors by randomly selecting a pair of constant 
vectors from the pool of constant vectors. A new vector is produced when the pair of vectors, together 
with the global best vector, are randomly nudged closer together based upon their previous 
approaching velocities. The new vector is scored. After scoring, the population of vectors is truncated 
to those with the best scores.  

6   main logic 
7   vars (Ic starts at 0) 
8   set J = length of in.pool 
9   if (J<=0) then return in end if 
10 i = Ic 
11 c = copy(in.pool[i]) 
12 v = copy(in.pool[i]→v) 
13 if (v = null) then  
14  set v = random velocity vector  
15  set in.pool[i]→v = v  
16 end if  
17 lbest = in.pool[i]→best 
18 if (lbest = null) then  
19  set lbest = c  
20  set in.pool[i]→best = lbest 
21 end if  
22 gbest = in.best 
23 if (gbest = null) then  
24  set gbest = c  
25  set in.best = gbest  
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26 end if  
27 // Compute the velocity weight parameters 
28 maxg = maximum generations in the main GP search 
29 g = current generation count in the main GP search 
30 WL = .25 + ((maxg – g)/maxg) // local weight 
31 WG = .75 + ((maxg – g)/maxg) // global weight 
32 WV = .50 + ((maxg – g)/maxg) // velocity weight 
33 I = length of c 
34 set r1 = random number from 0 to 1.0 
35 set r2 = random number from 0 to 1.0 
36 // Update the particle’s velocity & position 
37 for i from 0 until I do 
38   set lnudge = (WL*r1*(lbest[i]-c[i])) 
39   set gnudge = (WG*r2*(gbest[i]-c[i])) 
40   set v[i] = (WV*v[i])+lnudge+gnudge 
41   set c[i] = c[i]+v[i] 
42 end for i 
43 // Score the new particle position 
44 set in.c = c 
45 score(in) 
46 // Update the best particle positions 
47 if (fitness(c)>fitness(lbest)) then lbest = c end if 
48 if (fitness(c)>fitness(gbest)) then gbest = c end if 
49 in.best = gbest 
50 set in.pool.last = c 
51 set in.pool.last→best = lbest 
52 set in.pool.last→v = v 
53 // Enforce elitist constant pool 
54 sort in.pool by fitness score 
55 truncate in.pool to S most fit constant vectors 

56 set in.c = in.pool.first 

57 set in.sexp = convertToSExp(in) 

58 // Enforce iterative search of constant pool 

59 set Ic = Ic + 1 

60 if (Ic>=S) then set Ic = 0 end if 

61 return in 

11. Sample test problems 

Several sample test problems have been collected upon which we can compare the 

performance of standard GP symbolic regression and hybrid AEG symbolic regression. Each 

of these test problems contains an embedded real constant which greatly affects the 

behavior of the formula during regression. If our theory is correct, these test problems 

should receive better results with AEG symbolic regression than with standard GP symbolic 

regression. The test problems are as follows. 

14.1 y = -2.3 + (0.13*sin(4.1*x2)) 
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14.2 y = 3.0 + (2.13*log(1.3+x4)) 
14.3 y = 2.0 - (2.1*cos(9.8/x0)) 

Two symbolic regressions are performed for each test problem: standard GP symbolic 

regression, and AEG symbolic regression (using the Bees Algorithm 6). Clearly the AEG 

symbolic regressions perform much better than standard GP symbolic regression. Table 1 

shows the results. 

 

Formula NLSE GP RSQ GP NLSE AEG RSQ AEG 

14.1 .47 .77 0.0 1.0 

14.2 .18 .96 0.0 1.0 

14.3 .36 .81 0.0 1.0 

Note: NLSE is the least squared error divided by the standard deviation of Y, and RSQ is the R-Square statistic 
from the regression. An NLSE of 0.0 is perfect while an RSQ of 1.0 is perfect. 

Table 1. Sample Test Problem Regressions 

Clearly the AEG symbolic regression runs are discovering and optimizing the embedded 

constants correctly; however, the standard GP symbolic regression runs are unable to 

optimize the constants and get confused. It is simply too difficult for standard GP to 

optimize these difficult embedded constants using only mutation and crossover. Furthermore, 

the standard GP runs produce estimators which are far from the correct form. The following 

are the top five estimators, produced by the standard GP symbolic regression, for test 

problem (14.1). 

14.1.1 y = 4.6+(-2.45*(sqrt(log(x0)))); 

14.1.2 y = -11919+(-0.86*((-13824+log(x0)))); 

14.1.3 y = -1891+(-0.8624*((-2197+log(x0)))); 

14.1.4 y = -2073+(-0.8624*((-2401+log(x0)))); 

14.1.5 y = -1749+(-0.8624*((-2025+log(x0)))); 

The results are so absolute that statistical analysis is unnecessary. Standard GP symbolic 

regression cannot solve these problems, while AEG symbolic regression always solves these 

problems exactly. Furthermore, it is clear that the standard GP run is trying to optimize 

constants but it has gotten stuck in a local minimum with the wrong formula and its 

population of champions is dominated by the attempt to optimize constants rather than 

trying to find a better fitting formula.  

Incidentally, it made no difference when the Bees Algorithm was replaced with the 

Differential Evolution Algorithm or with the Particle Swarm Algorithm. The results of an 

AEG symbolic regression on the sample test problems was a perfect score no matter which 

swarm algorithm was chosen.   

Furthermore, on the issue of scientific reproducibility, we have included detailed algorithms 

in this chapter. No matter what random seed is used, standard GP SR will not optimize 

sample problems 14.1, 14.2, and 14.3 in any practical time. This is because the population 

operators available to standard GP SR do not manage imbedded constants. Plus no matter 

what random seed is used, SR with any one of the three popular swarm algorithms will 
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optimize the sample problems 14.1, 14.2, and 14.3 very quickly. These results are easily 

scientifically reproduced. 

Now that we have tested AEG symbolic regression on several sample test problems, 

achieving much better performance than standard GP symbolic regression, it is time to 

compare AEG with standard GP symbolic regression on a real world investing problem: 

estimating forward 12 month earnings per share for a database of companies between 1990 

and 2009. We begin with some background on investing. In addition, we will also compare 

the results of the three different swarm intelligence algorithms. 

12. Investing strategies 

Value investing [1] has produced several of the wealthiest investors in the world including 

Warren Buffet. Nevertheless, value investing has a host of competing strategies including 

momentum [16] and hedging [17]. 

One of the most difficult challenges in devising a securities investing strategy is the a priori 
identification of pending regime changes. For instance, momentum investing strategies were 
very profitable in the 1990's and not so profitable in the 2000's while value investing 
strategies were not so profitable in the 1990's but turned profitable in the 2000's. Long Short 
hedging strategies were profitable in the 1990's and early 2000's but collapsed dramatically 
in the late 2007 thru 2008 period. Knowing when to switch from Momentum to Value, Value 
to Hedging, and Hedging back to Value was critical for making consistent above average 
profits during the twenty year period from 1990 thru 2009. 

The challenge becomes even more difficult when one adds the numerous technical and 
fundamental buy/sell triggers to currently popular active management investing strategies. 
Bollinger Bands, MACD, Earning Surprises, etc. all have complex and dramatic effects on 
the implementation of securities investing strategies, and all are vulnerable to regime 
changes. The question arises, "Is there a simple securities investing strategy which is less 
vulnerable to regime changes than other strategies?". 

An idealized value investing hypothesis is put forward: "Given perfect foresight, buying stocks 

with the best future earning yield (Next12MoEPS/CurrentPrice) and holding for 12 months will 

produce above average securities investing returns".  

Using our database of the 1500 Valueline stocks from 1986 thru 2009, we studied three ideal 
concentrated portfolios: five, twenty five, and fifty stock portfolios. Each of these idealized 
concentrated portfolios are sampled each month for the twenty years from 1990 thru 2009. 
Fixed holding periods of one month, one quarter, and one year were examined. The per 
annum compound return for each decade and each holding period are shown in Table 2 
along with the compounded returns, including dividends, of the Standard & Poor's 500 for 
each decade. 

The data supports the conclusion that the ideal hypothesis yields highly above average 

investing profits for all portfolio sizes and all holding periods across both decades. 

Furthermore the ideal hypothesis appears less vulnerable to regime changes than many 

other popular active securities investment strategies given that the 1990s decade was a 

raging bull environment while the 2000s decade was a terrible bear environment.  
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Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 76% 69% 63% 

month 2000s 120% 69% 53% 

quarter 1990s 58% 73% 64% 

quarter 2000s 69% 74% 53% 

year 1990s 48% 46% 41% 

year 2000s 103% 61% 45% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 2. Returns for idealize future earnings yield 

13. Buying current earnings yield 

Of course the ideal hypothesis is impossible to implement because it requires perfect 
foresight which is, in the absence of time travel, unobtainable. Nevertheless the ideal 
hypothesis represents the theoretical upper limit on the profits realizable from a strategy of 
buying future revenue cheaply; yet, the theoretical profits are so rich that one cannot help 
but ask the question, "Are there revenue prediction models which will allow one to capture some 
portion of the profits from the ideal hypothesis?". 

The easiest revenue prediction model involves simply using the current year's trailing 12 
month revenue as a proxy for future revenue. 

The data supports the conclusion that even using this current revenue proxy model buying 

the top five, twenty five, and fifty stocks with the highest (current12MoEPS/currentPrice) 

produces above average securities investing profits, as least for the 1500 Valueline stocks, as 

shown in Table 3. 

 

Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 29.0% 16.5% 16.6% 

month 2000s 8.2% 11.4% 15.4% 

quarter 1990s 41.7% 14.9% 14.9% 

quarter 2000s 22.7% 13.5% 15.6% 

year 1990s 36.4% 17.6% 15.6% 

year 2000s 42.1% 19.7% 17.4% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 3. Returns for current revenue prediction 

Clearly using this current revenue prediction model buying the top five, twenty five, and 
fifty stocks with the highest (current12MoEPS/currentPrice), produces above average 
securities investing profits, in most cases, especially with one year holding periods.  

Like buying stocks with the best future earning yield (Next12MoEPS/CurrentPrice), buying 
current earnings yield (current12MoEPS/currentPrice) is an ideal method. By ideal we mean 
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that all information is known and exact. There is no predictive aspect, no guess work. We 
already know what current earnings are for any stock.  

Nevertheless, buying a stock with low PE but whose future 12 month earnings will plummet 
bringing on bankruptcy is an obviously poor choice. So why is low PE investing so 
successful given that future 12 month earnings can vary significantly? Placing current 
earnings yield investing in this context puts a new spin on this standard value investing 
measure. In this context we are saying that current earnings yield (also known as low PE 
investing) works precisely to the extent that current earnings are a reasonable predictor of future 
earnings! In situations where current earnings are NOT a good predictor of future earnings, 
then current earnings yield investing looses it efficacy. 

This agrees with our common sense understanding. For instance, given two stocks with the 
same high current earnings yield, where one will go bankrupt next year and the other will 
double its earnings next year; we would prefer the stock whose earnings will double. 
Implying that, in the ideal, current earnings are just a data point. We want to buy future 
earnings cheap! 

Precisely because the per annum returns from this current revenue prediction model are far 
less than the returns achieved with perfect prescience, we must now look for more accurate 
methods of net revenue prediction. 

14. Future revenue prediction inputs 

One very simplistic revenue prediction input model involves simply adding last year's 
revenue delta to current revenue as a prediction of future revenue, as follows: 

15  2010EPS = (2009EPS-2008EPS)+2009EPS 
...to generalize, we have: 
15.1  forwardRevenue = (revenue-pastRevenue)+revenue 

Another simple revenue prediction input is the broker estimates. Each week there appears a 
broker consensus estimate for the next 12Mo EPS for each of the stocks in our database. This 
broker revenue prediction can be used as a model for future revenue. 

If we combine a number of these simple future revenue prediction inputs together we can 
construct a set of consensus inputs for prediction of future revenue. Constructing this 
consensus revenue inputs requires the following components. 

16 margin = (currentEPS/currentSPS) 
17 brokerEPS = broker consensus estimate 
18 forwardEPS = (currentEPS-pastEPS)+currentEPS 
19 projectEPS = (4*(currentEPS-pastQtrEPS))+currentEPS 
20 forwardSPS = (currentSPS-pastSPS)+currentSPS 
21 projectSPS = (4*(currentSPS-pastQtrSPS))+currentSPS 
22 forwardSEPS = forwardSPS*margin 
23 projectSEPS = projectSPS*margin 

The five bolded elements above (brokerEPS, forwardEPS, projectEPS, forwardSEPS, and 
projectSEPS) are the consensus inputs to all of our future revenue prediction efforts in the 
remainder of this chapter. 
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15. Future revenue: GP-only 

Each week we can construct a GP-only symbolic regression estimate (using Algorithm 2) for 
next 12Mo EPS for each of the stocks in our database, using the following five inputs as 
dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS. 
Each week we train a symbolic regression model on approximately 375,000 training 
examples (250 weeks of backward historical data times approximately 1,500 stocks), and 
each week we use the newly trained symbolic regression model to predict the earnings per 
share of each stock in our database for the new week. This is a text book case of in-sample-
training with out-of-sample-testing using a sliding forward 250 week training window. 

The per annum returns using this symbolic regression revenue prediction model buying the 
top five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits as shown in Table 4. 

 
Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 33.2% 17.9% 18.2% 

month 2000s 9.7% 13.2% 17.6% 

quarter 1990s 43.9% 16.8% 15.1% 

quarter 2000s 25.6% 15.3% 18.5% 

year 1990s 39.2% 18.8% 17.8% 

year 2000s 45.6% 21.2% 18.9% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 4. Returns for GP-only 

Clearly using the GP-only symbolic regression revenue prediction model buying the top 
five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits, in most cases. In fact, compared with all 
simple prediction methods shown so far, for reasonably diversified fifty stock portfolios, the annual 
hold returns are the best we have seen so far.  

Nevertheless, despite the satisfying accuracy and high returns, there are issues with the GP 

symbolic regression model. The main issue with the GP regression approach is a 

fundamental issue of believability. Every mathematical model, however highly correlated 

with market behavior over a period, must withstand the test of believability.  

Because the standard GP process is difficult to constrain, many of the basis functions reach 
sizes and complexities beyond reasonable. For instance, in March of 1998 the GP regression 
creates an earnings model containing the term: tanh(forwardEPS/brokerEPS). This strains 
the credulity of any fund portfolio manager and is very difficult to explain using standard 
financial concepts. It clearly works statistically in that training period; but, it is not 
believable.  

Worse still, in order to achieve its high accuracy, the GP regression process drives the 
coefficients on some of the basis functions to negative values. This also creates a financial 
model which does not make common sense, and is therefore unbelievable. When the 
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champion estimator, produced by symbolic regression is ridiculous, it undermines the 
acceptance of the whole symbolic regression process vis a vis investing, and no fund 
manager will risk assets based upon the SR models.  

For instance, for the month of April 2001 the GP regression method creates an earnings 
model with a highly weighted basis function where the coefficient for forwardEPS is 
negative. …  

24 eps = …+(-1.293*forwardEPS2)+…  

Since forwardEPS is the result of adding last year’s earnings growth to this year’s earnings 
to get an estimate for next year, a negative coefficient has the SR model telling us that 
companies with big earnings growth last year are bad! AND the larger last year’s earnings 
growth the worse the model penalizes the company.  

A statistician will immediately suspect over fitting in this SR champion model. Professional 
investors are less kind in their incredulity. Unfortunately standard GP symbolic regression 
produces many champions with these believability problems. 

Many of the champion estimator models produced by standard GP symbolic regression 
simply do not pass the common sense test. Investing large amounts of risk assets based on 
these GP models is very problematic because of the GP model’s fundamental lack of believability. 
Even in the unlikely event that management were to sign off, regulatory and compliance 
sign off would be impossible.   

16. Basis function constraints using AEG 

Abstract Expression Grammars (AEGs) can be used to constrain the basis functions searched 
in a symbolic regression so that the believability issues with standard GP are resolved [6] 
and [13]. In our case it is reasonable and believable to constrain the basis functions to either 
sigmoid or Classification and Regression Tree (CART) sigmoid. 

Using our five future revenue predictions as inputs to a nonlinear sigmoid regression, we 
can construct a more believable prediction model. Our first attempt will be to stay with an 
almost linear regression, but where the model coefficients are forced into the sigmoid 
domain. The model coefficients cannot go negative and they cannot rise above 1.0. This 
creates a more believable regression model in which the coefficients act more like 
significance weights attached to each of the five input EPS predictions as follows. 

25 eps = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS 
                 + c4*forwardSEPS+ c5*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5  

In this sigmoid linear regression model each coefficient represents the significance given to 
one of the five input predictions. Therefore if c1=.2 while c2=.4, the model is saying that the 
higher the brokerEPS estimate and the higher the forwardEPS estimate the better; BUT, the 
model gives twice as much weight to forwardEPS estimates as it does to brokerEPS 
estimates. This is a far more intuitively believable model.  

Also it is possible to construct a more sophisticated sigmoid Classification and Regression 
Tree (CART) model by using the sigmoid model (24) as a template for four leaf nodes of a 
simple classification tree as follows. 
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25.1 µ1 = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS 
                 + c4*forwardSEPS+ c5*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5  
25.2 µ2 = c6*brokerEPS+ c7*forwardEPS+ c8*projectEPS 
                 + c9*forwardSEPS+ c10*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 6≤ i ≤ 10  
25.3 µ3 = c11*brokerEPS+ c12*forwardEPS+ c13*projectEPS 
                 + c14*forwardSEPS+ c15*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 11≤ i ≤ 15  
25.4 µ4 = c16*brokerEPS+ c17*forwardEPS+ c18*projectEPS 
                 + c19*forwardSEPS+ c20*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 16≤ i ≤ 20  

We can then place these sigmoid leaf nodes into a simple CART formula as follows. 

25.5 eps = (v1<v2)?((v3<v4)?µ1:µ2):(v5<v6)?µ3:µ4) 
where  V = {brokerEPS,forwardEPS,projectEPS,              
forwardSEPS,projectSEPS}   
                 where  vi ɛ V for 1≤ i ≤ 4   

In this sigmoid CART nonlinear regression model each of the four leaf nodes is a sigmoid 
nonlinear model of the type shown in (24). Each of the decision variables, vi, is one of the 
five possible inputs.  

By constraining the basis functions searched to be either sigmoid or CART sigmoid, we 
automatically eliminate the issues associated with GP-only future revenue prediction, and 
we achieve future earnings models which pass the test all important test of believability.  

Unfortunately, having imposed these important basis function constraints, we encounter an 
additional issue. GP-only symbolic regression is very poor at evolving real number 
constants. These constraints place a heavy emphasis on the evolution of real number 
constants within the basis function and its sigmoid coefficients. Therefore we must add, to 
our hybrid AEG algorithm, evolutionary techniques which are better able to evolve real 
number constants. The remainder of this chapter will compare the efficacy of three hybrid 
evolutionary algorithms on the task of future revenue prediction.  

17. GP with particle swarm 

Testing the algorithm in (6.1) and limiting our basis functions to either sigmoid or CART 
sigmoid as in Section 13, each week we can construct a symbolic regression estimate for next 
12Mo EPS for each of the stocks in our database, using the following five inputs as 
dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on approximately 375,000 training 
examples (250 weeks of backward historical data times approximately 1,500 stocks), and 
each week we use the newly trained symbolic regression model to predict the earnings per 
share of each stock in our database for the new week.  

The per annum returns using this symbolic regression revenue prediction model buying the 
top five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits as shown in Table 5. 
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Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 21.2% 26.1% 22.2% 

month 2000s 7.6% 13.9% 17.8% 

quarter 1990s 12.9% 29.2% 25.1% 

quarter 2000s 9.2% 14.7% 19.2% 

year 1990s 37.7% 26.3% 21.3% 

year 2000s 5.6% 22.5% 22.6% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 5. Returns for GP with Particle Swarm 

Clearly using the GP with particle swarm symbolic regression revenue prediction model 

buying the top five, twenty five, and fifty stocks with the highest 

(regression12MoEPS/currentPrice) produces above average securities investing profits, in 

most cases. In fact, compared with GP-only prediction methods, adding particle swarm has increased 

accuracy significantly – while adding believability.  

18. GP with differential evolution 

Testing the algorithm in (6) and limiting our basis functions to either sigmoid or CART 

sigmoid as in Section 13, each week we can construct a symbolic regression estimate for next 

12Mo EPS for each of the stocks in our database, using the following five inputs as 

dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on approximately 375,000 training 

examples (250 weeks of backward historical data times approximately 1,500 stocks), and 

each week we use the newly trained symbolic regression model to predict the earnings per 

share of each stock in our database for the new week.  

The per annum returns using this symbolic regression revenue prediction model buying the 

top five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 

produces above average securities investing profits as shown in Table 6. 

 
Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 20.6% 26.8% 22.6% 

month 2000s 7.4% 14.8% 18.6% 

quarter 1990s 13.6% 29.0% 24.3% 

quarter 2000s 9.6% 14.2% 18.8% 

year 1990s 37.9% 27.4% 23.8% 

year 2000s 5.3% 21.3% 21.5% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 6. Returns for GP with Differential Evolution 
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Clearly using the GP with differential evolution symbolic regression revenue prediction 
model buying the top five , twenty five, and fifty stocks with the highest 
(regression12MoEPS/currentPrice) produces above average securities investing profits, in 
most cases. However the GP with differential evolution algorithm does not yield a significant 
improvement over GP with particle swarm.  

19. GP with Bees algorithm 

Testing the algorithm in (7) and limiting our basis functions to either sigmoid or CART 
sigmoid as in Section 13, each week we can construct a symbolic regression estimate for next 
12Mo EPS for each of the stocks in our database, using the following five inputs as 
dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on approximately 375,000 training 
examples (250 weeks of backward historical data times approximately 1,500 stocks), and 
each week we use the newly trained symbolic regression model to predict the earnings per 
share of each stock in our database for the new week.  

The per annum returns using this symbolic regression revenue prediction model buying the 
top five , twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits as shown in Table 7. 

 

Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 107.6% 66.7% 43.7% 

month 2000s 9.8% 16.9% 19.3% 

quarter 1990s 51.3% 37.9% 31.5% 

quarter 2000s 10.5% 18.3% 19.4% 

year 1990s 26.8% 30.0% 22.2% 

year 2000s 15.4% 28.9% 24.0% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 7. Returns for GP with Bees Algorithm 

Clearly using the GP with Bees Algorithm symbolic regression revenue prediction model 
buying the top five, twenty five, and fifty stocks with the highest 
(regression12MoEPS/currentPrice) produces above average securities investing profits, in 
most cases. In fact, compared with all other prediction methods (referring to fifty stock portfolios, 
which have less statistical variance than smaller portfolios) adding the Bees algorithm has 
increased accuracy significantly over GP-only and is a slight improvement over GP with particle 
swarm and GP with differential evolution. However, the Bees slight performance improvement 
over DE and PSO is not statistically significant under rigorous statistical analysis. 

20. Summary 

Having no population operators of its own which specialize in constant optimization, it is 
our contention that standard GP symbolic regression can benefit greatly when enhanced 
with swarm intelligence algorithms specializing in constant optimization. A method of 
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integrating standard GP with swarm intelligence, Abstract Expression Grammars is 
introduced. 

The importance of constants in symbolic regression is studied. It is shown that the size of the 
search space, for even simple financial applications, is very large and that a significant 
portion of that size is due to the presence of constants. 

Several sample test problems, with embedded constants, are presented with standard GP 
symbolic regression unable to solve any of the problems while AEG enhanced SR is always 
able to solve each of the problems exactly. It made no difference which swarm algorithm 
was used – DE, Bees, or PSO. It was the presence of AEG integrated swarm intelligence 
which made the test problems tractable. 

Theoretical, methodological, and regulatory issues applying standard GP symbolic 
regression to an important investment finance application are discussed. Symbolic 
regression is enhanced, using AEG, to be applicable to the prediction of forward 12 month 
earnings per share. A number of bloat and believability issues applying SR to predicting 
forward 12 month earnings are addressed and solved with AEG.   

AEG enhanced symbolic regression is used to predict forward 12 month earnings per share 
on approximately 1500 stocks from 1990 to 2009. Three distinct swarm intelligence 
algorithms are compared: DE, Bees, and PSO. All three swarm algorithms perform well, 
providing earnings predictions in a format easily acceptable by portfolio managers and 
regulatory compliance officers. 

Incidentally, comparing t-statistics, f-statistics, variance, information ratio and p-values 
shows it made no difference when the Bees Algorithm was replaced with the Differential 
Evolution Algorithm or with the Particle Swarm Algorithm. The results of an AEG symbolic 
regression on predicting future 12Mo eps was statistically similar for all swarm algorithms 
compared. It was the integration with any of the three swarm algorithms which made 
symbolic regression effective for forward earning prediction.  

Enhancing standard GP with Abstract Expression Grammar hybrid algorithms solves a 
number of regression accuracy, believability, and regulatory issues when using symbolic 
regression in financial applications. Based upon our experiments in this chapter, standard 
GP symbolic regression has serious issues when applied to financial applications; while, 
swarm enhanced SR shows real promise in the financial domain. 

Furthermore using AEG to add swarm intelligence algorithms to SR significantly enhanced 
accuracy in future 12 month revenue prediction and produced above average securities 
investing profits in the historical period 1990 to 2009. Significantly this superior 
performance was undeterred by the bearish market environment of the 200 decade.  

Directions for future research include investigating whether or not there are other swarm 
algorithms which would show real statistical significantly improved results over DE, Bees, 
and PSO? Is AEG the optimal GP SI integration approach to symbolic regression, or is there 
another integration approach which is superior? 

21. References  

[1] Graham, Benjamin, and David Dodd. 2008. Securities Analysis. New York, New York, 
USA. McGraw-Hill.  

www.intechopen.com



 
Theory and New Applications of Swarm Intelligence 

 

194 

[2] Kennedy, J.; Eberhart, R. 1995. Particle Swarm Optimization. Proceedings of IEEE 
International Conference on Neural Networks. IV. pp. 1942–1948. 

[3] Korns, Michael F. 2007. Large-Scale, Time-Constrained Symbolic Regression-Classification. 
In Riolo, Rick, L, Soule, Terrance, and Wortzel, Bill, editors, Genetic Programming 
Theory and Practice V, New York, New York, USA. Springer, pp. 299–314.  

[4] Korns, Michael F., and Nunez, Loryfel, 2008. Profiling Symbolic Regression-Classification. 
In Riolo, Rick, L, Soule, Terrance, and Wortzel, Bill, editors, Genetic Programming 
Theory and Practice VI, New York, New York, USA. Springer, pp. 215–228. 

[5] Korns, Michael F., 2009. Symbolic Regression of Conditional Target Expressions. In 
Riolo, Rick, L, Soule, Terrance, and Wortzel, Bill, editors, Genetic Programming 
Theory and Practice VII, New York, New York, USA. Springer, pp. 211–228. 

[6] Korns, Michael F., 2010. Abstract Expression Grammar Symbolic Regression. In Riolo, 
Rick, L, Soule, Terrance, and Wortzel, Bill, editors, Genetic Programming Theory 
and Practice VIII, New York, New York, USA. Springer, pp. 109–128.  

[7] Price, Kenneth, Storn, Rainer, Lampinen, Jouni 2009. Differential Evolution: A Practical 
Approach to Global Optimization. New York, New York, USA. Springer. 

[8] Guido Smits, Ekaterina Vladislavleva, and Mark Kotanchek 2010, Scalable Symbolic 
Regression by Continuous Evolution with Very Small Populations, in Riolo, Rick, 
L, Soule, Terrance, and Wortzel, Bill, editors, Genetic Programming Theory and 
Practice VIII, New York, New York, USA. Springer, pp. 147–160. 

[9] Flor Castillo, Arthur Kordon, and Carlos Villa 2010, Genetic Programming Transforms in 
Linear Regression Situations, in Riolo, Rick, L, Soule, Terrance, and Wortzel, Bill, 
editors, Genetic Programming Theory and Practice VIII, New York, New York, USA. 
Springer, pp. 175–194. 

[10] Trent McConaghy, Pieter Palmers, Gao Peng, Michiel Steyaert, Goerges Gielen 2009, 
Variation-Aware Analog Structural Synthesis: A Computational Intelligence 
Approach. New York, New York, USA. Springer.  

[11] J.A., Nelder, and R. W. Wedderburn, 1972, Journal of the Royal Statistical Society, Series A, 
General, 135:370-384. 

[12] John R Koza 1992, Genetic Programming: On the Programming of Computers by Means 
of Natural Selection. Cambridge Massachusetts, The MIT Press. 

[13] Korns, Michael F., 2011. Accuracy in Symbolic Regression. In Riolo, Rick, L, Soule, 
Terrance, and Wortzel, Bill, editors, Genetic Programming Theory and Practice IX, 
New York, New York, USA. Springer (to be published in winter 2011). 

[14] Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. 2005. “The Bees 
Algorithm”. Technical Report Cardiff University. 

[15] Parpinelli, R. S., and Lopes, H. S., 2011. New inspirations in swarm intelligence: a 
survey. Int Journal of Bio-inspired Computation. Vol 3. Number 1. 

[16] Bernstein, J., 2001. Momentum Stock Selection: Using The Momentum Method for 
Maximum Profits. New York, New York, McGraw Hill 

[17] Nicholas, J., 2000. Market-Neutral Investing: Long/Short Hedge Fund Strategies. New 
York, New York, Bloomberg Press. 

[18] Poli, Riccardo, McPhee, Nicholas, Vanneshi, Leonardo, 2009. Analysis of the Effects of 
Elitism on Bloat in Linear and Tree-based Genetic Programming. In Riolo, Rick, L, 
Soule, Terrance, and Wortzel, Bill, editors, Genetic Programming Theory and 
Practice VI, New York, New York, USA. Springer, pp. 91–110. 

www.intechopen.com



Theory and New Applications of Swarm Intelligence

Edited by Dr. Rafael Parpinelli

ISBN 978-953-51-0364-6

Hard cover, 194 pages

Publisher InTech

Published online 16, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The field of research that studies the emergent collective intelligence of self-organized and decentralized

simple agents is referred to as Swarm Intelligence. It is based on social behavior that can be observed in

nature, such as flocks of birds, fish schools and bee hives, where a number of individuals with limited

capabilities are able to come to intelligent solutions for complex problems. The computer science community

have already learned about the importance of emergent behaviors for complex problem solving. Hence, this

book presents some recent advances on Swarm Intelligence, specially on new swarm-based optimization

methods and hybrid algorithms for several applications. The content of this book allows the reader to know

more both theoretical and technical aspects and applications of Swarm Intelligence.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Michael F. Korns (2012). Predicting Corporate Forward 2 Month Earnings, Theory and New Applications of

Swarm Intelligence, Dr. Rafael Parpinelli (Ed.), ISBN: 978-953-51-0364-6, InTech, Available from:

http://www.intechopen.com/books/theory-and-new-applications-of-swarm-intelligence/predicting-corporate-

forward-2-month-earnings



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


