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1. Introduction 

Cardiovascular disorders (CVD) which include coronary artery disease (CAD), heart failure 
(HF) and stroke are the leading cause of morbidity and mortality both in developed and 
developing countries and by 2020 CAD is expected to become the number one cause of 
death worldwide 1-3. As per WHO, CVD kills nearly 17.5 million persons worldwide  
each year and is likely to continue to remain number one cause of overall mortality in near 
future 4, 5.  

CAD is the single most important contributor to this increasing burden of CVD. It leads to 
more deaths than any other disease, including cancer. It can manifest as angina, silent 
ischemia, unstable angina, myocardial infarction (MI), HF and sudden death. CAD accounts 
for 52% of 870,000 deaths that occur annually due to CVD in USA i.e. 1 in 5 deaths 6 and 
nearly accounts for 30 % of all deaths globally. Among American Indians in age group (45- 
74) the incidence of CVD ranges from 1.5%- 2.8% for men and 0.9- 1.5% for women 7. 

Ethnic and regional variations are known to exist in risk factors for developing CVD.  
The Asian Indians are 3- 4 times more susceptible to develop CAD than Caucasians,  
6- times more than Chinese, and 20- times more than Japanese and tend to develop CAD at a 
younger age 8, 9 as shown by several studies 10-13. The study SHARE (Study of Health 
Assessment and Risk in Ethnic groups) has shown a significant higher risk of cardiovascular 
events among South Asians as compared to Europeans and Chinese 13. 

2. Pathophysiology of CAD 

The most important underlying pathogenetic mechanism for CVD is atherosclerosis 14, 15. 
CAD occurs due to atheromatous narrowing and subsequent occlusion of the coronary 
arteries. Atheroma [from the Greek athera (porridge) and oma (lump)] starts developing in the 
first decade of life. A mature plaque has a lipid core which comes from necrotic “foam cells” 
i.e. monocyte derived macrophages which migrate to intima and ingest lipids (fig. I) 16. 

Epidemiological studies have shown an inverse correlation between serum HDL-C levels 
and risk for developing CAD 17, 18. The protective effect of HDL-C against the development 
of CAD appears to be complex. A large part of research in this field is centered on the lipid 
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transport function of HDL-C, particularly in reverse cholesterol transport (RCT). In 
addition, several studies suggest that HDL-C protects LDL-C from peroxidation, thereby 
protecting cell membranes from lipid peroxide induced vascular damage. This protection of 
LDL-C from oxidation by HDL-C possibly potentially impedes the initiation and 
progression of CAD. Recent studies into the mechanism of the prevention of CAD by  
HDL-C have revealed that its antioxidant effect is because of its association with an enzyme 
“paraoxonase”.  

3. Paraoxonase (PON1; EC 3.1.8.1) 

In 1946, Abraham Mazur was the first to report the presence of an enzyme in animal tissues 
which could hydrolyze organophosphates 19 which ultimately led to the identification of 
human serum paraoxonase (PON1) enzyme in early 1950’s 20. PON1 is a HDL-C associated 
serum enzyme whose primary role is to protect LDL-C from oxidative modification 21. 

PON1 was first identified in the field of toxicology as it could hydrolyze the 
organophosphates such as paraoxon, and oxon metabolite of chlorpyriphos, diazinon and 
nerve gases (e.g., sarin and soman)22. Indeed, the enzyme (EC 3.1.8.1) was initially 
characterized as organophosphate hydrolaze and it still derives its name from its in vitro 
used substrate, paraoxon. Recently, in addition to its role in hydrolyzing organophosphorus 
compounds, PON1 has been shown to play an important role in lipid metabolism and thus 
in atherosclerosis and cardiovascular disease. 

The PON1 cDNA encodes a protein of 355 amino acids from which only the amino-terminal 
methionine residue is removed during secretion and maturation23. The retained leader 
sequence is required for the association of PON1 with HDL particle 24. In human serum, 
PON1 remains entirely associated with HDL 25.  

PON1 lowers the risk of CAD by preventing oxidation of LDL-C which is involved in the 
initiation and progression of atherosclerosis 26 (Fig. I). Studies have shown that PON1 can 
prevent accumulation of oxidized LDL-C in vitro and in vivo 27-29. In addition, it has also been 
shown to hydrolyze the oxidized lipids 30. Serum PON1 activity is reduced in diabetes 
mellitus and familial hypercholesterolemia31,32, diseases which are associated with 
accelerated atherogenesis. 

3.1 PON1 structure 

The first information about the structure of PON1 was the finding that it retained its signal 
sequence following secretion from the liver 23. Sorenson et al., 24 demonstrated that this 
signal sequence provided a hydrophobic anchor for attachment of PON1 to HDL. Josse et al., 
33, 34 identified the following amino acid residues which are essential for PON1’s catalytic 
activity: W280, H114, H154, H242, D53, D168, D182, D268, D278, E52, E194 and the two 
cysteine residues C41 and C352 that are in disulfide linkage.  

A major breakthrough in PON1 structural study came with the engineering of a directed 
evolution35 of a form of PON1 that could be crystallized and subjected to X-ray 
crystallography 36 resulting in determination of crystal structure of the recombinant PON 
variant, making PON1 the first HDL-associated protein whose three-dimensional structure 
could be determined 36. PON has a six-bladed ǃ- propeller with each blade consisting of four 
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ǃ-sheets. In the central tunnel of the enzyme there are two calcium atoms which are needed 
for the stabilization of the structure and catalytic activity 36. Three ǂ helices, located at the 
top of the propeller are involved in its anchoring to the HDL particle 36 

 

Fig. 1. (1). Normal development of atherosclerosis. (2). Protection from atherosclerosis by 
PON1.  

PON1 contains three Cys residues with one at position 284, having a free sulfhydryl group 
(Fig. I). PON1 is the only one whose allozymes are found in serum. A unique feature of 
PON1 in comparison to the other secreted proteins is the retention of its N-terminal 
hydrophobic signal-leader sequence. Immunological techniques have revealed that PON1 
accumulates in the human arterial wall during the development of atherosclerosis 37.  

3.2 PON gene cluster 

In addition to the known human PON1 gene, two additional PON-like genes, designated as 
PON2 and PON3 have been identified and all these three genes are located on the long arm 
of chromosome 7q 21.3–22.1 38. These genes share a considerable structural homology and 
may have arisen from the tandem duplication of a common evolutionary precursor. Within 
a given mammalian species PON1, PON2 and PON3 share approximately 60% identity at 
the amino acid level and 70% identity at the nucleotide level. However, between 
mammalian species each of three genes shares 79-90% identity at the amino acid level and 
81-90% identity at nucleotide levels 26. 
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3.3 Paraoxonase 2 (PON2) 

PON2 is a widely expressed intracellular protein with a molecular mass of approximately 
44kDa 39. PON2 mRNA is ubiquitously expressed in nearly every human tissue with highest 
expression in liver, lung, placenta, testis, and heart. PON2 is able to lower the intracellular 
oxidative stress of a cell and prevent the cell-mediated oxidation of LDL. Cells over 
expressing PON2 are less able to oxidize LDL-C and show considerably less intracellular 
oxidative stress when exposed to either H2O2 or oxidized phospholipids. Since PON2 is 
ubiquitously expressed not just in cells of the artery but in tissues throughout the body, it is 
likely that PON2 plays a role in reducing local oxidative stress 39 and thereby protects cells 
from oxidative stress. However, the mechanism by which this effect is produced is not 
clearly understood. 

3.4 Paraoxonase 3 (PON3) 

Human PON3 is an approximately 40kDa protein, synthesized primarily in the liver and is 
associated with HDL in circulation, albeit at much lower level than PON1 40, 41. PON3 is 
interposed between PON1 and PON2 in the PON gene cluster and is the least studied 
compared to PON1 and PON2. In contrast to PON1, PON3 has very limited arylesterse and 
no paraoxonase activity but it rapidly hydrolyzes lactones such as statin prodrug.  

All the three PON’s are thus important players in the maintenance of a low oxidative state in 
circulating blood, therefore playing role in prevention of atherosclerosis 42. However, as 
exact mechanism of action is not clear ,they remain the focus of research in recent years.  

4. PONs substrates 

PON’s native enzyme activity is lactonase 43, 44. Phylogenetic studies have revealed that 
PON2 is the oldest member of family from which PON3 and PON1 arose 45. Draganov et al.,, 
46 found that PON’s have distinct substrate specificity. Dihydrocoumarin (DHC), long chain 
fatty acid lactones and acyl- homoserine lactones (AHLs) are hydrolyzed by all the three 
PONs and represent their natural substrates 44. Additionally, PON1 also hydrolyzes 
organophosphates and aromatic carboxylic acid esters such as paraoxon and phenylacetate 
respectively 47 thereby having paraoxonase (PONase) and arylesterase (AREase) activities 48. 

4.1 Paraoxonase (PONase) activity 

There exists a wide variation in PONase activity in different ethnic groups and within 
individuals in the same ethnic group 49. The PONase activity has been shown to be  
lower after acute myocardial infarction 50. It is also lower in patients with familial 
hypercholesterolemia and diabetes mellitus, who are more prone to CAD 31. This has led to 
the hypothesis that the lower the PON1 activity, higher is the accumulation of oxidized LDL 
and risk of CAD. 

Nearly 200 single nucleotide polymorphisms (SNPs) of PON1 gene have been identified so 
far, 51 of which the most studied are -909G/C [rs854572], -162A/G [rs705381], -108C/T [rs 
705379] located in the promoter region and Q192R [rs662], L55M [rs 854560] located in the 
coding region 52. Serum PONase activity has been found to be influenced by the coding 
Q192R polymorphism 53. The PON1 R192 allozyme hydrolyzes paraoxon more rapidly than 
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PON1 Q192 allozyme whereas PON1 Q192 allozyme hydrolyzes diazoxon, soman and sarin 
more rapidly than the R192 allozyme 54, 55.  

4.2 Arylesterase (AREase) activity 

Serum enzyme PON1 activity is not affected towards phenylacetate (AREase) substrate 
across Q192R polymorphism 56. Richter et al., 51 have stated that measurement of AREase 
activity of PON1 or determination of PON1 protein levels by ELISA are the minimum 
measure that should be carried out in any epidemiological study. Thus it can act as measure 
of PON levels and this has been used in a number of studies. 48, 51, 56-58.  

4.3 Lactonase activity 

Lactonase activity is possibly the common enzymatic activity preserved during evolution of 
the PON proteins. Recent findings suggest that the name PON is infact a misnomer, since 
PON2 and PON3 lack any significant paraoxonase activity 39-41. At the molecular level 
PON1, PON2 and PON3 share an ability to hydrolyze aromatic and long-chain aliphatic 
lactones, and thus the term lactonase may be more appropriate 44, 45.  

Further, the binding of PON1 to HDL particles i.e. the natural carrier of PON1 in blood, has 
been shown to greatly enhance its lactonase activity. However arylesterase or 
phosphotriesterase activities are not affected by this. PON1 and PON3 hydrolyze over 
twenty aromatic and aliphatic lactones with a high degree of overlapping substrate 
specificity, whereas PON2 lactonase activity is much more restricted.  

5. PON1 activity/ levels and CAD 

There have been several epidemiological studies to find the relation between PON1 status 
and CAD. PON1 status can be distinguished into PON1 activity towards paraoxon and 
PON1 concentration, which is mainly determined in serum by ELISA or can be estimated 
from phenylacetate hydrolysis activity. The first study on the relation between PON1 
activity and CAD was conducted in 1985 50. The outcome of this study indicated that lower 
the PON1 activity, higher was risk of CAD. Subsequently Navab et al., 59 showed that 
patients with higher HDL-C but low PON1 activity were more susceptible to CAD than 
patients with low HDL-C but high PON1activity, suggesting that PON1 activity may be 
more important than HDL protein for protection against CAD. In subsequent, three studies, 
investigating the relationship of PON1 status and CAD found that low PON1 activity or 
levels were associated with an increased risk of CAD 60-62 suggesting that PON1 activity 
predicted coronary events independent of HDL-C. 

There is a wide variation (up to 13 –fold) in PON1 serum concentration and activity between 

individuals even within the same genotype 55, 61. In addition to genetic polymorphism, 

PON1 levels can be modified by acquired factors such as diet, lifestyle and disease. It is 

likely to be the functionality of the enzyme and not simply the genotype that is important in 

the interaction of PON1 with CAD. A small number of recent studies which include PON1 

concentration and/or activity, have found that PON1 levels are reduced in CAD and found 

this effect is independent of PON1 genotype 61, 63. In a case-control study of CAD, Jarvik et 

al.,61 could not find any genotype effect unless PON1 activity was also considered.  
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A functional genomic analysis as measurement of an individual’s PON1 function (serum 
activity) takes into account all the polymorphisms which might affect its activity. This can be 
accomplished by use of a high-throughput enzyme assay involving two PON1 substrates 
usually diazoxon and paraoxon 55. This, in addition to providing a functional assessment of 
the serum PON1 192, alloforms also provide the levels of PON1 for each individual, thus 
encompassing the two factors which affect PON1 levels or activity (position 192 amino acid 
and serum alloform level). This approach has been referred to as the determination of PON1 
‘status’ of an individual 55. Measurement of PON1 status, coupled with PCR analysis of 
codon 192, has been shown to detect genotypes /activity discrepancies that can be explained 
by the presence of recently discovered mutations in the PON1 gene 63. 

Fundamental biochemical principal dictates that it is the catalytic efficiency with which 
PON1 degrades toxic organophosphates and metabolizes oxidized lipids that determines 
the degree of protection provided by PON1 against insults from physiological or xenobiotic 
toxins. In addition, the higher concentration of PON1 provides better protection. Thus, for 
adequate risk assessment it is important to know PON1 level and activity. 

The importance of PON1 status in determining susceptibility or protection from toxicity or 
disease points to the relevance of factors affecting PON1 activity and its levels of expression. 
Though genetic determinants such as polymorphisms play a primary role in determining an 
individual’s PON1 status, contribution of other factors in modulating PON1 activity and 
levels is also important 21, 64. 

6. PON1 gene polymorphisms and CAD 

6.1 PON1 coding region polymorphisms and CAD 

There is 10-40 –fold interindividual variation in serum PON1 activity 53, 65 and this variation 
in part is determined by 2 common polymorphisms in the coding region of the PON1 gene. 
The first polymorphism involves glutamine (“A genotype”) (Q) → arginine (“B genotype”) 
(R) substitution at position 192, giving rise to 2 allozymes 53, 66. These allozymes have 
different activity for different substrates. Some substrates such as paraoxon and fenitroxon 
are hydrolyzed faster by R allozyme, whereas other substrates such as phenylacetate are 
hydrolyzed at the same rate by both allozymes 22. However, others such as diazoxon and 
nerve gases soman and sarin are hydrolyzed more rapidly by the Q allozyme 22. The Q192R 
polymorphism may be playing a role in CAD etiology because this genotype is associated 
with LDL oxidation and hydrolysis of lipid peroxides. The PON1 192R isoform is less 
effective at hydrolyzing lipid peroxides than Q isoform 67, 68. A second polymorphism of the 
PON1 gene is present at the amino acid position 55, a leucine (“L genotype”) (L)→ 
methionine (“M genotype”) (M) substitution, independently influences PON1 activity and 
has been defined as the molecular basis for this interindividual variability 53, 66. It is 
independent of the 192 polymorphism and appears to be the major determinant of the well 
known biochemical polymorphism in serum PON1 activity towards various 
organophosphates.  

The frequency of PON1 alleles varies greatly across the human population. The distribution 
of two polymorphisms is significantly different between white and black women. The 
frequency of the PON1 M55 allele is higher in whites than in blacks, whereas the frequency 
of the PON1 R192 allele is reverse 69. The lowest frequency of the PON1 M55 allele has been 
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reported in Chinese. The relatively high frequency of the PON R192 allele in blacks is 
similar to that reported in Chinese and Japanese varying from 58% to 65% 70, 71. However, 
Ferre et al., 72 found no significant differences in genotype and allele frequencies for PON1 
polymorphisms at position 55 and 192 between control subjects and patients with 
myocardial infarction in a Spanish population. The frequencies were similar to those 
described for other Caucasian populations. These two polymorphisms have significant 
linkage disequilibrium. Several case-control studies conducted in Caucasians and in 
Japanese have shown that the Q192R is associated with increased risk of CAD 73-77, although 
others have failed to replicate this association 71, 78-82. Other studies have indicated that 
Q192R polymorphism is associated with altered PON1 enzyme activity for paraoxon as a 
substrate 53, 66. On the other hand, Garin et al., 83 reported that in a French population L55M 
polymorphism may be a major genetic determinant of PON1 enzyme activity and of 
increased risk for CAD whereas discordant results were obtained in Singapore in Asian 
Indians and Chinese 84 and in Japanese 73. In North- West Indian Punjabi’s, Q192R was 
independently associated with CAD (QR (OR: 2.73 (1.57-4.72)) and RR (OR, 16.24 (6.41-
41.14) 58. These results suggest that PON1 R might be an independent risk factor for CAD 
only in certain populations. Thus, the association between the PON1 polymorphism and 
CAD is not clear and continues to remain controversial.  

The dramatic alteration in enzyme activity caused by this single amino acid change is 

explained by the structure of the enzyme. Amino acid 192R is an important active site 

residue 36. The Q192R polymorphism alters the enzyme’s ability to protect LDL-C from 

oxidation in vivo with the Q form being the most protective 67.  

The PON1 L55M polymorphism does not affect the interaction of PON1 with its substrates, 
but is associated with lower serum PON1 activity and concentration of the enzyme 83. 
Leviev et al., 85 found lower PON1 mRNA levels in individuals carrying the M alleles. 
Subsequent analysis showed a strong linkage disequilibrium with the C (-108)T 
polymorphisms in the promoter region of the gene. Clinical reports have demonstrated that 
PON1 activity is reduced in patients with acute myocardial infarction 60, fish eye disease 86 
and tangier disease 87. Lower paraoxonase activity has been observed in Type 2 diabetes 
mellitus patients with peripheral neuropathy32 and retinopathy 88-90.  

Watson et al., 29 have shown that purified PON1 can prevent the pro-inflammatory effects of 
oxidized LDL when incubated in a vascular cell co-culture system, probably due to the 
mechanism of oxidized-arachidonic acid derivatives in the Sn-2position of LDL-
phospholipids. Of the PON1 192 allozymes the R allozyme proved to be more efficient at 
protecting LDL-C from oxidation. Numerous case-control studies have therefore been 
conducted to determine whether the PON1 192R polymrphism is more closely associated 
with CAD than the Q polymorphism. Some studies have shown association whereas others 
have not 21. However, a recent meta-analysis has revealed a statistically significant increased 
likelihood of CAD with the PON1 192R allele. Some studies suggest that the PON1 R allele 
may increase susceptibility to other established CAD risk factors, such as diabetes mellitus 
88, cigarette-smoking 91 and age 92. The PON1 55L allozyme is also more effective in vivo in 
protecting LDL-C against oxidation than M allozyme. Few case-control studies of the 55 
polymorphism have been done. Some have shown an association between the PON1 55L 
allele and atherosclerosis 83, 93, but others have not 84, 94. However, no prospective studies of 
CAD and PON1 polymorphisms are available. Moreover the association between CAD and 
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PON1 genotype although largely confirmatory is not the only test for hypothesis that PON1 
protects against CAD. This may be due to acquired factors acting either on the composition 
of the lipid environment of HDL, in which PON1 operates, or on the promoter region of the 
PON1 gene or in some manner as yet to be identified. When PON1 activity is measured 
directly in patients with CAD, it is about half that of the disease-free controls 50, 60. Ayub et 
al., 60 have observed low PON1 activity within few hours of the onset of myocardial 
infarction, suggesting a low serum PON1 activity to precede the event. Low serum PON1 
activity independent of genotype has been reported in several other disorders, which are 
known to be associated with CAD. These include experimental and clinical diabetes mellitus 
31, 32, 88, 95, 96, hypercholesterolemia 31 and renal failure 97.  

Interestingly, in addition to preventing LDL-C oxidation, PON1 may also stimulate cellular 
cholesterol efflux, the first step in reverse cholesterol transport. Thus, PON1 might affect the 
efficiency of lipid transfer between HDL-C and LDL-C 26. Also, Rodrigo et al., 98 
demonstrated that PON1 may play a role in protecting against bacterial endotoxins and may 
have a stabilizing property for cellular membranes that undergo either acute or chronic 
exposure to oxidative agents and free radicals. 

6.2 PON1 promoter region polymorphisms and CAD 

Sequencing of the promoter PON1 gene led to the discovery of at least five polymorphisms 
with varying degree of influence over gene expression. These polymorphisms are located at 
-909(G/C), -832 (A/G), -162 (A/G), -126(C/G) and -108 (C/T) 99-101 of PON1 gene. Promoter 
containing polymorphisms GAAC, as opposed to CGGT, at positions -909,-832, -162 and -
108 respectively, are up to two times more active 99-101. These variations in promoter activity 
have been shown to be physiologically relevant as they correlate with significant differences 
in serum PON1 concentration and activity 99-101.  

Identification of clinically significant polymorphisms has been hampered by the fact that 

there is significant linkage disequilibrium between all the promoter polymorphisms. 

Haplotype analysis of two populations showed that the C(-108)T polymorphism was the 

main contributor to the serum PON1 variation, accounting for 23-24% of the total variation 
100. Brophy et al., 100 also reported a slight contribution (1.1% total variation) from the A  

(-162) G site. The sites at -909 and -832 made little or no difference to serum PON1 levels 100, 

102.  

Reporter gene assays using promoter regions of varying length have shown that 

approximately 200 base pair region covering the -108 and -162 polymorphism is sufficient 

for transcription of the PON1 gene 102-104. Deleting this region completely abolishes promoter 

activity, indicating that it is an essential regulatory region of the promoter 102 site of PON1 

gene. 

As the -108 site appears to be the most significant contributor to the PON1 serum variation, 
it has been the subject of further investigation. The polymorphism is located in the center of 
a consensus binding site for the ubiquitous transcription factor sp1 and sp3. This consensus 
site is abolished by the presence of the -108T variant 99, 100. 

Binding of the sp1 to the -108 site is weaker in the presence of T than C, suggesting an effect 
of the polymorphism on sp1 binding 102. There are multiple Sp1 sites in this region of the 
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PON1 promoter, so the effect of the polymorphism is likely to be positional. The -162 
polymorphism lies over a potential NF-1 (nuclear factor-1) binding site, with the high 
activity A variant forming the site and the low-activity G variant disrupting it 103. This may 
explain the effect of the change at -162 on gene expression. Other polymorphisms in the 
promoter region (-162A/G, and -909G/C) may have less significant effect on PON1 
expression. They are in strong disequilibrium with C-108T 105. 

The increasing role attributed to PON1 in assuring protective mechanisms associated with 
HDL-C underlines the need to clarify fully the factors which control gene expression and 
thus modulate the serum PON1 concentration.  

6.3 PON1 haplotypes and CAD 

Determination of haplotypes is gaining attention because multiple linked SNP’s have the 
potential to provide significantly more power to genetic analysis than individual SNP’s 106. 
Information is lacking regarding PON1 haplotypes and CAD risk. In North-West Indian 
Punjabi’s L-T-G-Q-C (carrying 4 variant and 1 wild type allele) and L-T-G-R-G (carrying 4 
variant and 1 wild type allele) haplotypes are associated with 3.2 and 2.8 fold increase in the 
risk of CAD whereas haplotypes M-C-A-Q-G (carrying all wild type allele), L-T-A-Q-G 
(carrying 2 variant and 3 wild type allele) and L-C-A-Q-G (carrying 1 variant and 4 wild 
type allele) which are more prevalent in controls could be protective of CAD58.  

7. PON1 polymorphisms and lipoproteins 

Many studies have suggested that variation in serum PON1 activity is associated with 
variation in serum lipoprotein concentration including the serum apoA1, LDL-C and HDL-
C. Several studies have been conducted to determine the relationship between PON1 gene 
polymorphisms and serum lipoproteins in Hutterite North American population genetically 
isolated by religious belief. Further analysis of this population using several candidate genes 
led 107 to reveal that PON1 was one of nine genes which was responsible for between 3.2 and 
7.8% of the total variation in plasma lipoproteins in them. The PON1 genotypes were 
significantly associated with variation in the plasma concentration of HDL-C, LDL-C, TG 
and apo B 107. Homozygotes for the low activity variant of PON1 had significantly lower 
levels of plasma triglycerides, LDL and apo-B than heterozygotes and homozygotes for the 
high activity variant. Furthermore, homozygotes for the low-activity variant had 
significantly lower ratios of total cholesterol/HDL-C, LDL -C/HDL- C and apo B/apo A1 
indicating that homozygotes for the low activity allele had a less atherogenic lipoprotein 
profile than heterozygotes and homozygotes for the high activity allele.  

More recently, Leus et al., 108 found that a significant difference in mean TC and LDL-C 
levels between subjects with the PON1 LL55 and MM55 genotype, and PON1 MM55 had a 
better plasma lipoprotein profile.  

Watson et al., 29 (the Fogelman group) have reported that PON1 in HDL may block 
inflammatory response by preventing the oxidation of LDL. The same group has also shown 
that during an acute-phase response, there was a significant loss of the PON1 activity, thus 
accounting for the failure of HDL to protect LDL from oxidation during it 109. More recently 
the same group 59 have reported a failure of HDL to protect LDL from oxidation in patients 
with CAD, which they propose is due to low serum PON1 activity in them. 
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8. Modulation of PON1 by exogenous compounds 

8.1 Environmental chemicals 

PON1 activity is completely dependent upon Ca++ and EDTA, irreversibly abolishes its 

activity. Other cations, also, have been shown to have an inhibitory effect on PON1 activity. 

The barium, lithium, copper, zinc and mercurials have been found to inhibit PON1 activity 

in rat and human liver 110. In case of mercurials and copper, studies suggest that a free thiol 

group on the Cys 285 residue may be the molecular target 110, 111. More recent experiments 

have revealed that cadmium, iron, zinc and mercurials are highly potent in vitro inhibitors 

of PON1 192R activity and can inhibit upto 80% of activity. However, in vivo the PON Q192 

appears to be less sensitive to inhibition by metals, with the exception of lead 112. In vivo 

exposures of mice to cadmium, methylmercury or dietary iron leading to metal serum 

concentration of higher than 1µM has failed to alter PON1 activity in plasma and liver 112. 

This is probably due to binding of metal to proteins in plasma leading to protection of 

PON1. 

8.2 Classical inducers 

A few studies have investigated whether PON1 is an inducible enzyme. Phenobarbital, a 

classical enzyme inducer which is particularly effective toward certain isozymes of 

cytochrome P450 (e.g. CYP2B), caused a modest (20-150%) increase in hepatic PON1 activity 
113, with a concomitant increase in liver RNA levels 114. However, serum PON1 activity has 

been found to be decreased in patients on (40-50%) phenobarbital treatment 113-116. 

9. Modulation of PON1 by life-style factors  

Enzyme inducers, environmental chemicals, physiological and pathological states, and 

dietary and lifestyle factors have shown their effects on PON1 activity.  

9.1 Age 

In humans, PON1 serum arylesterase activity increases from birth to 15-25 months of age, 

when it seems to reach a plateau whose level is determined by the 5’ regulatory-region 

polymorphisms and the genetic background of the individual 114. In an adult, PON1 levels 

remain stable as no significant changes have been observed with age 117, 118.  

9.2 Enzme inducers and environmental chemicals 

3-Methylcholantherene has been found to increase both serum and liver PON1 level in rats 
98 but not in mice 114. Administration of lipopolysaccharide, which mimics gram-negative 

infection, causes a transient decrease in serum and liver PON1 activity and in hepatic 

mRNA levels 114, 119. The phytoalexin resveratrol is considered to be a major biologically 

active component contributing to the beneficial effect of wine 120 and is known to modulate 

gene expression. 

PON1 activity can vary depending on physiological conditions or pathological states. Serum 

PON1 activity is significantly decreased during pregnancy 121.  
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9.3 Smoking 

Cigarette smoke extract is known to inhibit PON1 activity in vitro 122, suggesting that 

smoking may be detrimental to enzyme activity in vivo. James et al.,91 showed that PON1 

serum concentration and activity were reduced in smokers compared with non-smokers. Ex-

smokers had activities and concentrations comparable with those of non-smokers, 

suggesting a reversible influence of smoking on PON1. In vitro experiments found that 

inhibition of PON1 activity by a cigarette-smoke extract was antagonized by reduced 

glutathione (GSH), N-acetylcysteine, and 2-mercaptoethanol, suggesting that free thiols are 

central to the inhibitory effects 122. 

9.4 Alcohol 

Moderate wine consumption appears to have potential beneficial effects related to the 

prevention of CAD 123. Wine consumption increases serum PON1 activity 124, 125. Ethanol 

and other aliphatic alcohols have been shown to inhibit serum PON1 activity 126; however, 

in middle aged men daily moderate alcohol consumption increased serum PON1 activity, 

with no differences between wine, beer, and spirits 127. This increase may be due to the 

consumption of alcohol itself or to that of antioxidants, as similar results were obtained after 

consumption of red wine 128 or pomegranate juice 129, 130.  

9.5 Diet 

In both rabbit and transgenic mouse model, a proatherogenic diet caused a significant fall in 

PON1 activity, which correlated with a reduction in HDL-cholesterol 89, 131-133. Diets with a 

high trans-unsaturated fat content can reduce PON1 activity 134. In contrast, oleic acid from 

olive oil is associated with increased activity 135, 136. Meals rich in used cooking fat which 

contains a high content of oxidized lipids, is followed by a significant fall in PON1 activity 

when fed to healthy men 137.  

PON1 is highly susceptible to inactivation by oxidation. In vitro, PON1 activity is protected 

by the anti-oxidant polyphenols quercetin and glabridin 138, suggesting that dietary 

antioxidants may play a similar role in vivo. Some studies have shown that consumption of 

pomegranate juice which is rich in polyphenols and other antioxidants, can raise PON1 

activity up to 20% in both humans and apoE knockout mice 130.  

10. Conclusions and future prospects 

Human epidemiological studies and experimental work carried out so far provides 

convincing evidence that PON(s) play an important role in protection against 

atherosclerosis. Studies are required to elucidate the role of the PON genetic 

polymorphisms in this potentially important function of PON(s) and role in CAD and 

other related diseases. Since nutritional and environmental factors explain some of the 

individual variations in serum PON 1 activity, the enzyme is considered as a promising 

target for pharmaceutical intervention. Therefore, pharmacological modulation of PON1 

activity or PON 1 gene expression could constitute a useful approach for the prevention of 

CAD. 
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