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1. Introduction  

Recent studies have identified an increased incidence of the normally rare imprinting 

disorders, Beckwith-Wiedemann syndrome (BWS; NIM130650) and Angelman syndrome 

(AS; NIM105830), in ART babyes (DeBaun et al., 2003; Gosden et al., 2003; Maher, 2005). The 

identification of epigenetic changes at imprinted loci in ART babyes has led to the 

suggestion that the technique itself may predispose embryos to acquire imprinting errors. 

Both in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are associated 

with the increased risk of imprinting disorders and it is not clear at what point these 

imprinting errors arise (Bowdin et al., 2007; Doornbos et al., 2007). 

Genomic imprinting confers different functions on the two parental genomes during 

development by silencing one allele of each imprinted gene in a parent-of-origin dependent 

manner (Ohlsson et al., 1998; Reik and Walter, 1998; Surani, 1998; Tilghman, 1999). 

Imprinting accounts for the requirement of both maternal and paternal genomes in normal 

development and plays significant roles in regulating embryonic growth, placental function 

and neurobehavioral processes (McGrath and Solter, 1984; Surani et al., 1984). Aberrant 

expression of some imprinted genes has been linked to a number of human diseases, 

developmental abnormalities and malignant tumors (Paulsen and Ferguson-Smith, 2001). 

The epigenetic modifications that are imposed during gametogenesis act as primary imprint 

markers to distinguish the maternal and paternal alleles (Surani, 1998). The most likely 

candidate for the gametic mark is DNA methylation. Allele-specific DNA methylation has 

been observed in the vicinity of most imprinted genes. In some instances, the methylation is 

present on the inactive gene, suggesting a role for DNA methylation in silencing of the gene 
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(Figure 1). DNA methylation is both a heritable and reversible epigenetic modification that 

is stably propagated after DNA replication. In order to transmit this epigenetic mark from 

one generation to the next, the imprints have to be erased in the primordial germ cells 

(PGCs) (Hajkova et al., 2002; Lee et al., 2002) and re-established during gametogenesis in a 

sex-specific manner (Figure 2).  

Major epigenetic events take place during female and male germ cell development and the 

preimplantation stages of embryonic development (Lucifero et al., 2004a). In vitro culture 

may expose the genome to environmental factors that prevent the proper establishment of 

the DNA methylation . However, the risks cannot easily be evaluated for ART because 

patients who receive ART may differ both demographically and genetically from the general 

people. Usually, patients requesting ART have a low fertility rate, an increased reproductive 

loss rate and are of advanced age, all of which are associated with various fetal and neonatal 

abnormalities. These confounding factors make it difficult to evaluate the risk and safety of 

ART procedures. 

 

 

Fig. 1. The regulation of imprinted gene by DNA methylation.  

DNA cytosine methylation (methyltransferase) regulates imprinted gene expression. 
Differentially methylated regions (DMRs) are commonly associated with imprinted genes. 

Genomic imprinting is a gamete-specific modification (DNA methylation) that causes 

differential expression of the two parental alleles. An imprint starts by a gametogenesis 

process, and it is maintained for stability up to a somatic cell .In addition, it is erased in a 

primordial germ cell. 
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Fig. 2. Imprinted process through the life cycle.  

ART involve the isolation, handling and culture of gametes and early embryos, generally 

after hormone stimulation protocols (superovulation), at a time when the epigenetic marks 

at imprinted loci are relatively malleable and therefore potentially vulnerable to external 

influences. Epigenetic marks appear to be at risk during several stages of the ART 

procedures including the superovulation, various culture mediums, cryopreservation and 

embryo transfer. Our recent work, and that of others, suggests the possibility that infertile 

men, particularly those with oligozoospermia, carry imprinting errors in their sperm 

(Kobayashi et al., 2007; Marques et al., 2004; Marques et al., 2008). Therefore the increase in 

the incidence of imprinting disorders in individuals born by ART may be due, in some 

cases, to the use of this sub-optimal sperm. 

2.1 Aberrant of DNA methylation imprint in superovulation oocytes 

Imprinted genes are particularly vulnerable targets for numerous human pathologies since 
single genetic or epigenetic changes can deregulate their function. Epigenetic mark, DNA 
methylation is found associated with only one parental allele within discrete locations 
known as differentially methylated regions (DMRs) (Figure 1)(Surani, 1998).  The 
acquisition of DNA methylation at these key regions occurs primarily in the parental germ 
line during male and female gametogenesis and is thought to direct the imprinting process 
(Lucifero et al., 2002; Obata and Kono, 2002).  

The acquisition of the imprint methylation marks is significantly different between the two 
germ lines. In the male germ line, H19, Rasgrf1 and Gtl2 methylation imprints are initiated 
prenatally during embryonic germ cell development and are complete by the pachytene 
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phase of postnatal spermatogenesis in mice (Davis et al., 1999; Davis et al., 2000; Li et al., 
2004; Ueda et al., 2000). In contrast, in the female line, the maternal methylations, such as 
Igf2r, Snrpn, Peg1, Peg3 etc. methylations, are acquired asynchronously in a gene-specific 
manner, while oocytes are arrested at prophase I and transitioned from primordial to antral 
follicles during the postnatal growth phase (post-pachytene) (Lucifero et al., 2004b). Nuclear 
transplantation using postnatal oocytes at various stages of maturation point to this same 
window of oocyte development as the time when functional imprints are acquired (Bao et 
al., 2000; Obata and Kono, 2002). 

Much debate has recently surrounded the issues of possible epigenetic alterations brought 
about by human ART (Lucifero et al., 2004a). One of the important issues is artificial 
induction of ovulation with high doses of gonadotrophins (superovulation). In the ART 
procedures, a large amount of gonadotrophins are usually used to obtain the mature 
oocytes. It is uncertain whether exogenous gonadotrophins alter the maturation process of 
eggs or the physiological environment of the uterus. Studies in animals have suggested that 
superovulation decreases the viability of embryos (McKiernan and Bavister, 1998; Van der 
Auwera and D'Hooghe, 2001). We and others showed the occurrence of methylation errors 
on several imprinted genes in full growing oocytes due to superovulation in humans and 
mice, which will help to estimate the safety of artificial induction of ovulation (Market-
Velker et al., 2010; Sato et al., 2007). Under controlled ovarian stimulations, immature 
oocytes are collected. These oocytes are usually discarded due to the possibility of abnormal 
embryonic development or an increased rate of abortion (Smith et al., 2000). However in 
cases of poor responders and in patients with an unsynchronized cohort of follicles, where 
the presence of immature oocytes is frequent after stimulation the use of immature oocytes 
for IVF is important in order to incease the number of embryos obtained in each cycle. In 
addition, in vitro matured (IVM) oocytes and some devices of maturation might be a 
significant risk of the imprinting diseases.  

2.2 Aberrant of DNA methylation imprint in oligospermic patients 

In mice, paternally methylation imprints are initiated prenatally during embryonic germ cell 
development. In humans, limited information is available on the methylation status of 
imprinted genes during gametogenesis and embryogenesis. During normal 
spermatogenesis, the erasure of methylation marks of the maternally imprinted gene 
SNRPN (Manning et al., 2001) and the resetting of the paternally imprinted gene H19 
(Kerjean et al., 2000; Marques et al., 2004) have been reported to be completed before germ 
cells enter meiosis. We and other reported that there was abnormal imprinting in 
oligospermic patients and in a small number of the normospermic patients (Marques et al., 
2004). We examined the DNA methylation status of seven imprinted genes using a 
combined bisulphite polymerase chain reaction (PCR) restriction analysis and sequencing 
technique on  

We examined the DNA methylation status of several imprinted genes using a combined 
bisulphite (PCR) restriction analysis and sequencing technique on ejaculated sperm DNA 
obtained from infertile men. We found abnormal methylation of the paternal imprint in 
14.4% and an abnormal maternal imprint in 20.6%. The majority of these doubly defective 
samples were in men with moderate or severe oligospermia. These abnormalities were 
specific to imprinted loci since we found that global DNA methylation was normal in these 

www.intechopen.com



 
Aberrant DNA Methylation of Imprinted Loci in Male and Female Germ Cells of Infertile Couples 

 

187 

samples (Kobayashi et al., 2007). In our sperm analysis, we found incomplete methylation; 
normospermia in 15.2%, moderate oligospermia in 37.5% and severe oligospermia in 80% 
(Figure 3). These results reveal that abnormal spermatogenesis (leading to low sperm 
counts) is associated with a defective imprint methylation.14.4% and an abnormal maternal 
imprint in 20.6%. The majority of these doubly defective samples were in men with 
moderate or severe oligospermia. These abnormalities were specific to imprinted loci since 
we found that global DNA methylation was normal in these samples (Kobayashi et al., 
2007). In our sperm analysis, we found incomplete methylation; normospermia in 15.2%, 
moderate oligospermia in 37.5% and severe oligospermia in 80% (Figure 3). These results 
reveal that abnormal spermatogenes(leading to low sperm counts) is associated with a 
defective imprint methylation. 

 

Fig. 3. Aberrant DNA methylation of imprinted loci in sperm from infertile male.  
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(A) Frequency of the imprint methylation error (B) Abnormal imprinted loci (C) Abnormal 
methylation imprint and sperm concentrations. Methylation errors at maternal and paternal 
imprinted loci that were specific to oligospermic men.  

The most frequent methylation error was seen in the PEG1 DMR. In our previous report, we 
showed that demethylation of PEG1 was present in the growing oocytes from superovulated 
infertile women (Sato et al., 2007). This PEG1 DMR may be especially vulnerable to errors. In 
both humans and mice, the PEG1 DMR located in the promoter, the first exon and is 
unmethylated on the active paternal allele (Kobayashi et al., 1997; Lefebvre et al., 1997). 
Paternal transmission of a methylated Peg1 gene results in growth-retarded embryos. 
Abnormal behavior has also been noted in Peg1-deficient females (Lefebvre et al., 1998). 
Generally, ART babies are characterized by low-weight birth. 

Recently, we demonstrated that in a few cases, the methylation errors in the sperm were 
present in the ART aborted conceptus (Kobayashi et al., 2009). 

2.3 Evidence of imprint defects associated with ART 

Major epigenetic events take place during this time and the process of ART may expose the 
epigenome to external influences preventing the proper establishment and maintenance of 
genomic imprints (DeBaun et al., 2003; Maher et al., 2003). Except for superovulation, another 
issue is related to the culture conditions. Some studies have shown that exposure of mouse 
embryos to different culture conditions can alter the expression and imprinting of various 
genes which could result in abnormal development (DeBaun et al., 2003; Gicquel et al., 2003; 
Maher et al., 2003). The third issue is the potential effect of embryo cryopreservation (Emiliani 
et al., 2000; Honda et al., 2001). The timing of embryo transfer may also present issues. Some 
studies on monochorionic dizygotic twins and conjoined twins with BWS resulting from 
transfer of embryos at the blastocyst stage revealed demethylation of LIT1 (KCNQ1OT1) 
(Miura and Niikawa, 2005; Shimizu et al., 2004), suggesting that this demethylation occurs at a 
critical stage of pre-implantation development. Furthermore, there may be other serious issues 
causing yet unknown risks of ART.  

We previously reported cases of a mosaic methylation pattern in ART-babies (Kobayashi et 
al., 2007). Nutrients, including methyl-substrates such as vitamins B6 and folic acid, 
influence DNA methylation and histone modification at gene promoters. Imprinting errors 
in sperm at the paternally-methylated DMRs may be reversed using a similar approach. 
This approach has already been applied to treat autism (Chen et al., 2003).  

2.4 Automated high-throughput procedure for the detection of alterations in DNA 
methylation 

Southern blotting was the original technique used routinely to analyse DNA methylation 
(J.Sambrook and D.W.Russell, 2001). This technique requires a relatively large quantity of 

DNA (5-10 g) that is usually digested with two restriction enzymes, one of which is 
methylation sensitive. The DNA is fractionated on an agarose gel, transferred a positively 
charged nylon membrane, hybridized with a radioisotope labeled probe, washed and 
exposed to autoradiography. This method has largely been superceded by methods 
involving The methylation status of a specific sequence can then be measured by combined 
bisulphite PCR restriction analysis (COBRA) or by the sequencing of the PCR product. The 
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sodium bisulphite treatment of genomic DNA converts unmethylated cytosine to uracil 
leaving the methylated cytosines unconverted. The combination of COBRA and the 
sequencing method provides accuracy and sensitivity but nonetheless, there are still 
limitations with this method particularly the expertise required to obtain accurate results, 
the time taken to achieve a result and the relative cost, rendering it unsuitable for clinical 
diagnosis. Recently, we developed a new method of DNA methylation analysis , PCR-
Luminex (Sato et al., 2011). This method combines PCR and sequence-specific 
oligonucleotide probe (SSOP) protocols with the Luminex 100 xMAP flow cytometry dual-
laser system to quantitate fluorescently labeled oligonucleotides attached to color-coded 
microbeads (Figure 4).  

 

 
 

Fig. 4. BPL methylation assay.  

Bisulphite PCR-Luminex (BPL) method involved PCR amplification of bisulphite-DNA, 

hybridization, a streptavidin-phycoerythrin (SA-PE) reaction and identification of the 

fluorescent microbeads by determining the preset ratio of internalized dyes to distinguish 

between cytosine and uracil (methylation and non-methylation). This is one of new high-

throughput, high-resolution DNA methylation analysis methods. 

The PCR-Luminex method can identify one base substitution by specific hybridization and 

therefore could potentially be applied to the identification of DNA methylation using the 

bisulphite conversion technique to essentially generate the two different bases, cytosine and 

uracil (methylation and non-methylation), called BPL. We applied these techniques to 

examine the methylation imprints of 8 DMRs (paternally methylated DMRs: ZDBF2, H19 

and GTL2, maternally methylated DMRs: PEG1, ZAC, SNRPN, PEG3 and LIT1) in the sperm 

DNA to assess the quality of these samples with respect to imprint status (Sato et al., 2011). 

BPL In the mean future, new methylation analyses will prove to be a simple, accurate and 

rapid approach and therefore suitable for clinical application. 
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3. Conclusion 

As a result of our studies and the work of others in this area, we recommend that imprint 
methylation analyses be added to the routine sperm examination (counting, mobility, 
abnormality analyses) to identify pre-existing imprint mutations. It may be possible, in the 
future, to reverse aberrant DNA methylation and the present analysis will provide useful 
information in that regard. Altered expression and methylation of imprinted genes is a 
frequent event in adult cancers (Feinberg et al., 2006). In addition to determining the 
frequency of classic imprinting disorders, it will be important to determine cancer 
occurrence in ART offspring. A retrospective examination of imprinted loci and the 
constitution of children born after each ART method will reveal the safest and most ethical 
approach to use. We believe these studies will be valuable for the development of standard 
ART. In our opinion, before translating new techniques into practice, more research, 
particularly in animals, is desirable. In addition, better ART child follow-up and a fresh 
approach to regulation are also needed. 
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the cutting edge of research into DNA methylation and highlights recent advances in methodology and

knowledge of underlying mechanisms of this most important of genetic processes. The reader will gain an

understanding of the impact, significance and recent advances within the field of epigenetics with a focus on

DNA methylation.
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