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Current Importance and Potential  
Use of Low Doses of Gamma  

Radiation in Forest Species 

L. G. Iglesias-Andreu, P. Octavio-Aguilar and J. Bello-Bello 
Instituto de Biotecnología y Ecología Aplicada,  

Universidad Veracruzana, Xalapa, Veracruz,  
México 

1. Introduction 

It is well known that ionizing radiation is currently a very important way to create genetic 

variability that is not exists in nature or that is not available to the breeder (Ahloowalia & 

Maluszynski, 2001; Lemus et al., 2002). Therefore, there are many papers aimed to determine 

the best radiation dose to applied in plant breeding work. As a result it has been defined 

intervals gamma radiation useful for many cultivated species, though the determination of 

the radiosensitivity of tissues by exposure to different intensities of radiation (De la Fe et al., 

1996; Castillo et al., 1997; Fuchs et al., 2002; Lemus et al., 2002; Fuentes et al., 2004; Ramírez et 

al., 2006). However, most studies have been conducted have been designed to evaluate the 

biological response to high doses of radiation, while in relatively few studies have used low 

doses to stimulate physiological processes (radiostimulation) although the ionizing 

radiation hormesis has been widely supported (Luckey, 1980). Hormesis is the excitation, or 

stimulation, by small doses of any agent in any sistem (Luckey, 2003). The beneficial effect of 

hormesis has been well documented in species of agricultural importance (Zaka et al., 2004; 

Kim et al., 2005). However, there is not enough information about its use in forestry. 

Although little is known about the basic nature of this phenomenon, Vaiserman (2010) had 

indicated the possible relationship between the hormesis and epigenetic effects. The 

application of low-dose ionizing radiation could produce in coniferous species hormetics 

radiostimulants effects through genetic and epigenetic changes that manifest as adaptive 

responses. 

In Mexico and especially in many natural populations of conifers from Veracruz such as 
Pinus hartwegii Lindl., and Abies religiosa Kunth (Schltdl.) et. Cham., both located in Cofre de 
Perote, Ver., are seriously affected mainly by the high load of lethal alleles which are 
causing a serious reduction in reproductive rate and a significant decrease in the production 
and quality of its seed (Iglesias et al., 2006). 

Despite the usefulness of using ionizing radiation to increase the germination potential 

and generating useful mutations in forestry, there are not many references in the literature 

on the use of nuclear techniques in these species (Iglesias et al., 2010). Therefore, in this 
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chapter will be give a review on the use of low doses of ionizing radiation on forest 

species, and it will perform a particular consideration to the effect of low doses of gamma 

radiation on germination and growth of some variables forest species such as P. hartwegii 

and A. religiosa. 

2. Uses of low doses of ionizing radiation on plant species 

Ionizing radiation is defined as the energy that propagates in the form of photons (X-rays 

and ┛) or in the form of subatomic particles (┙, ┚, neutrons and protons). Among them, 

gamma rays have been reported to be the most efficient ionizing radiation of creating 

mutants in plants. Gamma rays belonging to ionizing radiation group are the most energetic 

form of electromagnetic radiation (Ikram et al., 2010). This kinds of rays possesses the energy 

level from 10 keV to several hundred kiloelectron volts, and they are considered as the most 

penetrating physical mutagenic agent in comparison to other radiation source such as alpha 

and beta rays (Kovács & Keresztes, 2002). Like other ionining radiation gamma rays 

interacts with atoms or molecules to produce free radicals in cells. These radicals can induce 

high mutation in plants because it could produce serious cell damage or afectations in 

important plant cells components (Kovács & Keresztes, 2002). 

 

Species 
Gamma rays 

doses 
Effects Reference 

Vigna radiata (L.) 
Wilczek. 

40 - 80 kR Increase polygenic variability. 
Sangwan & Singh 
(1977) 

Triticum aestivum L. 0.5–7 kR 
Stimulatory effect on height, 
tillering and grain yield. 

Iqbal (1980) 

Sorghum vulgare L. 1–10 kR 
Large reduction in mean 
seedling height and tillering. 

Iqbal (1980) 

Salix nigra Marsh. 0.1 – 100 kR 
Low doses increasing the 
growth rate. 

Gehring (1985) 

Tectona grandis L. f. 
10, 20, 30, 40  

and 50 kR 
Improve the germination  
rate of the seeds. 

Bhargava & 
Khalatkar (1987) 

Allium cepa L. 
10, 20, 40, 80,  
and 100 kR 

Percentage of abnormal 
seedlings increased with 
increase in radiation dose. 

Amjad & Akbar 
(2003) 

Basmati rice varieties 150 – 300 Gy 
Increase of total spikelets  
above the non-irradiated rice. 

Ali & Manzor 
(2003) 

Chrysanthemum 
morifolium cv. 

15, 30  
and 60 Gy 

The regeneration rate decrease 
with increase in the total  
dose of radiation. 

Yamaguchi 
et al. (2008) 

Triticum aestivum L. 
10, 20, 30  
and 40 kR 

Irradiated seeds showd 
superiority over control 
population for several traits. 

Singh & Balyan 
(2009) 

Sesamum indicum L. 
200, 400, 600  
and 800 Gy 

Mutagenic effects by 
intergenomic chromosomal 
rearrangements. 

Kumar & Singh 
(2010) 

Table 1. Application of high-doses of ionizing radiation in plant breeding. 
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Ionizing radiation can be quantified in terms of absorbed dose (D) which is the amount of 
ionizing radiation energy deposited per unit mass of irradiated material. Initially, the 
magnitude was measured in roentgens, called “radiation dose”. A Roentgen is a unit of 
measure used to quantify the radiometric exposure, in other words, the total charge of ions 
released per unit mass of dry air at standard conditions of pressure and temperature, but 
now the most often unit used to quantify the biological effects of ionizing radiation is the 
gray (Gy), which is a unit derived from the international system of units to measure the 
absorbed dose of ionizing radiation for a certain material. One gray is equivalent to the 
absorption of one joule of radiation energy per kilogram of irradiated material. Radiation 
doses are divided into three broad categories:high (> 10 kGy), medium (1 to 10 kGy), and 
low (<1 kGy). 

Gamma rays are widely used for mutation induction in plants. Therefore many studies have 

been done on the dose-response effects of ionizing radiation, specifically gamma radiation 

on several growth and yield traits in plants with high-doses of ionizing radiation (Table 1). 

 

Species 
Gamma rays 

doses 
Effect Reference 

Daucus carota L. 0.5 and 1 kR 
Irradiation accelerated 
germination of carrot seeds. 

Bassam & 
Simon (1996) 

Capsicum annuum L. 
2, 4, 8  

and 16 Gy 

Low doses stimulated the 
growth and stress 
resistance. 

Kim et al. (2005) 

Solanum tuberosum L. 
2.5, 5, 10  

and 15 Gy. 

Low doses increase the 
number of microtubes in 
vitro. 

Bassam  
et al. (2000) 

Beta vulgaris L. 20 kR 
Induced abnormal floral 
structures by mutation. 

Chauhan  
et al. (2009) 

Secale montanum 
Guss. 

0,2,4,6,8,10,12,1
4,16,20,25  
and 30 kR 

Increase the frequency of 
cells in anaphase and 
metaphase. 

Akgün & 
Tosun (2004) 

Table 2. Examples of hormetic effects in plants by low doses of ionizing radiation. 

Some reports (Gunckel & Sparrow, 1961; Ikram et al., 2010) have been shown higher 

exposures of gamma rays produce generally negative effects on plant growth and 

development although the effect of dose rate on mutation frequency might differs among 

plant species. These effects include cytological, anatomy, genetical, biochemical, 

physiological and morphogenetic changes in cells and tissues. Many changes in the plant 

cellular structure and metabolism e.g., dilation of thylakoid membranes, alteration in 

photosynthesis, modulation of the antioxidative system and accumulation of phenolic 

compounds had been documented in different plant species (Kim et al., 2004; Wi et al., 2005). 

Higher exposures of gamma rays usually produce inhibitor effects on Gymnosperm and 

Angiosperm seed germination (Kumari & Singh, 1996) whereas lower exposures produce 

sometimes a stimulatory effect (Raghava & Raghava, 1989; Thapa, 1999). 

It is important define the threshold between high-doses, in several cases dangerous, and 
low-doses with stimulatory effects. A radiostimulant low-dose is defined as any doses from 
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environmental radiation levels and the threshold that marks the boundary between positive 
and negative biological effect (Luckey, 2003). This radiostimulatory effects which has been 
observed in different plant species (Table 2), through the use of low-doses of ionizing 
gamma radiation could be considered an interesting alternative somewhat unexplored in 
agriculture and forestry practice. 

It has been recognized low-doses of radiation promote increased of cell respiration, enzyme 

activation, increase in the threshold of lethal doses of radiation, increasing the production of 

reproductive structures, higher growth, early maturation, accelerated development and 

disease resistance (Luckey, 1980; 1998). However, most of the works done in this way have 

been addressed to find the boundaries between hormesis and tissue damage (Castillo et al., 

1997; Fuchs et al., 2002; Lemus et al., 2002; Fuentes et al., 2004; Ramírez et al., 2006). There is 

few researches have been conducted to evaluate the effect of the radiation on the full cycle of 

the organisms (Cepero et al., 2002; Ramírez et al., 2006). The results obtained in the works of 

radiostimulation or radiohormesis revealed increases (10-40%) in agricultural yields, seed 

germination, contents of carotenes and vitamin C in some vegetables and protein and fat in 

cereals, finally resistance to diseases and abiotic factors (González et al., 2002; Vasilevski, 

2003). On other hand, chronic radiation is another kind of irradiation treatment used to 

increase variation in different plant species (Sparow & Woodwell, 1962). This type of 

irradiation could produce at the plant population level, most severe effects on sexual 

reproduction because during and after meiosis: (1) nuclear volume is high; (2) chromosome 

number is reduced after meiosis; (3) the rate of nuclear division may be low, some species 

requiring two years between meiosis and full maturation of seeds; (4) meiotic pairing and 

reduction tend to enhance the damage wrought by aberrations which may survive in 

diploid somatic cells. In forestry was evaluated too the effects of chronic ionizing radiation 

of low intensity (3–15 r/20 hr day) over a period of several years on the reproductive 

capacity of the trees, floral abnormalities, as well as growth of their progenies (Mergen & 

Stairs, 1962). These authors were found for Pinus rigida a decrease in cone length and in seed 

germination and seedling height for plants grown from irradiated cones that was associated 

with an increase in the chronic gamma radiation accumulated by the trees. For Quercus alba 

was observed visual aberrations in flower morphology in trees receiving from 6 to 12 r/day 

and a decrease on survival percentage and height growth of seedlings with radiation level 

(Mergen & Stairs, 1962). In this case like others mutagenic treatments the relative dosage 

levels necessary to produce specified responses in growth rate, reproductive capacity or in 

degree of mortality vary greatly within a species. 

Irradiation treatments performed at in vitro culture has been also employed to increase 
genetic variability and mutants as a potential source of new commercial cultivars (Rasheed 
et al., 2003; Orbovic´ et al., 2008). So, tissue culture techniques offer a wide choice of explants 
(initial plant material) for gamma radiation treatment (cells, tissues, somatic embryos and 
organs). These explants will give origin to complete plants composed of a few or even of one 
cell with a higher probability for find mutated cells. In vitro culture also allows for the 
handling of unlimited vegetative material for radiation treatment, aseptic and controlled in 
vitro selection, and micropropagation of selected variants (so called somaclones). In 
addition, according to Predieri (2001), tissue culture increases the efficiency of mutagenic 
treatments for variation induction, handling of large populations, use of ready selection 
methods, and rapid cloning of selected variants. 
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Recent developments in biotechnology—especially in understanding the structure and 

function of plant genomes—confirms in vitro mutation induction as one of the most efficient 

and cost-effective tools for functional genomics projects dealing with both forward and 

reverse genetics strategies (Jain, 2001; Shu & Lagoda, 2007). The high number of research 

reports suggests also that mutagenesis in combination with tissue culture has high potential 

in plant breeding programs. It has been indicated (Maluszynski et al., 1995), that the use of 

tissue culture techniques can overcome some of the limitations in the application of 

mutation techniques; these are the lack of effective mutant screening techniques and the 

unrealistically large but necessary size of the mutated population, calculated on the basis of 

an expected mutation frequency for a desired trait. The determination of radio-sensitivity 

tests, irradiation with optimal doses and multiplication of irradiated material through in 

vitro mutation techniques has assumed a new dimension (Ahloowalia & Maluszynski, 

2001). An example of setting the boundary between and tissue damage from ionizing 

radiation was shown by Fuchs et al. (2002). These authors found in callus culture of 

Saccharum sp. (sugarcane), dose of greater than 4 kR of gamma radiation eliminated any 

possibility to induce an organogenetic process in this tissue. In this case, the hormetic 

threshold (2 to 4 kR) was much lower that applied to seeds of other species (4 to 20 kR) 

(Lemus et al., 2002; Ramírez-Calderón et al., 2003; González et al., 2004). 

3. Hormesis and molecular mechanisms of the adaptive response 

The hormesis term comes from greek meaning “to excite”. Exposure of sublethal doses of 
ionizing radiation can induce protective mechanisms against a subsequent higher dose 
irradiation. So, the hormesis is the excitement and stimulation by small doses of any agent 
on any system. Luckey (1980), in his book entitled “Hormesis”, documented thousand 
experiments where fungi and other lower life forms were seen to prosper with doses of 
radiation exceeding their normal background exposures with ionizing radiation. In a second 
book entitled “Radiation Hormesis” (Luckey, 1991) examined hundreds of studies on 
animals and humans, showing that low levels of radiation were beneficial to health, 
longevity, and reproduction. 

Many studies have been also indicated that pre-expose to low dose radiation (or some other 

genotoxic agent) can change radiosensitivity, reducing score of chromosomal aberrations, 

micronuclei and mutations. This phenomenon is called adaptation and could be related with 

defense mechanisms some of them have evolved to minimize genotoxic damage. One of 

these is induced radioresistance or adaptive response (AR). The term "adaptive response" 

usually means that a relatively small "conditioning" radiation dose induces increased 

radioresistance when the cells are irradiated with higher doses several hours later (Hillova 

& Drasil, 1967). Thus, radioadaptive response induction expresses the ability of low dose 

radiation to induce cellular changes that alter the level of subsequent radiation-induced or 

spontaneous damage (Amundson et al., 1999). The exposure to minimal stress inducing a 

very low level of damage can trigger an AR resulting in increased resistance to higher levels 

of the same or of other types of stress (Patra et al., 2003; Asad et al., 2004; Girigoswami & 

Ghosh, 2005; Yan et al., 2006). The AR could be considered a nonspecific phenomenon and 

have been confirmed but not explained by many studies. Adaptation after preexposure to 

chronic or prolonged exposure to low-level radiation doses was not often described. 
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Several types of cellular responses to ionizing radiation, such as the adaptive response, 
suggest that low-dose radiation may possess characteristics that distinguish it from its high-
dose counterpart. Accumulated evidence also implies that the biological effects of low-doses 
and high-doses of ionizing radiation are not linearly distributed. This is an important 
physiological effect of exposure to low doses of radiation. The radioadaptive was first 
documented in a convincing way to protect against chromosomal aberrations (Scott et al., 
2009). 

The capability of forest tree species to adapt to the new environments not only will depend 
on their genetic background, but also rely on their phenotypic plasticity. Several reports 
have shown the involvement of epigenetic modifiers as the basis of the phenotypic 
plasticity, and in particular to the adaptation to abiotic stresses. DNA methylation is one the 
most important epigenetic modification in eukaryotes. It is involved in specific biological 
processes such as gene transcription regulation, gene silencing, mobile element control or 
genome imprinting. Therefore, there is a great interest in analyzing methylation levels and 
distribution within the genome. Epigenetic regulation of gene activity is widespread in the 
genome of eukaryotic cells and can lead to silencing or activation of gene expression. 
According to Scott et al. (2009), high doses of radiation can promote epigenetically silencing 
of adaptive response genes, for example via promoter associated DAN and /or histone 
methylation or deacetylation. 

Adaptive-response genes can be stabilized and activated in response to cellular stress (e.g., 
low dose radiation) through post translational modifications that include acetylation (Ito et 
al., 2002). This radiation, above a stochastic threshold stimulate intracellular and 
intercellular signaling that leads to activated natural protection (ANP) against cancer and 
other genomic-instability-associated diseases (Scott, 2005; Scott & Di Palma, 2006). 

The AR has been observed in bacteria (Assis et al., 2002; Sedgwick & Lindahl, 2002; 

Rohankhedkar et al., 2006), yeast (Boreham & Mitchel, 1991; Gajendiran & Jeevanram, 2002), 

algae (Chankova & Bryant, 2001; Rubinelli et al., 2002; Chankova et al., 2007), insect cells 

(Savina et al., 2003), mammalian cells (Wang & Cai, 2000; Tiku & Kale, 2001; Ulsh et al., 2004; 

Zhou et al., 2004), human cells (Schlade-Bartusiak et al., 2002; Atanasova et al., 2005; Coleman 

et al., 2005; Friesner et al., 2005; Lanza et al., 2005; Seo et al., 2006) and higher plants models 

(Rieger et al., 1993; Panda et al., 1997; Jovtchev & Stergios, 2003; Patra et al., 2003). A study of 

the conditions essential for the induction of an adaptive response is of critical importance to 

understanding the novel biological defense mechanisms against the hazardous effects of 

radiation. The results statistically significant with microorganisms, plants, non vertebrates 

and other animals of experimentation, showed the existence of a radiogenic metabolism, in 

other words, a metabolism promoted by ionizing radiation. 

Little is currently known about the precise mechanisms of AR. There is evidence that 
different stress conditions can activate similar defense mechanisms in biological systems 
(Joiner et al., 1996; 1999; Babu et al., 2003). The AR probably involves the transcription of 
many genes and the activation of numerous signaling pathways that trigger cell defenses 
more efficient detoxification of free radicals, DNA repair systems, induction of new 
proteins in irradiated cells with a conditioning dose, and enhanced antioxidant 
production (Wolff, 1998; Mendez-Alvarez et al., 1999; Pajovic et al., 2001; Assis et al., 2002; 
Chankova & Bryant, 2001; Coleman et al., 2005; Lanza et al., 2005). There is evidence that 
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DNA repair underlies the AR induced by low radiation doses in human and plant cells 
(Lambin et al, 1994; Patra et al., 2003) by increasing the amount and rate of DNA repair 
(Joiner et al., 1996; 1999). It has been proposed that these effects could be related to the 
induction of an AR. A clue as to the nature of the underlying process was provided by 
results showing a dependence on de novo protein synthesis. The synthesis of DNA-
binding proteins (MWs 50, 74 and 130 kdal) was found in radiation-conditioned cells of C. 
reinhardtii (Bryant, 1979). The induction of new protein synthesis by low doses could be 
caused by an effect of low doses on chromatin conformation near genes coding for DNA 
repair proteins (Belyaev et al., 1996). For example, there are earlier observations that 
hydrogen peroxide induced a cross-adaptive response to cumene hydroperoxide in E. coli 
which did not require novel gene products but involved modification of the small subunit 
of Ahp, a protein involved in the protection against alkyl hydroperoxides (Asad et al., 
1998). On the other hand, Reactive Oxygen Species (ROS) could serve as signal 
transducers in plant and animal cells (Babu et al., 2003; Matsumoto et al., 2004). As 
signaling molecules, ROS might affect the development of AR through participation in the 
damage-sensing process after conditioning dose exposure. 

4. Current and potential use of low ionizing radiation in forestry:  
A case study 

At present there are virtually no studies of hormesis by ionizing radiation in forest species. 

Most of the work focused radiation treatment of species of agronomic interest since they 

have shorter lifetime and germination time, the tissues of this type of seeds have a greater 

amount of water, which maximizes the effect of radiation; and the generation of seedlings is 

much easier in the herbaceous form. 

One of the few jobs that exist in tree species was conducted with Araucaria angustifollia (Bert) 

O. Kuntze (Ferreira et al., 1980). The study showed a hormetic effect on seed germination 

and seedling growth at low doses of gamma radiation (0.1 to 0.4 kR). This first study 

showed the effectiveness of ionizing radiation to improve seed germination in species of 

trees, one of the main agronomic traits for forest management. 

Abies religiosa (fir) and Pinus hartwegii are two conifer species that develop on the National 

Park Cofre de Perote, Veracruz, Mexico. Both have great ecological (P. harwegii is the conifer 

species taking place at higher altitudes) and economical importance (in particular, the fir is 

valuable for its timber, trementine production and as an ornamental Christmas trees). These 

forests have protective functions to other resources to cushion the effects of environmental 

pollution and contribute as a regulation of the hydrological cycle (Solís, 1994). 

In Veracruz, these populations develop principally in the National Park Cofre de Perote and 

Pico de Orizaba between 2 800 y 3 500 m.a.s.l. in 17°30’ to 20°00’ N and 97°104’ W 

(Manzanilla 1974; Sánchez-Velásquez & Pineda-López 1993). Both species have been 

seriously affected by fire and logging clandestine, has resulted in a reduction of the effective 

size of the same low viability and high percentage of abortive seeds, and a significant 

decrease in reproductive rate, apparently due to manifestation of the phenomenon of 

inbreeding depression, common in coniferous species (Williams & Savolaienen, 1996). But, 

in both species, is common a low reproductive rate (Franklin, 1974). 
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Despite the potential utility of the low doses of ionizing radiation for the induction of 
hormetic effects in these species, to date have not implemented these techniques to increase 
the germination potential and generating useful mutation in forestry. Therefore, we study 
the mutagenic effect of gamma radiation and know whether low doses of radiation can have 
a stimulatory effect on germination and development of P. hartwegii and A. religiosa. 
Twenty-five to thirty cones of A. religiosa and P. hartwegii were collected in populations that 
develop on 3510 m.a.s.l., in the locality “El Conejo”, both located in the National Park “Cofre 
de Perote” Veracruz, Mexico. These populations are fragmented and have been affected by 
significant changes in land use to agricultural crops (Sánchez-Velásquez et al., 1991). 

To apply the mutagenic treatments, seeds were extracted from the cones collected, and kept 

under controlled conditions at a relative humidity of 8%. Two replicates of 100 seeds of each 

species at low doses (2, 5, 10, 15 and 20 Gy) of gamma radiation (Co60) were made. The seeds 

for irradiation were placed at a distance of 80 cm (for a field of 30 x 30 cm), with the help of 

a head of the Cobalt 60 Unit (Theraton 780e) in the “Centro de Cancerologia de Xalapa, 

Veracruz, Mexico; and plastic tray, which was secured in a cage at 50 cm from the radiation 

source (Figure 1). Subsequently, the irradiated seeds of each species and their corresponding 

controls were planted separately under greenhouse conditions in trays containing a mixture 

of forest soil and sand in a 1:1 ratio. In both cases we used a randomized complete block 

design with three replications. Seedlings were transferred to plastic bags for study. 

 

Fig. 1. Cobalt 60 Unit (Theraton 780e), used for irradiation of seeds of Abies religiosa and 
Pinus hartwegii, located in Centro Estatal de Cancerología de Xalapa, Veracruz, Mex. 

To evaluate the effect of the applied radiation dose was counted the number of seeds 

germinated at 90 days for each dose studied; the percentage of germination was calculated. 

Was considered germinated seeds showed a greater than 5 mm radical length. At 45 days, 

was evaluated the height and number of needles of each seedling. Height (cm) was 

measured with a millimeter rule from the base of the stem of the root to the terminal bud. 

From the measurements we calculated the percentages of germination, plant height and 

number of needles as a relative value with respect to control. 

The results showed a significant radiostimulating effect on the germination of the seeds of 
Abies religiosa and Pinus hartwegii treated with low doses of gamma radiation (Figure 2). 
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Fig. 2. Effect of the gamma radiation on seed germination in Abies religiosa and Pinus 
hartwegii. 

According to these results the radiostimulatory effect was more pronounced in Pinus 
hartwegii since treatment of 2 Gy resulted in a high percentage of germination. 5 Gy dose 
was most effective to induce a similar effect on the fir. 

These results are consistent with the radiostimulatory effect observed by Rudolph (1979) and 
Sokolov et al. (1998) to evaluate the germination of seeds of Pinus bankasiana and P. sylvestris, 
respectively. On the other hand, showed that, like as detected by Nwachukwu et al. (1994) and 
Lemus et al. (2002); the frequency of mutation increased with the percentages of germination. 
The few seedlings that managed to germinate at the highest doses of gamma radiation showed 
thickened short roots and therefore were less vigorous and did not survive. 

Low doses of gamma radiation used in both species showed similar radiostimulatory effects 
on the characters of the seedling height and number of needles (Figure 3 a,b). 

a) 

b) 

 

Fig. 3. Effect of the low-doses of gamma radiation on height (a) and number of needles in 
seedlings (b), in Pinus hartwegii and Abies religiosa. 
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As for the variable germination, was found at 2 Gy a radiostimulatory effect on height and 
number of needles of the seedlings of P. hartwegii. In fir, this effect is slightly higher. 

In addition, there was a trend towards reduction in height and number of needles in both 
species as they increased the dose of radiation. This effect was more pronounced for the 
number of needles of P. hartwegii (Figure 3 b). 

According to Olvera & West(1985); reducing the growth of seedlings generated from seeds 
treated with high doses of radiation is mainly due to the destruction of auxin and its 
precursors. It should be noted that the height variable is used in this type of study as the 
most sensitive indicator of radiation. 

Based on our results consider the possibility of using the aforementioned dose to induce 
mutations that may be of interest in these species. However, all the applied doses produced 
a negative effect on the number of needles per plant, which are fundamental in the 
production of Christmas trees. Doses of 2, 5 and 10 Gy gave average values ranging from 3.3 
to 6.8 needles per seedlings, well below the average control value, which was 27.7 in P. 
hartwegii. Contravention in the production because mutations are required to encourage a 
more fodder for a demanding market of this product. 

It has been suggested in this regard that high doses of radiation cause damage that affects 

physiological character related to growth, especially with the number of needles. High doses 

of radiation can alter in a direct or indirect the DNA, causing damage of bases, single strand 

breaks and chromosomal alterations, serious and irreversible destruction of the membrane 

system of mitochondria and chloroplasts (Ladanova, 1993). However, it will take more 

repetitions to achieve seedlings with large needles and branches, or select for traditional 

breeding seedlings with large needles for future generations. 

In summary, prolonged exposure to radiation by gamma rays produced a severe effect on 

almost all variables; this effect was greater in the seeds irradiated with 15 and 20 Gy. In the 

range of medium dose (5 Gy), radiation induced lesions can eventually lead to an important 

radiobiological response, which at the cellular level can alter the viability and even cause 

cell death (Ward, 1988). 

This response was manifested by affectations in traits related to germination and seedling 

growth, as the germination percentage and number of needles that were most affected. On 

the other hand, not all variables were impacted in the same direction, since a dose of 5 Gy 

showed the presence of a radiopositive effect in the percentage of germination for fir, and at 

doses of 5 - 10 Gy there was a negative effect at the height of the plant and number of 

needles, with respect to control. However, when analyzing these results it is recommended 

to fully explore dose of 5 Gy for A. religiosa, and other below 2 Gy for P. hartwegii, in 

accordance with the sensitivity shown by this species to gamma radiation for improve the 

germination rate. 

5. Conclusions 

With all these examples we can say that low doses of ionizing radiation could improve the 
crop by increasing production, reducing the time of germination, accelerate growth of 
seedlings and generate interest new varieties of some plant species, including trees. 
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However, to achieve these results it is important to set the threshold hormetic species 
specific depending upon the type of tissue that is irradiated, the quantity of humidity inside 
the tissue and establish an appropriate model depending on the type of production that is 
required. 

Radiation hormesis provides the basis for appropriate utilization of ionizing radiation as a 
useful tool in our society. It can provide more efficient use of resources, maximum 
production of grain, vegetables, and meat, and increased health and longevity. Efficient 
utilization of nature's resources demands support to explore the practical application of 
radiation hormesis. 

6. References 

Ahloowalia, B. & Maluszynski, M. (2001). Induced mutations- A new paradigm in plant 

breeding. Euphytica, 118(2):167-173. 

Akgün, I. & Tosun, M. (2004). Agricultural and Cytological Characteristics of M1 Perennial 

Rye (Secale montanum Guss.) as effected by the application of different doses of 

Gamma Rays. Pakistan Journal of Biological Science, 7(5):827-833. 

Ali, C. & Manzoor, A. (2003). Radiosensitivity studies in basmati rice. Pakistan Journal of 

Botany, 35(2):197-207. 

Amjad, M. & Akbar, A. (2003). Effect of post-irradiation storage on the radiation-induced 

damage in onion seeds. Asian Journal of Plant Science, 2(9):702-707. 

Amundson, S.; Do, K. & Fornace, A. (1999). Induction of stress genes by low doses of 

gamma rays. Radiation Research, 152:225-231. 

Asad, N.; Asad, L.; Silva, A.; Felzenszwalb, I. & Leitão, A. (1998). Hydrogen peroxide 

induces protection against lethal effects of cumene hydroperoxide in Escherichia coli 

cells: An Ahp dependent and OxyR independent system? Mutants Research 407:253-

259. 

Asad, N.; Asad, L.; De Almeida, C.; Felzenszwalb, I.; Cabral-Neto, J. & Leitão, A. (2004). 

Several pathways of hydrogen peroxide action that damage the E. coli genome. 

Genetic and Molecular Biology, 27:291-303. 

Assis, M.; De Mattos, J.; Caceres, M.; Dantas, F.; Asad, L.; Asad, N.; Bezerra, R.; Caldeira-de-

Araujo, A. & Bernardo-Filho, M. (2002). Adaptive response to H2O2 protects against 

SnCl2 damage: The OxyR system involvement. Biochemistry, 84:291-294. 

Atanasova, P.; Hadjidekova, V. & Darroudi, F. (2005). Influence of conditioning on cell 

survival and initial chromosome damage in X-irradiated human cells. Trakia Journal 

of Science, 3:37-42. 

Babu, S.; Akhtar, T.; Lampi, M.; Tripuranthakam, S.; Dixon, G. & Greenberg, B. (2003). 

Similar stress responses are elicited by copper and ultraviolet radiation in the 

aquatic plant Lemna gibba: Implication of reactive oxygen species as common 

signals. Plant Cell Physiology, 44:1320-1329. 

Bassam, A. & Simon, P. (1996). Gamma irradiation-induced variation in carrots (Daucus 

carota L.). American Society for Horticultural Science, 121(4): 599-603. 

www.intechopen.com



 
Gamma Radiation 

 

274 

Bassam, A.; Ayyoubi, Z. & Jawdat, D. (2000) The effect of gamma irradiation on potato 

microtuber production in vitro. Plant Cell, Tissue and Organ Culture, 

10.1023/A:1006477224536. 

Belyaev, I.; Spivak, I.; Kolman, A. & Harms-Ringdahl, M. (1996). Relationship between 

radiation induced adaptive response in human fibroblasts and changes in 

chromatin conformation. Mutant Research, 358:223-230. 

Bhargava, Y. & Khalatkar, A. (2004). Improve performance of Tectona grandis seeds with 

gamma irradiation. Acta Horticulturae, 215:51-54. 

Boreham, D. & Mitchel, R. (1991). DNA lesions that signal the induction of radioresistance 

and DNA repair in yeast. Radiation Research, 128:19-28. 

Bryant, P. (1979). Evidence for inducible DNA-associated proteins formed during the 

development of increased resistance to radiation in Chlamydomonas. Progress Physic 

and Theoretical Chemistry, 6:305-313. 

Castillo, J.; Estévez, A.; González, M.; Castillo, E. & Romero, M. (1997) Radiosensibilidad de 

dos variedades de papa a los rayos gamma de 60Co. Cultivos Tropicales, 18(1): 62-65. 

Cepero, L.; Mesa, A.; García, M. & Suárez, J. (2002). Efecto de la radiación láser en semillas 

de Albizia lebbeck. I. fase de vivero. Pastos y Forrajes. 25 (3):181. 

Chankova, S. & Bryant, P. (2001). Acceleration of DNA-double strand rejoining during the 

adaptive response of Chlamydomonas reinhardtii. Radiation Biology and Radioecology, 

42(6):600-603. 

Chankova, S.; Dimova, E.; Dimitrova, M. & Bryant, P. (2007). Induction of DNA double-

strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA 

double-strand breaks rejoining in the formation of an adaptive response. Radiation 

and Environmental Biophysics, 46:409-416. 

Chauhan, S.; Nakashima, H. & Kinoshita, T. (2009). Gamma-ray induced abnormal floral 

mutants in sugar beet (Beta vulgaris L.) The International Journal of Plant Reproductive 

Biology, 1(2):137-140. 

Coleman, M.; Yin, E.; Peterson, L.; Nelson, D.; Sorensen, K.; Tuckera, J. & Wyrobeka, A. 

(2005). Low-dose irradiation alters the transcript profiles of human lymphoblastoid 

cells including genes associated with cytogenetic radioadaptive response. Radiation 

Research, 164:369-382. 

De la Fe, C.; Romero, M. & Castillo, E. (1996). Radiosensibilidad de semillas de papa a los 

rayos gamma 60Co. Cultivos Tropicales, 17(3): 77-80. 

Ferreira, C.; Do Nascimento, V.; Ferreira, M. & Vencovscky, R. (1980). Efeito de baixas doses 

de radiacao fama na conservacao do poder germinativo de sementes de Araucaria 

angustifolia (Bert) O. Kuntze. IPEF, 21:67-82. 

Franklin, F. (1974). Abies Mill. (Fir) Gen. Tech. rep W/N. USDA. Forest Service Pacific 

Northwest Forest and Range Experiment Station. USA. 

Friesner, J.; Liu, B.; Culligan, K. & Britt, A. (2005). Ionizing radiation- dependent γ-H2AX 

focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia 

mutated and Rad3-related. Molecular Cell Biology, 16:2566-2576. 

Fuchs, M.; González, V.; Castroni, S.; Díaz, E. & Castro, L. (2002). Efecto de la radiación 

gamma sobre la diferenciación de plantas de caña de azúcar a partir de callos. 

Agronomía Tropical, 52:311-323. 

www.intechopen.com



 
Current Importance and Potential Use of Low Doses of Gamma Radiation in Forest Species 

 

275 

Fuentes, J.; Santiago, L.; Valdés, Y.; Guerra, M.; Ramírez, I.; Prieto, E.; Rodríguez, N. & 

Velázquez, B. (2004). Mutation induction in zygotic embryos of avocado (Persea 

americana Mill). Biotecnología Aplicada, 21:82-84. 

Gajendiran, N. & Jeevanram, R. (2002). Environmental radiation as the conditioning factor 

for the survival of yeast Saccharomyces cerevisiae. Indian Journal of Experimental 

Biology, 40:95-100. 

Gehring, R. (1985). The effect of gamma radiation on Salix nigra Marsh. Cuttings. Arkansas 

Academy of Science Proceedings, 39:40-43. 

Girigoswami, B. & Ghosh, R. (2005). Response to gammairradiation in V79 cells conditioned 

by repeated treatment with low doses of hydrogen peroxide. Radiation 

Environmental Biophysics, 44:131-137. 

González, L.; Ramírez, R. & Camejo, Y. (2002). Estimulación del crecimiento y desarrollo de 

plántulas de tomate del cultivar Santa Clara a los rayos gamma del 60Co. 

Alimentaria, 331: 67-70. 

González, G.; Alemán, S.; Barredo, F.; Keb, M.; Ortiz, R.; Abreu, E. & Robert, M. (2004). Una 

alternativa de la recuperación henequenera de Cuba, mediante el uso de técnicas 

biotecnológicas y moleculares. Biotecnología Aplicada, 21 (1): 44-49. 

Gunckel, J. & Sparrow, A. (1961). Ionizing radiation: Biochemical, Physiological and 

Morphological aspects of their effects on plants. In: Encyclopedia of Plant Physiology, 

Ruhland,W. pp. 555-611, Springer-Verlag, Berlin. 

Hillova, J. & Drasil, V. (1967). The inhibitory effect of iodoacetamide on recovery from 

sublethal damage in Chlemydomonas reinbardi. International Journal of Radical Biology, 

12:201-208. 

Iglesias, L.; Mora, I.; Casas, J. (2006) Morfometría, viabilidad y variabilidad de las semillas 

de la población de Pinus hartwegii del Cofre de Perote, Veracruz, México. Cuadernos 

de Biodiversidad, 19:14-22. 

Iglesias, L.; Sánchez-Velásquez, L.; Tivo-Fernández, Y.; Luna-Rodríguez.; Flores-Estévez, N.; 

Noa-Carrazana, J.; Ruiz-Bello, C. & Moreno-Martínez, J. (2010). Efecto de 

radiaciones gamma en Abies religiosa (Kunth) Schltd. (et Cham). Revista Chapingo. 

Serie Ciencias Forestales y del Ambiente, 16(1): 5-12. 

Ikram, N.; Dawar, S.; Abbas, Z. & Javed, Z. (2010). Effect of (60cobalt) gamma rays on 

growth and root rot diseases in mungbean (Vigna radiata l.). Pakistan Journal of 

Botany, 42(3):2165-2170. 

Iqbal, J. (1980). Effects of acute gamma irradiation, developmental stages and cultivar 

differences on growth and yiel of wheat and sorghum plants. Environmental and 

Experimental Botany, 20(3):219-231. 

Ito, D.; Walker, J.; Thompson, C.; Moroz, I.; Lin, W. & Veselits, M. (2004). Characterization of 

stanniocalcin 2, a novel target of the mammalian unfolded protein response with 

cytoprotective properties. Molecular Cell Biology, 24:9456–69. 

Jain, S. (2001). Tissue culture-derived variation in crop improvement. Euphytica, 118:153-166. 

Joiner, M.; Lambin, P.; Malaise, E.; Robson, T.; Arrand, J.; Skov, K. & Marples, B. (1996). 

Hypersensitivity to very-low single radiation doses: Its relationship to the adaptive 

response and induced radioresistance. Mutation Research, 358:171-183. 

www.intechopen.com



 
Gamma Radiation 

 

276 

Joiner, M.; Lambin, P. & Marples, B. (1999). Adaptive response and induced resistance. 

Critical Academic Science, 322:167-75. 

Jovtchev, G. & Stergios, M. (2003). Genotoxic and adaptive effect of cadmium chloride in 

Hordeum vulgare meristem cells. Comptes Rendus Academic Bulgarian Science, 56:75-

80. 

Khalatkar, A. & Bhargava Y. (1987) Effect of gamma radiations on the nuts (Seeds) of 

Anacardium occidentale. ISHS Acta Horticulturae, 215:45-50. 

Kim, J.; Baek, M.; Chung, B.; Wi, S. & Kim, J. (2004). Alterations in the photosynthetic 

pigments and antioxidant machineries of red pepper (Capsicum annuum L.) 

seedlings from gamma-irradiated seeds. Journal of Plant Biology, 47: 314-321. 

Kim, J.; Chung, B.; Kim, J. & Wi, S. (2005). Effects of in planta gamma-irradiation on growth, 

photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) 

plants. Journal of Plant Biology, 48(1): 47-56. 

Kovács, E. & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. 

Micron, 33: 199-210. 

Kumar, G. & Singh, Y. (2010). Induced intergenomic chromosomal rearrangements in 

Sesamum indicum L. CYTOLOGIA, 75 (2):157-162. 

Kumari, R. & Singh, Y. (1996). Effect of gamma rays and EMS on seed germination and plant 

survival of Pisum sativum L., and Lens culinaris. Medical Neo Botanica, 4(1): 25-29. 

Ladanova, N. (1993). The ultrastructural organization of pine needles after radiation 

exposure. Radiobiologia, (33(1):25-30. 

Lambin, P.; Fertil, B.; Malaise, E. & Joiner, M. (1994). Multiphasic survival curves for cells of 

human tumor cell lines: Induced repair or hypersensitive subpopulation? Radiation 

Research, 138:32-36. 

Lanza, V.; Pretazzoli, V.; Olivieri, G.; Pascarella, G.; Panconesi, A. & Negri, R. (2005). 

Transcriptional response of human umbilical vein endothelial cells to low doses of 

ionizing radiation. Journal of Radiation Research, 46:265-276. 

Lemus, Y.; Méndez-Natera, J.; Cedeño, J. & Otahola-Gómez, V. (2002). Radiosensibilidad de 

dos genotipos de frijol (Vigna unguiculata (L.) Walp. a radiaciones gamma. Revista 

UDO Agrícola, 2: 22-28. 

Luckey, T. (1980). Hormesis with ionizing radiations. CRC press. Boca Raton, FLO, USA. 

Luckey, T. (1991). Radiation Hormesis. CRC press. Boca Raton, FLO, USA. 

Luckey, T. (1998). Radiation Hormesis: Biopositive effect of Radiation. Radiation Science and 

Health. CRC press. Boca Raton, FLO, USA. 

Luckey, T. (2003). Radiation for health. Radio Protection Management, 20:13-21. 

Maluszynski, M.; Ahloowalia, B. & Sigurbjörnsoon, B. (1995). Application of in vitro and in 

vivo mutation techniques for crop improvent. Euphytica, 85:303-3-15. 

Manzanilla, H. (1974). Investigaciones Epidométricas y Silvícolas en Bosques Mexicanos de Abies 

religiosa. Dirección General de Información y Relaciones Públicas de la SAG. 

México, D. F. 

Matsumoto, H.; Takahashi, A. & Ohinishi, T. (2004). Radiationinduced adaptive response 

and bystander effects. Biological Science Space, 18:247-254. 

Mendez-Alvarez, S.; Leisinger, U. & Eggen, R. (1999). Adaptive responses in Chlamydomonas 

reinhardtii. International Microbiology, 2:15-22. 

www.intechopen.com



 
Current Importance and Potential Use of Low Doses of Gamma Radiation in Forest Species 

 

277 

Mergen, F. & Stairs, G. (1962). Low level chronic gamma irradiation of a Pitch Pine-Oak 

forest-its physiological and genetical effects on sexual reproduction. Radiation 

Botany, 2(3-4):205-206. 

Nwachukwu, E.; Ene, L. & Mbanaso, E. (1994). Radiation sensitivity of two ginger 

varieties (Zingiber officinale Rosc.) for gamma irradiation. In: Der Tropenlandwirt, 

Zeltschrift für Die Lndwirtschaft In Den Tropen and Suptropen. Jahrgang, S. 93-103. 

South Africa. 

Olvera, E. & West, S. (1985). Aspects of germination of Leucaena. Tropical Agricultural, 

62(1):68-72. 

Orbovic´, V.; Cálovic´, M.; Viloria, Z.; Nielsen, B.; Gmitter, F.; Castle, W. & Grosser, J. (2008). 

Analysis of genetic variability in various tissue culture-derived lemon plant 

populations using RAPD and flow cytometry. Euphytica, 161:329–335. 

Pajovic, S.; Joksic, G.; Pejic, S.; Kasapovic, J. & Cuttone, L. (2001). Antioxidant dose response 

in human blood cells exposed to different types of irradiation. The Sciences, 1:133-

136. 

Panda, K.; Patra, J. & Panda, B. (1997). Persistence of cadmium- induced adaptive response 

to genotixicity of maleic hydrazide and methyl mercuric chloride in root meristem 

cells of Allium cepa L.: Differential inhibition by cycloheximide and buthionine 

sulfoximine. Mutation Research, 389:129-139. 

Patra, J.; Sahoo, M. & Panda, B. (2003). Persistence and prevention of aluminium- and 

paraquat-induced adaptive response to methyl mercuric chloride in plant cells in 

vivo. Mutation Research, 538:51-61. 

Predieri, S. (2001). Mutation induction and tissue culture in improving fruits. Plant Cell, 

Tissue and Organ Culture, 64:185–210. 

Raghava, R. & Raghava, N. (1989). Effect of gamma irradiation on fresh and dry weight of 

plant parts in Physallis L. Geobios, 16(6): 261-264. 

Ramírez, R.; González, L.; Camejo, Y.; Zaldivar, N. & Fernández, Y. (2006) Estudio de 

radiosensibilidad y selección del rango de dosis estimulantes de rayos X en 

cuatro variedades de tomate (Lycopersicon esculentum Mill). Cultivos Tropicales, 

27(1):63-67. 

Ramírez-Calderón, J.; Cervantes-Santana, T.; Villaseñor-Mir, H. & López-Castañeda, C. 

(2003). Selección para componentes del rendimiento de grano en triticale 

irradidado. Agrociencia, 37(6): 595-603. 

Rasheed, S.; Tahira, F.; Khurram, B.; Tayyab, H. & Shiekh, R. (2003). Agronomical and 

physiochemical characterization of somaclonal variants in Indica basmati rice. 

Pakistan Journal of Biological Science, 6:844–848. 

Rieger, R.; Michaelis, A.; Jovtchev, G. & Nicolova, T. (1993). Copper sulphate and lead 

nitrate pretreatments trigger “adaptive responses” to the induction of chromatid 

aberrations by maleic hydrazide (MH) and /or JEM in Vicia faba, Hordeum vulgare, 

and human peripheral blood lymphocytes. Biology Zentralbl, 112:18-27. 

Rohankhedkar, M.; Mulrooney, S.; Wedemeyer, W. & Hausinger, R. (2006). The AidB 

component of the Escherichia coli adaptive response to alkylating agents is a 

flavincontaining, DNA-binding protein. Journal of Bacteriology, 188:223-230. 

www.intechopen.com



 
Gamma Radiation 

 

278 

Rubinelli, P.; Siripornadulsil, S.; Gao-Rubinelli, F. & Sayre, R. (2002). Cadmium- and iron-

stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: 

Evidence for H43 protein function in iron assimilation. Planta, 215:1-13. 

Rudolph, T. (1979). Effects of gamma irradiation of Pinus banksiana Lamb. seed as expressed 

by M 1 trees over 10-year period. Environmental and Experimental Botany, 19(2):85-

92. 

Sánchez-Velásquez, L. ; Pineda-López, M. & Martínez-Hernández, A. (1991). Distribución y 

estructura de la población de Abies religiosa Schl. et Cham., en el Cofre de Perote, 

Estado de Veracruz, México. Acta Botánica Mexicana, 16: 45-55. 

Sánchez-Velásquez, L. & Pineda-López, M. (1993). Conservación y desarrollo rural en zonas 

de montaña: El manejo forestal como un elemento potencial en Veracruz. BIOTAM, 

5:35-44. 

Sangwan, H. & Singh, R. (1977). Pattern of gamma ray-induced polygenic variability in 

mung (Vigna radiata (L) Wilcrek). Journal of Genetics, 63(2):83-88. 

Savina, N.; Dalivelya, O. & Kuzhir, T. (2003). Adaptive response to alkylating agents in the 

Drosophila sex-linked recessive lethal assay. Mutation Research, 535:195-204. 

Schlade-Bartusiak, K.; Stembalska-Kozlowska, A.; Bernady, M.; Kudyba, M. & Sasiadek, M. 

(2002). Analysis of adaptive response to bleomycin and mitomycin C. Mutation 

Research, 513:75-81. 

Scott, B. & Di Palma, J. (2006). Sparsely ionizing diagnostic and natural background 

radiations arelikely preventing cancer and other genomic-instability-associated 

diseases. Dose-Response, 5:230-255. 

Singh, N. K. & Balyan H. S. (2009) Induced mutations in bread wheat (Triticum aestivum L.) 

CV. ”Kharchia 65” for reduced plant height and improve grain quality traits. 

Advances in Biological Research, 3(5-6):215-221. 

Shu, Q. & Lagoda, P. (2007) Mutation techniques for gene discovery and crop improvement. 

Molecular Plant Breeding, 5:193-195. 

Scott, R. B., Belinsky, S. A., Leng, S., Lin, Y., Wilder, J. A., Damiani, L. A. (2009) Radiation-

stimulated epigenetic reprogramming of adaptative-response genes in the lung: an 

evolutionary gift for mounting adaptative protection against lung cancer. Dose-

Response, 7:104-131. 

Scott, B. (2005). Stochastic thresholds: A novel explanation of nonlinear dose-response 

relationships. Dose-Response, 3:547-567. 

Scott, B.; Belinsky, S.; Leng, S.; Lin, Y.; Wilder, J. & Damiani, L. (2009). Radiation-

stimulated epigenetic reprogramming of adaptive-response genes in the lung: an 

evolutionary gift for mounting adaptive protection against lung cancer. Dose-

Response, 7:104–131. 

Sedgwick, B. & Lindahl, T. (2002). Recent progress on the Ada response for inducible repair 

of DNA alkylation damage. Oncogene, 21:8886-8894. 

Seo, H.; Chung, H.; Lee, Y.; Bae, S.; Lee, S. & Lee, Y. (2006). p27Cip/Kip is involved in Hsp25 

or inducible Hsp70 mediated adaptive response by low dose radiation. Journal of 

Radiation Research, 47:83-90. 

Shu, Q. & Lagoda, P. (2007). Mutation techniques for gene discovery and crop improvement. 

Molecular Plant Breeding, 5:193-195. 

www.intechopen.com



 
Current Importance and Potential Use of Low Doses of Gamma Radiation in Forest Species 

 

279 

Singh, N. & Balyan, H. (2009). Induced mutations in bread wheat (Triticum aestivum L.) CV. 

”Kharchia 65” for reduced plant height and improve grain quality traits. Advances 

in Biological Research, 3(5-6), 215-221. 

Sokolov, M.; Isayenkov, S. & Sorochynskyi, B. (1998). Low-dose irradiation can modify 

viability characteritics of common pine (Pinus sylvestris) seeds. Tsitologiya Genetika, 

32(4): 65- 71. 

Solís P. (1994). Monografía de Pinus hartwegii Lindl. Tesis de licenciatura. División de Ciencias 

Forestales, Universidad Autónoma Chapingo. Chapingo, México. 

Sparrow, A. & Woodwell, G. (1962). Prediction of the sensitivity of plants to chronic gamma 

irradiation. Radiation Botany, 2(1): 9-12. 

Thapa, C. (1999). Effect of acute exposure of gamma rays on seed germination of Pinus kesiya 

Gord and P. wallichiana A.B. Jacks. Botanica Orientalis Journal of Plant Science, 120- 

121. 

Tiku, A. & Kale, R. (2001). Radiomodification of glyoxalase I in the liver and spleen of mice: 

Adaptive response and split-dose effect. Molecular Cell Biochemistry, 216:79-83. 

Ulsh, B.; Miller, S.; Mallory, F.; Mitchel, R.; Morrison, D. & Boreham, D. (2004). Cytogenetic 

dose-response and adaptive response in cells of ungulate species exposed to 

ionizing radiation. Journal of Environment Radioactive, 74:73-81. 

Vaiserman, A. (2010). Hormesis, adaptive epigenetic reorganization, and implications for 

human health and longevity. Dose Response, 8(1):16–21. 

Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable 

agriculture. Bulgarian Journal of Plant Physiology, Special Issue:179-186. 

Wang, G. & Cai, L. (2000). Induction of cell proliferation hormesis and cell-survival adaptive 

response in mouse hematopoietic cells by whole-body low-dose radiation. 

Toxicology Science, 53:369-376. 

Ward, J. (1988). DNA damage produced by ionizingradiation in mammalian cells: identities, 

mechanisms of formation, and repairability. Programing Nucleic Acid Research and 

Molecular Biology. 35: 96–128. 

Wi, S.; Chung, B.; Kim, J.; Baek, M.; Yang, D.; Lee J. & Kim, J. (2005).Ultrastructural changes 

of cell organelles in Arabidopsis stem after gamma irradiation. Journal of Plant 

Biology, 48(2): 195-200. 

Williams, C. & Savolaienen, O. (1996). Inbreeding Depression in Conifers: Implications for 

Breeding Strategy. Foretry Science, 42: 102–117. 

Wolff, S. (1998). The adaptive response in radiobiology: evolving insights and implications. 

Environ Health Perspective, 106(1):277–283. 

Yamaguchi, H.; Shimizu, A.; Degi, K. & Morishita T. (2008). Effect of dose and dose rate of 

gamma ray irradiation on mutation induction and nuclear DNA content in 

chrysanthemum. Breeding Science, 58:331-335. 

Yan, G.; Hua, Z.; Du, G. & Chen, J. (2006). Adaptive response of Bacillus sp. F26 to hydrogen 

peroxide and menadione. Current Microbiology, 52:238-242. 

Zaka, R.; Chenal, C. & Misset, M. (2004). Effects of low doses of short-term gamma 

irradiation on growth all development through two generations of Pisum sativum. 

Science Total Environment, 320:121-129. 

www.intechopen.com



 
Gamma Radiation 

 

280 

Zhou, H.; Randers-Pehrson, G.; Waldren, C. & Hei, T. (2004). Radiation- induced bystander 

effect and adaptive response in mammalian cells. Advance Space Research, 34:1368-

1372. 

www.intechopen.com



Gamma Radiation

Edited by Prof. Feriz Adrovic

ISBN 978-953-51-0316-5

Hard cover, 320 pages

Publisher InTech

Published online 21, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book brings new research insights on the properties and behavior of gamma radiation, studies from a

wide range of options of gamma radiation applications in Nuclear Physics, industrial processes, Environmental

Science, Radiation Biology, Radiation Chemistry, Agriculture and Forestry, sterilization, food industry, as well

as the review of both advantages and problems that are present in these applications. The book is primarily

intended for scientific workers who have contacts with gamma radiation, such as staff working in nuclear power

plants, manufacturing industries and civil engineers, medical equipment manufacturers, oncologists, radiation

therapists, dental professionals, universities and the military, as well as those who intend to enter the world of

applications and problems of gamma radiation. Because of the global importance of gamma radiation, the

content of this book will be interesting for the wider audience as well.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

L. G. Iglesias-Andreu, P. Octavio-Aguilar and J. Bello-Bello (2012). Current Importance and Potential Use of

Low Doses of Gamma Radiation in Forest Species, Gamma Radiation, Prof. Feriz Adrovic (Ed.), ISBN: 978-

953-51-0316-5, InTech, Available from: http://www.intechopen.com/books/gamma-radiation/current-

importance-and-potential-use-of-low-doses-of-gamma-radiation-in-forest-species



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


