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1. Introduction  

The epidermal growth factor (EGF) receptor (EGFR, HER1, ErbB1) and human epidermal 
growth factor receptor type 2 (HER2, ErbB2) belong to the ErbB family of type I tyrosine 
kinases (TKs). This family of receptor TKs also includes another two closely related 
members HER3/ErbB3 and HER4/ErbB4. The general structure of these cell surface 
receptor proteins contains an extracellular ligand-binding domain, a hydrophobic 
transmembrane domain, an intracellular tyrosine kinase domain and a non-catalytic 
carboxyl terminal tail (Ferguson et al., 2000; Kari et al., 2003; Mitsudomi & Yatabe, 2010; 
Pines et al., 2010). Various ligands for EGFR, HER3 and HER4 have been identified, with 
EGF the most extensively characterized for its binding and activation of EGFR. These ErbB 
proteins are present in the plasma membrane as monomers. Upon ligand binding, the ErbB 
receptors can associate with each other to form different receptor dimers, which may be 
homodimers (e.g., EGFR-EGFR) or heterodimers (e.g., EGFR-HER2). The dimerization 
results in the activation of kinase activity and downstream signaling pathways, which often 
leads to cell proliferation and malignant tumor growth. HER2 is an exception, with no 
compatible ligand identified. However, it is the preferred heterodimerization partner for all 
other ErbB members (Mishani & Hagooly, 2009; Niu et al., 2008; Tzahar et al., 1996; Yarden 
& Sliwkowski, 2001).  

As EGFR and HER2 play important roles in many physiological and pathological processes, 
it is not surprising that deregulation of EGFR and HER2 is associated with various types of 
malignancies (Kari et al., 2003; Niu et al., 2008; Yarden & Sliwkowski, 2001). Both 
overexpression and mutation of EGFR have been identified in various types of cancers, 
while overexpression is a more commonly employed mechanism in the case of HER2 
(Yarden & Sliwkowski, 2001). In these cancer cells, the TK activity is either elevated or 
constitutively activated. EGFR- and HER2-targeted anti-cancer medicines have been 
developed by either targeting the extracellular ligand-binding domain through antibody 
blocking, or by inhibiting the tyrosine kinase activity using low-molecular-weight molecules 
(Baselga, 2006; Pines et al., 2010; Speake et al., 2005). Cetuximab (a humanized mouse 
antibody) and panitumumab (a fully human antibody) have been approved for selected 
EGFR-targeted cancer treatment. Although these antibodies are designed to down-regulate 
EGFR signaling by inhibiting ligand-binding, preventing receptor dimerization and 
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accelerating receptor degradation, antibody-dependent cell-mediated cytotoxicity is also 
considered as an important mechanism for IgG1 isotype antibody cetuximab (Cai et al., 
2008; Okamoto, 2010). Trastuzumab (a humanized mouse antibody) is a widely used 
treatment for breast cancer patients with HER2 overexpression (Niu et al., 2008). Because 
TKs depend on ATP to provide phosphate for the phosphorylation process, small molecules 
that bind to the ATP-binding pocket of the kinase domain can inhibit its enzymatic activity. 
These TK inhibitors (TKIs) may bind either reversibly or irreversibly. Reversible TKIs 
erlotinib and gefitinib are EGFR-specific, while lapatinib inhibits both EGFR and HER2 
(Pines et al., 2010).  

Molecular imaging agents with specific targets can provide information regarding biological 

processes at a cellular level before anatomical changes occur. Similar to the approaches used 

to develop EGFR and HER2 therapeutic agents, two strategies could be used for EGFR- and 

HER2-targeted tumor imaging. The first class of imaging agents targets extracellular domain 

of the receptor. Examples of these imaging agents include whole antibodies, antibody 

fragments, affibodies and nanobodies. The EGFR ligands, which bind to EGFR extracellular 

domain at high affinity, could also be used for this purpose. The second class of molecules 

includes TKIs and analogs that bind reversibly or irreversibly to the kinase domain of the 

receptor. Actually, some of the EGFR- and HER2-targeted therapeutic agents mentioned 

above have been used for tumor imaging after labeling with different functional groups, 

such as radionuclides for positron emission tomography (PET) and single-photon emission 

computed tomography (SPECT) imaging, and fluorescent dyes for optical imaging (Mishani 

et al., 2008; Mishani & Hagooly, 2009; Niu et al., 2008).  

2. Imaging agents targeting EGFR  

2.1 Anti-EGFR antibodies  

PET imaging with 64Cu (t1/2 = 12.7 h)-labeled cetuximab (64Cu-DOTA-cetuximab) was 
employed to measure the EGFR expression in seven xenograft tumor models in vivo. The 
data was compared with EGFR levels in the tumors determined by Western blot. A 
reasonable linear correlation (R2 = 0.80) between the tumor uptake of 64Cu-DOTA-cetuximab 
(measured by PET) and the EGFR protein expression level (measured by Western blot) was 
discovered. It was also found that 64Cu-DOTA-cetuximab had increasing tumor 
accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-
negative tumors (Cai et al., 2007). In a following study, 64Cu-DOTA-cetuximab was used to 
monitor the early response of EGFR degradation induced by 17-allyamino-17-
demethoxygeldanamycin (17-AAG) treatment (Niu et al., 2008). 17-AAG is an Hsp90 
inhibitor, which induces the degradation of EGFR protein (Lang et al., 2007). In a PC-3 
prostate tumor model, 17-AAG treatment induced significant reduction of 64Cu-DOTA-
cetuximab uptake in the tumor. The reduction of 64Cu-DOTA-cetuximab uptake correlated 
well with the lower EGFR protein level in the treated tumor as determined by 
immunofluorescence staining and Western blot (Niu et al., 2008).  

Cetuximab has also been labeled with fluorescent dyes for optical imaging. Cy5.5 (Ex/Em: 
675/695 nm)-labeled cetuximab (cetuximab-Cy5.5) was taken up specifically by head and 
neck squamous cell carcinoma (HNSCC) xenografts. The fluorescence from mouse tumors 
treated with cetuximab-Cy5.5 was significantly higher compared to a control probe IgG1-
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Cy5.5 (Rosenthal et al., 2007). To reduce the background fluorescence signal, a two-step 
activation strategy was designed. EGFR-overexpressing tumors (A431) were pre-targeted 
with biotinylated cetuximab, followed by administration of neutravidin conjugated with 
BODIPY-FL fluorescent dye (nAv-BDPfl). As the fluorescence of nAv-BDPfl increases 
dramatically (~ 10-fold) upon binding to biotin, the nAv-BDPfl signal will be specifically 
activated at the tumor site, where the biotinylated cetuximab was concentrated. Not 
surprisingly, this approach produced a higher tumor-to-background ratio (Hama et al., 
2007). Another activatable probe employed the fluorescence quenching of ICG after 
conjugation with antibodies. The fluorescence could be restored by disrupting the molecular 
interaction between ICG and antibodies either in vitro (SDS plus 2-ME treatment) or in vivo 
(target binding and internalization). ICG-labled panitumumab (labeling ratio 1:5) exhibited 
a 58-fold signal increase upon SDS/2-ME treatment. EGFR-overexpressing tumors (A431 
and MDA-MB-468) could be identified by this probe. Two other antibodies, trastuzumab 
(anti-HER2) and daclizumab (anti-CD25) were also labeled with ICG and used to image 
their respective targets in this study (Ogawa et al., 2009).  

In an attempt to extend EGFR-targeted imaging with cetuximab to clinical scenario, 
cetuximab was labeled with 99mTc (t1/2 = 6 h). The resulting imaging probe 99mTc-EC-C225 
was evaluated by cell uptake assay, and in tumor-bearing mice and rats. SPECT imaging on 
a patient with squamous cell carcinoma visualized the tumor 2 h after 99mTc-EC-C225 
administration (Schechter et al., 2003). Assessment of the radiation dosimetry of this probe 
indicated that it has reasonable dosimetric properties for a diagnostic nuclear medicine 
agent (Schechter et al., 2004).  

EGFR variant III (EGFRvIII) is a common in-frame deletion mutant that lacks a large part of 
the extracellular portion (exons 2-7), including components of the ligand-binding domain 
(Ekstrand et al., 1992). EGFRvIII is constitutively activated, and associated with 
glioblastoma and some other tumors, such as prostate and breast cancer (Wikstrand et al., 
1998). EGFRvIII could be recognized by ch806, a chimeric anti-EGFR antibody that 
selectively binds an EGFR epitope exposed only on mutant, overexpressed, or ligand-
activated forms of the receptor (Panousis et al., 2005). 124I (t1/2 = 4.2d)-labeled ch806 (124I -
IMP-R4-ch806) was able to detect EGFRvIII expressing tumors (U87MG.EGFRvIII) at 24 h 
after probe injection, and prolonged retention was evident up to 168 h post-injection. There 
was a good correlation between in vivo tumor PET quantitation of 124I -IMP-R4-ch806 and ex 
vivo measurement from dissected tissues. Remarkably, this probe was tumor-specific, and 
no significant binding to normal tissue was observed (Lee et al., 2010). This is in contrast to 
cetuximab, which accumulates in EGFR-expressing tissues such as liver (Niu et al., 2008).  

2.2 EGFR-specific antibody fragments 

Due to their large size (~150 kDa), the antibody-based imaging agents suffer from 
drawbacks such as long biodistribution time, poor penetrating capability, and slow 
clearance from the blood and normal tissues, which causes limited imaging contrast early 
post-injection, high background signal and non-uniform tumor penetration (Gong et al., 
2010; Schier et al., 1996). Antibodies could be dissected into minimal monovalent binding 
fragments, such as Fab (~55 kDa) and scFv (~28 kDa), which retain the binding specificity 
(Holliger & Hudson, 2005). These antibody fragments have also been used for molecular 
imaging studies.  
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The Fab fragment of a fully human antibody that recognizes the native extracellular domain 
of EGFR was labeled with 125I (t1/2 =59.4 d). The binding of 125I-Fab to EGFR was confirmed 
by immunoprecipitation (IP) and fluorescence-activated cell sorting (FACS). In an animal 
imaging study, 125I-Fab was able to distinguish the tumors with different levels of EGFR 
expression (Xu et al., 2009). An EGFR-specific scFv was isolated from a phage display 
library, and labeled with either quantum dot (QD) for fluorescence imaging, or magnetic 
iron oxide (IO) for magnetic resonance imaging (MRI). The resulting EGFR-targeted 
nanoparticles were discovered to accumulate in pancreatic xenograft tumors by tissue 
section fluorescence imaging and whole animal MRI (Yang et al., 2009). To achieve site-
specific labeling, an anti-EGFR scFv was fused to the SNAP-tag creating a fusion protein 
425(scFv)SNAP (~48 kDa) (Kampmeier et al., 2010). SNAP-tag is a 20-kDa protein derived 
from the human DNA repair protein O6-alkylguanine-DNA-alkyltransferase (hAGT), which 
reacts with the fluorescent dye conjugated benzylguanine (BG) substrate, leading to 
covalent labeling of the fluorescent dye on the fusion protein (Keppler et al., 2004). The 
fusion protein 425(scFv)SNAP labeled with the near-infrared (NIR) substrate BG-747 
accumulated rapidly and specifically at the tumor site. Due to the efficient clearance, the 
tumor to background ratio (TBR) of this probe was significantly higher compared to the full-
length antibody cetuximab (Kampmeier et al., 2010).  

Camelids contain a unique type of antibodies lacking the light chain (Hamers-Casterman et 
al., 1993). The single variable domain of heavy chain (VHH) has been isolated, and termed 
nanobody (~15 kDa). Several EGFR-specific nanobodies were labeled with 99mTc for SPECT 
imaging. These 99mTc-lableded nanobody molecules showed high specificity towards EGFR-
overexpressing A431 tumors. The clearance from the blood was fast. The probe 
accumulation in the kidney was much higher than that in the liver, indicating a kidney 
clearance route (Gainkam et al., 2008; Huang et al., 2008). We labeled an EGFR-specific 
nanobody molecule (a kind gift from Dr. Paul van Bergen en Henegouwen at Utrecht 
University) with a NIR fluorescent dye IRDye® 800CW (Ex/Em: 774/789 nm) and used it 
for in vivo optical imaging. A431 xenograft tumors could be clearly identified at 1d post-
injection with different dosages (0.4, 0.8 and 1.6 nmol per mouse) (Fig. 1). Consistent with 
SPECT results, the kidney accumulation of this fluorescent probe was high (Gong et al., 
unpublished data). To increase the binding affinity and optimize the pharmacokinetic 
properties, a bivalent form of nanobody molecule was created by fusing two monovalent   

 

Fig. 1. In vivo fluorescence imaging of nude mice bearing A431 tumors using an EGFR-
specific nanobody labeled with IRDye 800CW. Images (dorsal view) were acquired at 1 d 
after injection of 1.6 nmol, 0.8 nmol or 0.4 nmol imaging agents, respectively. Arrows 
indicate A431 tumors. The nanobody was a gift from Dr. Paul van Bergen en Henegouwen, 
Utrecht University.  
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nanobody (EG2) molecules to the human Fc fragment. The resulting molecule, EG2-hFc (80 
kDa) was labeled with the fluorescent dye Cy5.5, and compared with Cy5.5-labeled 
monovalent EG2, and Cy5.5-labeled pentavalent derivative V2C- EG2 (128 kDa). In vivo 
pharmacokinetic and biodistribution studies in mice revealed that the plasma half life of 
EG2-hFc-Cy5.5 was much prolonged compared to the other two probes. The retention of 
EG2-hFc-Cy5.5 in EGFR/EGFRvIII-expressing orthotopic brain tumors was also significantly 
higher, resulting in an improved tumor fluorescence signal (Iqbal et al., 2010).  

2.3 Natural ligand EGF 

EGF (MW: 6045 Da) is a small polypeptide that binds with high affinity to EGFR on the cell 
surface (Stoscheck & King, 1986; Yarden & Sliwkowski, 2001). 111In (t1/2 = 2.8 d)-labeled 
hEGF (111In-DTPA-hEGF) was compared with an 111In-labeled monoclonal antibody (111In-
DTPA-MAb528) for in vivo tumor imaging. The blood clearance of 111In-DTPA-hEGF was 
much faster (< 0.2%ID/g for 111In-DTPA-hEGF vs 3%ID/g for 111In-DTPA-MAb528 in the 
blood at 72 h post injection). The tumor accumulation of 111In-DTPA-hEGF was lower. 
Although both probes could visualize EGFR-expressing tumors, the signal from 111In-DTPA-
MAb528 was more prominent at 72 h post-injection (Reilly et al., 2000). The fast clearance of 
EGF makes it advantageous over antibodies for radionuclides with shorter half-lives such as 
68Ga (t1/2 = 68 min). 68Ga-labeled hEGF (68Ga-DOTA-hEGF) was used in a microPET imaging 
study. A quick localization of radioactivity in tumors (within 5 min) was demonstrated 
(Velikyan et al., 2005).  

Both Cy5.5- and IRDye 800CW-labeled EGF (named as EGF-Cy5.5 and EGF800 respectively) 

have been successfully used for fluorescence optical imaging of EGFR-expressing tumors. 

The specificity of both probes was verified by competition with excess cetuximab (Ke et al., 

2003; Kovar et al., 2006). However, a direct comparison between these two probes revealed 

that EGF800 produced a significantly lower background and a higher tumor-to-background 

ratio, implying that IRDye 800CW is superior to Cy5.5 for this application (Adams et al., 

2007). Analysis of the excised tumors from EGF800-treated mice demonstrated a good 

correlation between tumor wet weight and in vivo tumor fluorescence signal. Repeated 

administration of EGF800 probe allowed for the non-invasive tracking of orthotopic prostate 

tumor growth (Fig. 2) (Kovar et al., 2006). Another study with EGF800 showed that probe 

accumulation in tumors reflected relative EGFR expression and EGFR occupancy by 

cetuximab (Manning et al., 2008).  

QDs have also been used to label EGF for fluorescence optical imaging. An EGFR targeting 
nanoprobe was formed by coupling NIR QDs to EGF. The tumor-specific accumulation of 
this nanoprobe was demonstrated by both whole animal imaging and ex vivo tissue analysis 
(Diagaradjane et al., 2008).  

2.4 EGFR-specific affibody 

Affibody molecules are a class of affinity proteins composed of 58 amino acid residues that 
are derived from one of the IgG-binding domains of staphylococcal protein A. EGFR-
specific affibody molecules (~7 kDa) have been selected by phage display technology 
(Friedman et al., 2007). A head-to-tail dimeric form (ZEGFR:955)2 that has a higher binding 
affinity was labeled with 111In and successfully used for in vivo imaging of A431 tumors 
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(Nordberg et al., 2008). To further improve the binding affinity and specificity, the affibody 
was optimized by affinity maturation process (Friedman et al., 2008). The second generation 
of EGFR-specific affibody has been conjugated with various labels, and characterized in 
detail. 

 

Fig. 2. Tracking of orthotopic prostate tumor growth with EGF800. Male NOD/SCID mice 
were injected orthotopically with 22Rv1 tumor cells. Animals were injected with EGF800 at 
different time points and imaged. The left column shows the tumor progression of a 
representative mouse in color-coded fluorescence images superimposed on the white light 
images. In the right column, total fluorescence in an ROI encompassing the tumor region 
was quantified. Fluorescence intensity is color-coded to assist visualization. Adapted from 
(Kovar et al., 2006) with permission.  
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In vivo imaging with 64Cu- or Cy5.5-labeled ZEGFR:1907 showed fast tumor (A431) targeting 
and good tumor-to-normal tissue contrast. Both agents accumulated at a high level in 
tumor, liver and kidney as revealed by biodistribution study (Miao et al., 2010, 2010). A 
dimeric form of EGFR-specific affibody (13.7 kDa) was labeled with IRDye 800CW (named 
as Eaff800), and used to image A431 xenograft tumors. The tumor could be visualized 1 h 
post-injection, and it became most prominent after 1 d (Fig. 3). The binding and uptake of 
Eaff800 was EGFR-specific because it only produced minimal signal when reacted with SK-
OV-3 cells (HER2-overexpressing) in both cell-based assay and in vivo imaging study. It is 
notable that the liver uptake of Eaff800 was high, possibly due to the cross-reaction between 
Eaff800 and murine EGFR expressed in the liver (Gong et al., 2010).  

 

Fig. 3. In vivo optical imaging of nude mice bearing A431 tumors using Eaff800. (A) A 
representative series of whole body images (dorsal view) acquired at different time points 
following injection of 0.5 nmol Eaff800. The tumors were indicated with arrows. (B) Clearance of 
Eaff800 from the tumor and normal tissue. Average signal intensities were quantified using ROIs 
of equivalent sized areas from the tumor sites and contralateral sites at indicated time points. 
Data were presented as mean ± SD of three individual mice. (C) Tumor-to-background ratio 
(TBR) at different time points after probe injection. TBR was calculated by dividing mean tumor 
signal by mean background signal of the contralateral site. Adapted from (Gong et al., 2010) with 
permission.  
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The monomer ZEGFR:1907 and dimer (ZEGFR:1907)2 were labeled with 111In and 125I, respectively. 
The resulting four variants, 111In-Bz-DTPA-ZEGFR:1907, 111In-Bz-DTPA-(ZEGFR:1907)2, 125I-PIB- 
ZEGFR:1907 and 125I-PIB-(ZEGFR:1907) 2 were compared in A431 tumor bearing nude mice. At 24 h 
after injection, the use of 111In provided higher tumor radioactivity level than did 125I for 
both the monomer and the dimer. It was also discovered that the tumor uptake of monomer 
was higher than that of dimer, despite a superior cellular retention of radioactivity for dimer 
in cell-based assays. The best probe, 111In-Bz-DTPA-ZEGFR:1907, produced a tumor-to-blood 
ratio of 100 at 24 h after injection (Tolmachev et al., 2009). To investigate the effect of injected 
protein dose, an aliquot of labeled affibody 111In-DOTA-ZEGFR:2377 was diluted in different 
amounts of unlabeled affibody before injection to A431 tumor bearing mice. A bell-shaped 
dose-responsive curve was observed. The initial increase in uptake was reasoned to be 
associated with saturation of EGFR in normal tissues, resulting in more 111In-DOTA-
ZEGFR:2377 available for tumor targeting. Further increase in the unlabeled affibody caused the 
competition of EGFR in the tumor site and reduced 111In-DOTA-ZEGFR:2377 uptake 
(Tolmachev et al., 2010).  

2.5 TKI derivatives  

TKIs targeting EGFR are small organic molecules developed based mainly on the 

anilinoquinazoline moiety. These molecules bind to ATP-binding site of the kinase domain 

either reversibly or irreversibly (Mishani & Hagooly, 2009). Reversible TKI agent gefitinib 

was labeled with 18F (t1/2 = 110 min) to image the EGFR status of different cancer cells. 

However it was discovered that [18F]-gefitinib uptake did not correlate with EGFR 

expression levels due to high non-specific cellular uptake (Su et al., 2008). This finding is in 

agreement with other studies showing that most reversible TKIs were inadequate for in vivo 

imaging despite impressive in vitro profile, including high affinity and specificity toward 

EGFR. These radio-labeled reversible agents often exhibit low uptake in targeted tumors 

and high uptake in non-targeted tissues (Mishani & Hagooly, 2009). Nevertheless, a recent 

study with 11C (t1/2 = 20 min)-labeled erlotinib, another reversible TKI, showed that [11C]-

erlotinib accumulated in HCC827 tumors that expresses high level of EGFR and is sensitive 

to erlotinib treatment. HCC827 xenograft tumors could be visualized by micro-PET 

scanning with [11C]-erlotinib, whereas A549 and NCI358 xenografts (both express low level 

of EGFR) could not. However HCC827 cells also harbor an in-frame deletion mutation in 

exon 19 that contributes to the enhanced sensitivity to erlotinib. It is not clear whether this 

mutation causes the accumulation of [11C]-erlotinib in the tumor (Memon et al., 2009).  

To enhance binding efficacy, much effort has been invested in the development of 
irreversible TKIs as therapeutic drugs and imaging agents (Mishani et al., 2008; Mishani & 
Hagooly, 2009). An irreversible TKI-based radiotracer, morpholino-[124I]-IPQA, has been 
developed and characterized. Morpholino-[124I]-IPQA covalently binds to the ATP-binding 
site of the activated (phosphorylated) EGFR, but not the inactive EGFR. A431 tumors on 
immunocompromised rats and mice were successfully visualized by PET imaging with this 
probe (Pal et al., 2006). A newer version of this probe, [18F]F-PEG6-IPQA, which has better 
water solubility, has also been developed. [18F]F-PEG6-IPQA could detect NSCLC xenograft 
tumors harboring L858R activating EGFR mutations, and did not recognize NSCLC 
xenografts expressing either wild type or L858R/T790M dual mutant EGFR (Yeh et al., 
2011). Another irreversible TKI analog ML04 exhibited excellent specificity to EGFR in vitro. 
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However, in vivo biodistribution analysis of [18F]ML04 showed that the probe uptake in 
EGFR-positive tumors was mainly non-specific, suggesting that further optimization of this 
probe is needed (Abourbeh et al., 2007; Mishani et al., 2008). 

3 Imaging HER2-overexpressing tumors 

3.1 Anti-HER2 antibodies  

HER2 amplification was initially observed in human breast cancer and was subsequently 

identified in ovarian cancer and other types of cancers (Niu et al., 2008; Slamon et al., 1989; 

Zhang et al., 1989). HER2 expression is highly conserved between primary breast lesions 

and metastases in lymph node, bone marrow as well as distant locations (Gancberg et al., 

2002; Lopez-Guerrero et al., 2006; Regitnig et al., 2004; Simmons et al., 2009; Simon et al., 

2001; Tapia et al., 2007; Vincent-Salomon et al., 2007); and remains so throughout therapy 

(Carlsson et al., 2004; Gong et al., 2005; Pectasides et al., 2006). Thus, accurate assessment of 

HER2 expression levels is of great interest for identifying breast cancer patients who will 

benefit from HER2-targeted therapy.  

Trastuzumab (Herceptin; Genentech, CA), a recombinant humanized monoclonal antibody 

directed against the extracellular domain of the HER2 protein, was engineered by inserting 

the complementarity determining region of a murine antibody (clone 4D5) into the 

framework of a consensus human IgG1 (Carter et al., 1992). Tratuzumab has been shown to 

be effective in early-stage breast cancer that overexpresses HER2. Clinical trials indicate that 

combining tratuzumab treatment with standard chemotherapy for early-stage HER2 

positive breast cancer reduces the risk of recurrence and death when compared to 

chemotherapy alone, thereby improving disease-free and overall survival rates in patients 

(Baselga et al., 2006; Romond et al., 2005). 

Trastuzumab was radio-labeled with 111In using DTPA as a chelator. 111In-DTPA-

trastuzumab selectively bound to the human HER2 receptor in in vitro analysis. 

Biodistribution and tumor targeting were studied in SK-OV-3 (HER2+) and GLC4 (HER2-) 

tumor-bearing athymic mice. The SK-OV-3 tumor showed substantial uptake of the labeled 

antibody after 5 h. The difference in uptake between SK-OV-3 and GLC4 tumors was even 

more pronounced 3 d after injection. At that time, the SK-OV-3 tumor was clearly visualized 

by radioimmunoscintigraphy (Lub-de Hooge et al., 2004). Research has also demonstrated 

that fluorescent dye-labeled trastuzumab enabled differentiation between breast cancer cells 

expressing high and low levels of HER2. Serial imaging before and during trastuzumab 

therapy revealed a significant reduction in probe uptake with treatment (Gee et al., 2008). 

Trastuzumab was also used to mediate the cellular internalization of pH-activatable 

fluorephores. These probes produced minimal fluorescence outside of the cell, and were 

activated by sensing the pH change in the lysosome after internalization (Urano et al., 2009). 

Other optical imaging based applications include imaging SK-BR-3 tumors with Cy5.5-

labeled trastuzumab (Hilger et al., 2004), and distinguishing between HER2+ pulmonary 

metastases and HER2- pulmonary metastases using rhodamine green-conjugated 

trastuzumab (Koyama et al., 2007).  

Another antibody against HER2 used for imaging applications is pertuzumab, a humanized 
antibody derived from the murine antibody 2C4. Unlike trastuzumab, pertuzumab sterically 
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hinders HER2 hetero-dimerization with EGFR and HER3. Pertuzumab conjugated with 
177Lu showed significant tumor uptake in an in vivo study using gamma camera imaging 
(Persson et al., 2005). 

3.2 HER2-specific antibody fragments 

Trastuzumab-derived antibody fragments Fab and F(ab’)2 have also been employed for 

molecular imaging. 111In- or 99mTc-labeled trastuzumab Fab conjugates were used to detect 

HER2-expressing tumors using whole-body scintigraphy. Tumors were visualized 6 h post-

injection (Tang et al., 2005; Tang et al., 2005). Trastuzumab and trastuzumab-derived Fab 

fragment (Fab4D5) labeled with 111In were compared in a MMTV/HER2 mouse allograft 

model. Although Fab4D5 showed accumulation in the tumor as early as 2 h, rapid wash-out 

through the kidneys was observed by 6 h. On the contrary, trastuzumab was slow for tumor 

deposition and slow for clearance from the normal tissues. To improve the pharmacokinetic 

properties of the Fab fragment, an albumin binding sequence was introduced to generate a 

bifunctional molecule (AB.Fab4D5). Similar to Fab4D5 alone, AB.Fab4D5 visualized the 

tumor at 2 h post-injection, but its presence was sustained beyond 24 h, which resembles 

trastuzumab. Intravital microscopy revealed that tumor cell staining by AB.Fab4D5 was 

more uniform than for Fab4D5 or trastuzumab. The association of AB.Fab4D5 with albumin 

altered the clearance route of the probe, and minimal probe accumulation in the kidney was 

observed (Dennis et al., 2007). In another report, trastuzumab F(ab’)2 fragment labeled with 
68Ga was successfully used to quantify the loss and recovery of HER2 induced by HSP90 

inhibitor 17-AAG in mice bearing BT-474 tumors (Smith-Jones et al., 2004). Table 1 

summarizes trastuzumab-based agents for nuclear, optical and dual-modality imaging. This 

table includes only representative agents in each class, thus is in no way a complete list. The 

dual-labeled probes listed here will be discussed in detail later.  

 

Imaging 
modality 

Imaging agents Animal model and 
cell lines 

Dosage Reference 

Nuclear 
medicine 

 
PET 

 
 
 
 
 
 
 

SPECT/CT 
 
 
 
 

 
 
 

64Cu-DOTA-
Herceptin, 

68Ga-DOTA-F(ab’)2 
 

89Zr-trastuzumab 
 
 
 

111In-DOTA-Fab4D5, 
111In-DOTA-
AB.Fab4D5 

 
 

 
 
 

Mouse xenograft; 
BT-474, MCF-7, 
MDA-MB-468 

 
Mouse xenograft; 

SKOV3, GLC4 
 
 

Mouse allograft; 
tumors derived 

from 
MMTV/HER2 
transgenic mice 

 
 
 

4 MBq 
309 MBq 

 
 

100 µg of 
trastuzumab 

(1 MBq) 
 

4 mg/kg 
(300-500 

µCi) 
 
 

 
 
 

(Smith-
Jones et 
al., 2004) 

 
(Dijkers et 
al., 2009) 

 
 

(Dennis et 
al., 2007) 
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Scintigraphy 
(whole body) 

 
 
 
 
 
 
 

Optical 
imaging 

 
Fluorescent 

dyes 
 
 
 
 
 
 
 
 
 
 

Quantum 
dots (QDs) 

 
 
 

Dual-
modality 

 
Nuclear and 

optical 
agents 

 
[99mTc]-HYNIC-

trastuzumab Fab, 
111In-trastuzumab 

Fab, 
111In-DTPA-
trastuzumab 

 
 
 

 

 

 
Herceptin-RhodG 

 
 
 

Tra-Cy5.5 (SQ), 
Tra-Alexa680(SQ) 

 
 

Trastuzumab-Cy5.5, 
Trastuzumab-AF750 

 
 

Trastuzumab-QD 
 
 
 
 
 
 
 

(111In-DTPA)n-
trastuzumab-
(IRDye800)m 

 

(64Cu-DOTA)n-
trastuzumab-
(IRDye800)m 

 
111In-trastuzumab-

ICG 

 
Mouse xenograft; 
BT-474, SK-OV-3 

human 
 
 
 
 
 
 
 
 
 

Mouse xenograft; 
SK-BR-3, PE/CA-

PJ34 
 

Mouse xenograft; 
3T3/HER2+, 

Balb/3T3/HER2- 
 

Mouse xenograft; 
9L, MCF-7, BT-474, 

SK-BR-3 
 

Mouse xenograft; 
3T3/HER2+, 

Balb/3T3/HER2- 
 
 
 
 
 

Mouse xenograft; 
SKBr3-luc 

 
 

Mouse allograft; 
4T1.2/R, 

4T1.2neu/R 
 

Mouse xenograft; 
3T3/HER2, MDA-

MB-468 

 
25 MBq 
(30µg) 

3.7 MBq 
(30µg) 

Mice: 450 ± 
25 kBq (25 

µg); Human: 
100-150 MBq 

(5mg) 
 
 
 

50 µg in 200 
µl PBS 

 
 

50 μg/100 
μL PBS 

 
 

0.4 nmol 
 
 
 

2 μM (100 
µl) 

 
 
 
 
 
 

80-200 µg 
(70-200 µCi) 

 
 

150 µg (150 
µCi) 

 
 

60 µg (3.8 
MBq) 

 
(Lub-de 
Hooge et 
al., 2004; 

Tang et al., 
2005; Tang 

et al., 
2005) 

 
 
 
 
 

(Koyama 
et al., 
2007) 

 
(Ogawa et 
al., 2009) 

 
 

(Gee et al., 
2008) 

 
 

(Li-
Shishido 

et al., 2006; 
Tada et al., 

2007) 
 
 
 

(Sampath 
et al., 
2007) 

 
(Sampath 

et al., 
2010) 

 
(Ogawa et 
al., 2009) 

Table 1. Summary of molecular imaging agents based on trastuzumab (Herceptin) or 
trastuzumab fragments 
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3.3 HER2-specific affibody  

Phage display selection yielded affibody molecules that specifically bind to HER2 extracellular 
domain. One of these molecules, His6-ZHER2:4 (affibody ZHER2:4 linked to a histidine tag) targets 
the extracellular domain of HER2 with an affinity (KD) at about 50 nM. The affibody does not 
interfere with trastuzumab binding to HER2, since the binding sites are different (Wikman et 
al., 2004). The specificity of the affibody was illustrated by the uptake of 125I- His6-ZHER2:4 in 
HER2-overexpressing SK-BR-3 breast cancer cells (Tran et al., 2007; Wikman et al., 2004). A 
bivalent version of the affibody (ZHER2:4)2, which has an increased binding affinity (KD = 3 nM) 
was later created (Steffen et al., 2005). When 125I-labeled (ZHER2:4)2 was investigated in an 
animal study, a tumor-to-blood ratio of about 10:1 was obtained 8 h after injection, and the 
tumor region could be visualized using gamma camera imaging (Steffen et al., 2006). However 
a comparison of 125I-labeled (Tolmachev et al., 2009) or 18F-labeled (Cheng et al., 2008) second 
generation affibody molecules (see below) demonstrated that the monomeric form provided 
better tumor targeting than the dimeric form, which is the same as EGFR-specific affibody 
molecules (Tolmachev et al., 2009).  

The second generation of HER2-specific affibody was generated through a single-library 
affinity maturation step. One of them, ZHER2:342, showed a >2200-fold increase in affinity (22 
pM for ZHER2:342 vs 50 nM for ZHER2:4). SK-OV-3 tumor xenografts were imaged 6 h after 
injection of 125I-labeled ZHER2:342. The tumor uptake at 4 h post-injection was improved by a 
factor of 4 compared to the parental molecule ZHER2:4 (Orlova et al., 2006). Comparison of 
124I-labeled ZHER2:342 and trastuzumab demonstrated that better tumor-to-organ ratios were 
obtained with ZHER2:342 due to the more rapid clearance (Orlova et al., 2009). By changing the 
radioisotope to 111In, the labeled molecule 111In-Benzyl-DTPA- ZHER2:342 maintain a KD of 21 
pM. Detection of SK-OV-3 tumors was achieved at 4 h post-injection with a gamma-camera. 
Biodistribution analysis revealed a tumor-to-blood ratio of 100 (Tolmachev et al., 2006). 
HER2-specific affibody molecules were also labeled with fluorescent dyes. The binding 
affinities and specificities of the conjugated molecules were unchanged or minimally 
affected by the modifications. In vivo NIR optical imaging revealed that affibody fused with 
an albumin-binding domain (ABD-(ZHER2:342)2) exhibited a better performance compared to 
either monomer or dimer alone (Lee et al., 2008).  

Site-specific radio-labeling of ZHER2:342 was achieved by synthetic chemistry. The resulting 
111In-DOTA-ZHER2:342-pep2 has a binding affinity of 65 pM. High contrast gamma camera 
images were obtained in the tumor region as early as 1 h after injection. Although pre-
treatment with trastuzumab did not compete with the binding of 111In-DOTA-ZHER2:342-pep2 in 
tumors, degradation of the HER2 receptor using the heat-shock 90 inhibitor 17-AAG before 
probe administration reduced tumor uptake (Orlova et al., 2007). These data taken together 
indicate that, similar to the first generation affibody ZHER2:4, the binding site of ZHER2:342 is 
different from that of trastuzumab, but specific to the HER2 receptor. Site-specific labeling 
of 99mTc was mediated by incorporation of either histidine tag (His6), natural peptide 
sequences CCG, CGGG, or maGGG, maSSS, maSKS, maESE chelators into the ZHER2:342 

sequence. All 99mTc-labeled probes showed tumor-specific uptake at 6 h post-injection or 
earlier using gamma camera imaging (Engfeldt et al., 2007; Engfeldt et al., 2007; Orlova et 
al., 2006; Tran et al., 2007; Tran et al., 2008).  

111In and 68Ga-labeled ZHER2:342 were tested in patients with recurrent metastatic breast 
cancer. These agents detected 9 out of 11 18F-FDG-positive metastases at 2-3 h after injection, 
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suggesting their potential to localize HER2-positive metastases not amenable to biopsy 
(Baum et al., 2010).  

The HER2-specific affibody was further optimized by reengineering the nonbinding surface 

of ZHER2:342 to improve its properties such as storage stability, surface hydrophilicity, melting 

point and amenability for peptide synthesis. The new generation of affibody was created 

and characterized (Ahlgren et al., 2010; Feldwisch et al., 2010).  

The fact that HER2-specific affibodies and trastuzumab target separate epitopes might be 

advantageous when developing these affibodies as imaging agents. These imaging agents 

will not interfere with trastuzumab binding when being used to monitor the therapeutic 

effect of trastuzumab (Baum et al., 2010; Orlova et al., 2007). One cause of concern of these 

affibody-base imaging agents is the high non-specific kidney accumulation. This is due to 

the small molecular weight of the affibody molecules which renders their clearance mainly 

through the kidney.  

3.4 Dual-labeled trastuzumab  

Probes dual-labeled with a radionuclide and a NIR fluorophore enhance the advantages and 

compensate the disadvantages of each modality, and could offer unique opportunities for 

the combination of non-invasive whole body imaging and subsequent intraoperative 

guidance during surgery. To investigate this possibility, trastuzumab was conjugated with 

either 111In (for SPECT imaging) or 64Cu (for PET imaging), and IRDye 800CW to image 

HER2 overexpression in mouse xenograft tumors (Sampath et al., 2010; Sampath et al., 

2007).  

(111In-DTPA)n-trastuzumab-(IRDye800)m was synthesized using a three step process 

wherein, trastuzumab was first conjugated to DTPA and then with IRDye 800CW. Prior to 

animal imaging, radio-labeling with 111In was performed. The agent was validated for 

binding specificity in vitro using the fluorescence microscopy. High probe uptake in HER2-

overexpressing SKBr3-luc tumors was demonstrated using NIR fluorescence, SPECT and 

planar scintigraphy imaging. The tumor-to-muscle ratios were comparable between optical 

and nuclear imaging modalities, but NIR fluorescence imaging had a higher signal-to-noise 

ratio. Since NIR fluorescence imaging has improved sensitivity due to high photon count, it 

can be used to monitor the lymphatic uptake of the dual-labeled antibody after intradermal 

administration into the dorsal aspect of the foot pad. Accumulation into the lymph nodes 

was observed at picomole doses within 1 h after administration, while clearance was 

observed by 24 h (Sampath et al., 2007).  

To test the ability of dual-labeled (64Cu-DOTA)n-trastuzumab-(IRDye800)m to detect 

metastasis, Balb/c mice bearing 4T1.2/R (murine breast cancer cell, HER-) and 4T1.2neu/R 

(murine breast cancer cell, HER+) tumors were used. The diagnostic capability of this dual-

labeled probe was also compared with PET imaging agent 18FDG. (64Cu-DOTA)n-

trastuzumab-(IRDye800)m showed significantly higher uptake in 4T1.2neu/R primary 

tumors compared to 4T1.2/R tumors, indicating in vivo specificity of the dual-labeled 

imaging agent. In contrast 18FDG did not show any preferential uptake between the two 

tumor types. Lung metastases of HER2-overexpressing 4T1.2neu/R cells were successfully 

detected with whole body PET imaging after administration of (64Cu-DOTA)n-trastuzumab-
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(IRDye800)m. Unfortunately, due to its limited penetration capability, whole body NIR 

fluorescence imaging could not detect lung metastases although it detected superficial skin 

metastases successfully. But agent uptake was evident with ex vivo NIR fluorescence 

imaging. Ex vivo NIR fluorescence imaging also visualized the trafficking of imaging agent 

from the primary tumor to lymph nodes, which was not possible for nuclear imaging with 
64Cu. When 18FDG was investigated, it could not detect metastases under these conditions 

(Sampath et al., 2010). 

In another study, it was found that trastuzumab labeled with both ICG and 111In mimicked 

the cocktail of ICG-trastuzumab and 111In-trastuzumab when injected into 3T3/HER2 

tumor-bearing mice. As the fluorescence of ICG in this probe was only activated after 

binding to the HER2 receptor on the cell surface and being internalized, the HER2-

overexpressing tumor could be visualized with minimal background signal (Ogawa et al., 

2009).  

4 Imaging EGFR and HER2 simultaneously  

4.1 Antibodies labeled with fluorescent dyes  

Fluorescence optical imaging has the advantage of multiple channels, which can be 

employed to image two or more targets simultaneously. Cetuximab and trastuzumab were 

labeled with Cy5.5 and Cy7, respectively. The binding and internalization of cetuximab-

Cy5.5 by A431, and trastuzumab-Cy7 by 3T3/HER2+ cells were confirmed by fluorescence 

microscopy. On the contrary, no binding of cetuximab-Cy5.5 to 3T3/HER2+, and 

trastuzumab-Cy7 to A431 was observed. When mice were injected with a cocktail of 

cetuximab-Cy5.5 and trastuzumab-Cy7, A431 and 3T3/HER2+ tumors could be detected 

distinctly based on the Cy5.5 and Cy7 spectral images (Barrett et al., 2007). In a subsequent 

study three antibodies (cetuximab, trastuzumab and daclizumab) were labeled with three 

different fluorophores (Cy5, Cy7 and AlexaFluor700), respectively. Spectrally resolved 

fluorescence imaging showed that these probes clearly distinguished their respective 

targeting tumors (A431, 3T3/HER2+ and SP2-Tac) based on their distinct optical spectra 

(Koyama et al., 2007).  

4.2 Affibody molecules labeled with fluorescent dyes  

The EGFR- or HER2-specific Affibody molecules were labeled with IRDye 800CW and DY-

682, respectively. The labeled probes, Eaff800 and Haff682, were taken up at high levels by 

EGFR-overexpressing A431 and HER2-overexpressing SK-OV-3 cells, respectively. Whole 

animal imaging showed that Eaff800 mainly accumulated in A431 tumor, while more 

Haff682 signal was found in SK-OV-3 tumor (Fig. 4A). Scanning tissue sections of dissected 

tumors confirmed the in vivo data. The liver uptake of Eaff800 was much higher than that of 

Haff682, suggesting a role of murine liver EGFR in the uptake of Eaff800. When the labeled 

fluorophores on the affibody molecules were exchanged (i.e. EGFR-specific affibody labeled 

with DY-682 and HER-specific affibody labeled with IRDye 800CW), the specificities of the 

affibody molecules were not affected (Fig. 4B). These results demonstrated that the tumor 

uptake of these imaging agents is receptor-mediated, and is independent of the fluorophore 

labeled on the affibody molecules (Gong et al., 2010).  
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Fig. 4. Dual-color in vivo optical imaging with EGFR- and HER2-specific affibody molecules. 
Nude mice bearing A431 and SK-OV-3 tumors on the left side and right side, respectively, 
were injected with 100 μl PBS containing (A) 0.5 nmol Eaff800 and 0.5 nmol Haff682, or (B) 
0.5 nmol Haff800 and 0.5 nmol Eaff682. Whole body images (dorsal view) were acquired at 
1d following agent injection. The green color and red color represent IRDye800CW and DY-
682 fluorescence signals, respectively. The tumors were indicated with arrows. Modified 
from (Gong et al., 2010) with permission.  

5. Closing remarks 

In vivo molecular imaging has become a valuable tool in biomedical research and drug 
development (Weissleder & Pittet, 2008; Willmann et al., 2008). The radionuclide-based 
imaging technology, such as PET and SPECT, has been used in clinical applications. In the 
research field, fluorescence optical imaging is becoming more and more popular due to its 
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low cost, ease of use, longer time window for image capture and ability to track multiple 
probes simultaneously. Compared to fluorophores in the visible spectra, imaging with NIR 
fluorophores could reduce the autofluorescence, maximize tissue penetration, and are 
ideally suitable for non-invasive animal imaging applications (Kovar et al., 2007; Weissleder, 
2001). However, even with NIR fluorophores, the direct clinical application of fluorescence 
imaging may be limited to superficial tissues such as breast and skin, or for visualization 
during endoscopy and image-guided-surgery procedures (Kampmeier et al., 2010).  

EGFR- and HER2-targeted molecular imaging may aid in the selection of patients for 
individualized therapy by noninvasively assessing the expression level of EGFR and HER2 
in tumors, and guide drug dosage and regime by measuring target-drug interaction and 
receptor occupancy. It can also be used to assess the responses to therapy in pre-clinical and 
clinical research, and provide valuable information for drug development and validation 
(Kampmeier et al., 2010).  

EGFR and HER2 mediate a complex network of signaling pathways that interweaves with 
many other signaling networks. Interpretation of therapeutic output based solely on EGFR- 
and HER2-targeted imaging results might be oversimplified. Analysis of downstream 
molecules such as p-Erk1/2 may complement EGFR- and HER2-targeted imaging and 
provide new insights for cancer treatment (Cai et al., 2008). For EGFR-targeted therapy, it is 
not uncommon that drug effects are independent of EGFR expression levels in cancer cells. 
In these situations, targeting activated forms of the receptor instead of total receptor level 
may be a more reliable method to predict drug responsiveness (Pantaleo et al., 2009; 
Pantaleo et al., 2009).  
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