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1. Introduction 

As the average life expectancy has been extended by the current state-of-art medical 
technologies, the elderly population is increasing rapidly. The world is now facing the ‘ageing 
era’, which comes with social issues like neurodegenerative diseases. Neurodegenerative 
diseases are progressive neurological disorders highly linked to brain injuries from which 
there is no recovery. Selective neuronal loss in particular regions of our brain causes different 
types of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease 
(PD), stroke, amyotrophic lateral sclerosis (ALS), and many others. Two of the most common 
forms are AD and PD, and currently there are no fundamental cure available. 

AD is a lethal disorder associated with progressive neuronal cell death beginning in 
hippocampus and cortex regions. Typical indications of AD are gradual memory loss, 
cognitive impairment and behavior dysfunction to death. Owing to the complex 
pathological cascade, the cause of AD is not yet clearly understood. Among the numerous 

pathological causes of AD in dispute, cumulative neurotoxicity induced by misfolded -

amyloid (A) and phosphorylated tau proteins is strongly supported by genetic and clinical 
evidences. At present, there is no cure available to treat AD patients for recovery. 

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder associated 
with a selective loss of the dopamine(DA)rgic neurons in the substantia nigra pars compacta 
and the degeneration of projecting nerve fibers in the striatum. Currently, there is no 
therapy clinically available that delays the neurodegenerative process, and therefore 
modification of the disease course via neuroprotective therapy is an important unmet 
clinical need. Increasing evidence suggests that oxidative stress has a major impact on the 
pathogenesis of PD. Studies have demonstrated both in vivo and in vitro that the 
metabolism of DA itself contributes to oxidative stress, resulting in modification of 
intracellular macromolecules whose functions are important for cell survival. Mitochondrial 
dysfunction and the consequent increase in reactive oxygen species (ROS) also trigger a 
sequence of events that leads to cell demise. In addition, activated microglia produce nitric 
oxide and superoxide during neuroinflammatory responses, and this is aggravated by the 
molecules released by DAergic neurons such as ǂ-synuclein, neuromelanin and matrix 
metalloproteinase-3. A number of proteins whose gene mutation is linked to familial forms 
of PD have been found, and analyses of their normal cellular functions as well as 
dysfunctions as consequences of oxidative stress have shed light to understanding the 
pathogenesis of PD.  
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We will review in this chapter the current understanding of the etiology and pathogenesis of 
AD and PD, with an emphasis on protein abnormalities, and efforts that are being made 
toward development of disease-modifying therapy.  

2. Alzheimer’s disease (AD) 

Alzheimer’s disease (AD) is the most common and fatal neurodegenerative disorder with 
disastrous effects on the senior population (Maslow, 2008). About 10% of people over 65 
years old and half of those over 85 suffer from AD. Prevalence of this progressive disorder 
increases with ageing, affecting 3% of people between 60-69-year-olds, 5% of those between 
70-79 and 30-50% of those between 80-89. Typical symptoms of AD are memory loss, 
cognitive impairment and behavior dysfunction to death. In many cases, AD patients 
develop physiological dysfunctions such as swallowing, balance and bladder control. 
Psychological symptoms such as depression are often associated with the disorder. 
According to the progression of the disorder, patients are categorized into seven stages; no 
impairment, very mild decline, mild decline, moderate decline, moderately severe decline, 
severe decline and very severe decline. 

At present, there are five FDA-approved medications (donepezil, galantamine, memantine, 
rivastigmine and tacrine) to treat symptoms of AD. However, they can only slow down the 
progression or temporarily increase cognitive functions by enhancing neuronal 
communications. These commercially available drugs target secondary symptoms such as 
memory loss (cholinesterase inhibitors and memantine), behavior (antidepressants, 
anxiolytics and antipsychotics) and sleep changes (antidepressants, benzodiazepines, 
sleeping pills and antipsychotics). Therefore, current AD patients lack a fundamental 
therapy to stop neurodegeneration. Not only is there no fundamental drug to stop or 
reverse AD, but also no quantitative diagnostic system has been developed yet. At this time, 
the only confident method to determine AD is a postmortem diagnosis. For living patients, a 
series of neuropsychological and medical assessment is used for primary diagnosis and 
dementia-like symptoms are ruled out via brain scans or blood, urine and spinal fluid test. 
Thus, increasing interests on early detection of the disease highlight a need for simpler and 
reliable diagnostic tools and robust biological markers. As a result, molecular imaging 
pathological hallmarks of AD, senile plaque (SP) and intracellular neurofibrillary tangles 
(NFT), in living brain tissues are currently on focus by many researchers and physicians. 
Among a wide variety of brain imaging technologies, development of radiolabeled imaging 
probes for single photon emission computed tomography (SPECT) and positron emission 
tomography (PET) are mainly studied due to several advantages; real time targeted 
molecular imaging with very low concentration of imaging probes and possible 
quantification of target molecule (Klunk et al., 1994; Skovronsky et al., 2000). Hence, 
development of SP and NFT binding probes for direct marking in living AD brains is 
urgently desired for early diagnosis and monitoring of the disease progression 

2.1 Pathology 

The etiology of AD is not clearly understood yet. However, backtracking anatomical and 
biochemical signs allow us to postulate etiology in the upstream of the disorder. Typical 
indications from autopsy are brain shrinkage, blood-brain barrier damage and synaptic loss 
due to neuronal cell death. A wide variety of neurotoxic candidates have been suggested 
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such as increased concentration of aggregated proteins, mitochondria dysfunction, reduced 
synthesis of neurotransmitters, inflammation and oxidative stress in AD brain. Among 
them, genetic and clinical evidences strongly support that the most dominant etiologic 

paradigm of Alzheimer’s pathology is A and tau hypotheses (J.A. Hardy and Higgins, 
1992). Interestingly, these two proteins were already found as biomarkers of AD when a 
German psychiatrist, Dr. Alois Alzheimer reported the first documented case on his fifty-
year-old female patient in 1907. During the brain autopsy of the patient, he discovered two 
pathological hallmarks in the hippocampus and neocortex regions of the postmortem brain 
tissue (Alzheimer, 1991; J.A. Hardy and Higgins, 1992). The former is consisted of misfolded 

A proteins surrounded by dystrophic neurites and abnormal synapses, and the latter is 
made of abnormally hyperphosphorylated tau proteins of paired helical filaments. 
Activated microglia and neuropil threads are also known as positive findings. Significant 
loss of neurons and synapses has been found as highly associated with these four 
biomarkers. 

Given the prominence of two major hallmarks, SP and NFT, there have been considerable 

arguments on A and tau hypotheses concerning the primary element of the pathogenesis 

and their pathological order. According to clinical observation of temporal ordering of 

biomarker abnormalities based on decreased CSF A(1-42) level, increased CSF tau level, 

decreased fluorodeoxyglucose level, increased A plaque level and structural MRI 

measurements, deposition of A leads NFT formation of tau begin simultaneously (Jack et 

al., 2010). Jack Jr. and colleagues also proposed SP as a target for early diagnosis and NFT 

for disease severity, because A plaque formation almost reaches its saturation level by the 

time clinical symptoms appear and p-tau tangle forms in parallel to the progress of neuronal 

injury, dysfunction and degeneration. However, it is still debatable if abnormalities of both 

proteins are obligatory for AD progression. 

2.2 Amyloidogenesis 

2.2.1 APP processing and the generation of A 

A is a 39 to 43 amino acid long peptide generated through abnormal sequential proteolysis 

of amyloid precursor protein (APP) by - and -secretases (Fig. (1)). Various A isoforms 

(A39, A40, A41, A42 and A43) are determined by cleavage within the transmembrane 

domain of APP by -secretase. Because the A domain of APP, in general, is cleaved by -

secretase, A is rarely produced in normal human brain (R.K. Lee et al., 1995). However, 

when A are generated, it misfolds into -sheet conformation in the brain and induces 

neurodegeneration in hippocampus and cortex. Among the several isoforms, A40 and 

A42 peptides are the most common constituents of the neurotoxic soluble oligomers 
(Kayed et al., 2003; Kuo et al., 1996; Roher et al., 1996) and insoluble fibrils (Blanchard et al., 

1997; Shoji et al., 2000), which damage neuronal cells in AD brains. Even though A40 is the 

most abundant isomer (90%), A42 is the more fibrillogenic and toxic among all and highly 
related to the development of AD (Selkoe and Schenk, 2003). It was previously reported that 

a slight increase of A42 in the brain induced symptoms of AD (Hartmann et al., 1997). In 

addition, A42 is known to misfold into fibrils in a short period of time. Aǃ40, on the other 
hand, is the most abundant specie with a significant role in the initiation of amyloidogenesis 
in AD brains (Bitan et al., 2003; Jan et al., 2008; Y. Kim et al., 2009). In addition, oxidative 
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stress and inflammatory damage have shown high correlation with A deposition, 

stimulating neuronal cell death (J.A. Hardy and Higgins, 1992). A40 and A42 were 
reported to play critical roles in redox catalysis and formation of metal chelated clusters 
providing strong momentum to AD investigators (Balakrishnan et al., 1998; Butterfield and 
Kanski, 2002; S.T. Liu et al., 1999; Schoneich et al., 2003). Therefore, regulation of 
amyloidognesis is an excellent target for the protection of neurotoxic brain damage and 
holds promise in the precise understanding of the prevention or progression of AD. To this 
end, interpretation of the in vivo amyloidogenic mechanism is the key to the cure for AD. 

2.2.2 A misfolding cascade (monomer, oligomer, protofilbril, fibril) 

According to previous researches on amyloidogenesis, there are three significant states of 

A misfolding; monomers, soluble oligomers and insoluble fibrils. In addition, it was found 

that neurotoxic effects of A are driven by misfolding (Blanchard et al., 1997; Kayed et al., 
2003; Kuo et al., 1996; Roher et al., 1996; Shoji et al., 2000). Recent studies proved that soluble 
oligomers are commonly observed in human AD cerebrospinal fluid (Pitschke et al., 1998) 
and highly correlated with the severity of the disorder than insoluble fibrils (Kuo et al., 

1996). In addition, APP metabolism pathway resulting in neutoxic A oligomerization is 
observed to be related with oxidative stress and inflammatory damage in central nervous 
system (CNS) (Klein et al., 2004; Stine et al., 2003)Amyloidogenesis is a nucleation-
dependent process and characterized by two phases; slow nucleation and fast extension 
phases (Jarrett and Lansbury, 1993; Lomakin et al., 1997; Naiki and Gejyo, 1999; Naiki and 
Nakakuki, 1996). Due to the pathological responsibility of soluble oligomers (J. Hardy and 

Selkoe, 2002), investigation of A oligomers has become a critical target in AD research for 
the past three decades. However, oligomer study is challenging due to its instability and 
inaccessibility. Oligomers, particularly in solution, tend to quickly aggregate into larger 
species.  

Although amyloidogenesis occurs favorably and solely within A peptides, numbers of 
studies reported external inducers of amyloid aggregation such as metal, proteoglycan (PG) 
and tau. A wide variety of glycosaminoglycans (GAGs), expressed on the cell surface, are 

co-localized with A aggregates in AD brain (Snow et al., 1994; Su et al., 1992; Wilhelmus et 

al., 2007). The electrostatic interactions of A and GAG might result in facilitation of protein 

conformational changes that induce fibril formation, stabilization of the -sheet amyloid 
structure, and inhibition of proteolysis (Fraser et al., 1992; McLaurin and Fraser, 2000). In 

addition, it was reported that the interactions between A and GAGs were the result from 

the binding affinity of GAGs as potent accelerators or stabilizers of A fibril formation 
(Castillo et al., 1999; McLaurin, Franklin, Kuhns, et al., 1999; McLaurin, Franklin, Zhang, et 
al., 1999; Verbeek et al., 1997). Particularly, highly sulfated GAGs such as heparin, heparan 
sulfate (HS), keratan sulfate (KS), and chondroitin sulfate (CS) are universally associated 

with diverse amyloidogenesis cascades, suggesting that they play a critical role in in vivo A 
fibril formation (Brunden et al., 1993; Castillo et al., 1999; Kisilevsky et al., 2007; McLaurin, 
Franklin, Kuhns, et al., 1999; McLaurin, Franklin, Zhang, et al., 1999; Multhaup et al., 1995; 

Snow et al., 1995; Snow et al., 1994). Among them, HS and CS interact with the 13-16 A 

residues (HHQK domain) that promote A fibril formation and stabilize formed fibrils 
(Defelice and Ferreira, 2002; Motamedi-Shad et al., 2009). Thus, negatively charged sulfate 

moieties of GAGs are believed to bind to various forms of A including preexisting fibrils 
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and to induce a conformational switch to -sheet structures (Castillo et al., 1999). Therefore, 
GAG-induced amyloidogenesis derived from previous observations has been then 
confirmed by positive/negative effects to amyloidogenesis as low molecular weight (LMW) 
GAG derivatives and mimetics (Castillo et al., 1997; Miller et al., 1997; Santa-Maria et al., 
2007; Wright, 2006). 

 

Fig. 1. APP processing and the generation of A (taken from Y. Kim et al., 2009)  

2.3 Taoupathy 

2.3.1 Tau pathology in AD and tauopathies 

Since Alois Alzheimer discovered the presence of abnormal fibrous inclusions within 
neurons in a patient’s brain, the inclusions, called neurofibrillary tangles (NFTs) are 
considered one of the key requirements for making the pathological diagnosis of AD (Perl, 
2010). The major component of neurofibrillary tangles is tau, which is a microtubule-
associated protein that plays a important role in the development of neuronal polarity and 
neuronal processes (Mazanetz and Fischer, 2007). In normal adult brain, tau binds to 
microtubules, promoting microtubule assembly and facilitating axonal dynamics in a 
neuron (Brandt et al., 2005). When pathologically hyperphosphorylated, tau molecules are 
dissociated from microtubules and become insoluble fibrous tangles (Figure 3). NFTs are 
accumulated in neuronal perikarya or dystrophic neurites in axons and dendrites, causing 
degeneration of tangle-bearing neurons. The density of NFTs in a brain correlates fairly well 
with regional and global aspects of cognitive decline during the progression of AD (Binder 
et al., 2005).  
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Fig. 2. The formation of NFTs and microtubule disruption (adapted from Brunden et al., 
2009). 

Tau and NFT pathology are not only specific for AD, but are part of the pathology in a 
number of neurodegenerative disorders, collectively called ‘tauopahies’(Gendron and 
Petrucelli, 2009). In a number of tauopathies, the formation of NFTs is the primary cause of 
neurodegeneration (Iqbal et al., 2005). In AD pathology, however, the formation of NTFs in 
considered to be secondary events following Amyloidogenesis (Perl, 2010). Hence, both 
plaques and tangles are required to establish a definite diagnosis of AD. Regardless of 
whether NTFs occurs early or later in the disease pathology, it is clear that the formation of 
NFTs directly correlates with neurodegeneration. In this section, we will look for the 
genetic, biochemical and pathological mechanism of tau aggregation.  

2.3.2 Neurofilamentary tangle (NFT) formation and neurotoxicity  

NFTs are predominantly composed of paired helical filaments which appear to be made up 
of 10-nm filaments helically twisted each other (Perry et al., 1985). To aggregate into a 
paired helical filament, tau molecules undergo a series of abnormal modifications and 
conformational changes (Garcia-Sierra et al., 2003). Numerous studies have suggested that it 
is initiated by phosphorylation of tau molecules. Tau hyperphosphorylation induces a 
conformational shift of the molecule into a compact structure, called “Alz50 
state”(Mandelkow et al., 1996). (Figure 4) In this state, a proline-rich region of a tau 
molecule contacts to microtubule binding region of the same molecule. In this state that tau 
first forms aggregates into filaments. The further filamentalization is accompanied or 
facilitated with proteolytic cleavages of tau (Binder et al., 2005). Many reports suggested that 
caspases, activated by amyloid plagues, cleave tau (Fasulo et al., 2000; Gamblin et al., 2003). 
The truncated tau molecule, named tau-66, assembles much faster and to a greater extent 
than its native form (Wischik, 1989). 

The deposition of NFT is one of the most significant pathological signatures in AD and 

tauopathies; hence, there has been great effort to understand how the deposition of NFT 

cause neurodegeneration. NFT may damage neurons and glial cells in a number of ways 

(Gendron and Petrucelli, 2009). NFTs may be toxic to neurons by acting as physical barriers 

in the cytoplasm or NFT may also cause neuronal toxicity by reducing normal tau function 
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stabilizing microtubules. In addition, protein aggregates are not inert end-products but 

actively influence diverse cell metabolism, like proteasomal activity.  

 

Fig. 3. Diagrammatic representation of tau conformation and NFT formation 

Prior to or during NFT formation, tau undergoes numerous, and potentially harmful, 
modifications as shown in figure 4. The presence of these intermediates may play diverse 
roles in the onset and progression of disease prior to the development NFT-induced 
neurotoxicity. There are several mechanisms that suggest how non-fibril tau species could 
induce neuronal degeneration (Alonso et al., 1994). Especially hyperphosphorylated tau 
before NFT formation leads to microtubule disassembly, impairment of axonal transport, 
and organelle dysfunctions in neurons, leading to the neuronal cell apoptosis (Reddy, 
2011).  

2.3.3 Tau isoforms and mutations 

The human tau gene is located on chromosome 17 and consisted of 16 exons. In an adult 
human brain, six isoforms of tau are produced from the single gene by alternative splicing 
(Iqbal et al., 2005). (Figure 5) The most striking feature of tau isoforms comes from the 
alternative splicing of exon 10. As the exon 9-12 encode tandem repeats that serve as 
microtubule binding domains, the alternative splicing of exon 10 generates tau isoforms 
containing three or four microtubule binding domains, respectively as Tau 3R or Tau 4R 
(Andreadis, 2005). In vitro studies have suggested that Tau 4R has greater affinity to 
microtubule and is more efficient at promoting microtubule assembly (Goedert and Jakes, 
1990; Goedert et al., 1989). The splicing of tau mRNA is keenly controlled during 
development; tau 3R forms are predominantly expressed in a fetal brain, but the ratio of 3R 
and 4R tau transcripts becomes equal in adult brain. The disruption of this delicate balance 
is known to cause tauopathy (Kar et al., 2005). The expression levels of tau proteins in AD 
brains are approximately eight-fold higher than in age-matched controls, and this initiates 
hyperphosphorylation of tau, either polymerized into NFTs (Kopke et al., 1993).  

Growing evidences also suggested that some of the missense mutations directly increase the 
tendency of tau to aggregate into NFTs (Nacharaju et al., 1999). There are two major types of 
mutations; coding mutations and intronic mutations (Hutton, 2000). Most coding mutations 
occur in exons 9-13 encoding microtubule binding regions, and produce tau proteins with a 
reduced ability in binding to microtubules (Hasegawa et al., 1998). In addition, intronic 
mutations that affect the splicing of exon 10, increase the proportion of 4R tau transcripts 
(Dayanandan et al., 1999; Hong et al., 1998; Hutton et al., 1998). As a result of the mutation, 
the ratio of 4R over 3R tau isoforms increases about two folds and it induces 
neurodegeneration (Hutton et al., 1998).  
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Fig. 4. Illustration represents human tau gene, mRNA, and six isoforms (adapted from 
Gendron and Petrucelli, 2009).  

2.3.4 Tau hyperphosphorylation 

In addition to isoform variation, phosphorylation of tau is an important factor in 
microtubule-binding of tau. Tau isolated from adult brain, is partially phosphorylated with 
an average of about 2 moles of phosphate per mole of protein, and this promotes association 
with tubulin, which leads to stabilization of microtubules and facilitates axonal transport 
(Drechsel et al., 1992; Mazanetz and Fischer, 2007). In contrast, tau isolated from the AD 
patient’s brain (mostly NFTs) contains 6 to 8 moles of phosphate per mole of protein 
(Mazanetz and Fischer, 2007). The hyperphosphorylation changes tau conformation (Buee-
Scherrer et al., 1995) leading to decrease in the microtubule-binding affinity (Braak and 
Braak, 1987). 

The longest form of tau isoforms contains 79 serine or threonine residues and 5 tyrosine 
residues. Among these, about 30 residues are known as actual phosphorylation sites under 
normal physiological conditions. Of the sites that are phosphorylated in tau, 13 sites are 

followed by proline residues. Therefore proline-directed kinases such as GSK3glycogen 

synthase kinase 3CDK5 (cyclin-dependent kinase 5) and ERK2 (extracellular signal-
regulated kinase 2) have received the most attention as the responsible kinases of tau (Dhavan 
and Tsai, 2001; Perry et al., 1999; Shelton and Johnson, 2004; Spittaels et al., 2000). In addition, 
non-proline-directed kinases such as microtubule affinity-regulating kinase (MARK) (Ferrer et 
al., 2001; Sawamura et al., 2001), and tyrosine kinases such as FYN have also been suggested to 
be relevant to neurodegeneration (Chin et al., 2005; G. Lee et al., 2004).  
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Evidences have showed that CDK5 colocalized with NFTs and its elevated activity was 
observed in AD brains (K.Y. Lee et al., 1999). Moreover, the association of CDK5 with pre-
tangles (Augustinack et al., 2002; Tseng et al., 2002) suggested that CDK5 might be involved 

in the early stage of NFT formation during AD progression. GSK3 highly expressed in the 
brain is associated with a variety of neurodegenerative disease including AD (Bhat et al., 
2004). In AD, GSK3ǃ contributes in the generation ǃ-amyloid and the phosphorylation of 

tau proteins to form NFTs. The inhibition of GSK3 efficiently reduces tau phosphorylation 
(Hong et al., 1997; Munoz-Montano et al., 1997). ERK2 is known to regulate microtubule-
assembly of tau as tau-phosphorylation by ERK2 significantly decreases the affinity of tau to 
microtubules. These kinases are potential target candidates for tauopathy drug discovery.  

2.4 Diagnosis of AD 

Current clinical test of AD is mostly conducted via non-histochemical approaches like mini-
mental state exam (MMSE), which are often difficult, unreliable and unfeasible as a 
diagnosis tool. Therefore, growing unmet needs on early detection of the disorder highlight 
development of simple and reliable diagnostic tools and robust biological markers. 
Accordingly, visualizing pathological hallmarks of AD such as SPs and NFTs in living brain 
is on focus. Among a wide variety of brain imaging technologies, radiolabeled imaging 
probes for single photon emission computed tomography (SPECT) or positron emission 
tomography (PET) are mainly studied for AD diagnosis due to numeral advantages; real 
time targeted molecular imaging with very low concentration of imaging probes and 
possible quantification of target molecule (Klunk et al., 1994; Skovronsky et al., 2000). 
Therefore, development of Aǃ and phosphorylated tau binding probes for targeted 
molecular imaging in AD brains is urgently desired for early diagnosis and monitoring of 
AD progression (Fig (2)). Particularly, a probe soluble Aǃ oligomer is extremely promising 
since oligomers are find in brains years earlier than actual AD symptoms start to occur. 
[11C]PIB (Pittsburgh Compound-B, [11C]6-OH-BTA-1) and [18F]FDDNP (2-(1-(6-((2-
[18F]fluoroethyl)(methyl)amino)-2-naphthyl)ethylidene)malononitrile) which bind to Aǃ 
fibrils in brain are presently available in vivo for early diagnosis of AD (Agdeppa et al., 
2003; Klunk et al., 2004; Mathis et al., 2002). While [11C]PIB is very specific to Aǃ with short 
half life, [18F]FDDNP can bind to both SP and NFT with approximate half life of two hours. 
Lately pharmaceutical companies and FDA search for molecular imaging probes which can 
visualize both SP and NFT, because each hallmarks is also found in other types of brain 
disease as described above. AmyvidTM ([18F]AV-45), unable to bind to tau protein and 
recently refused by FDA, was useful in ruling out the presence of pathologically significant 
levels of Aǃ in the brain, but insufficient to determine AD patients. 

2.5 Therapeutic strategies of AD 

At present, there is no commercially available cure for AD patients. NMDA antagonist, 
memantine, and acetylcholinesterase (AChE) inhibitors, Aricept, are the only available 
treatments in the market for AD, even though they can only decelerate the progression of 

the disease and provide temporal cognitive enhancement. Thus, regulation of A cascade is 
pursued by researchers to prevent neurodegenerative progression of AD (J. Hardy and 

Selkoe, 2002). Among several anti-amyloidogenesis strategies, - and -secretase inhibitors, 

A protease regulators, A aggregation inhibitors, metal chelators, RAGE inhibitors and 
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immunotherapy are promising therapeutic targets (D.S. Choi et al., 2006; Hamaguchi et al., 
2006; Schenk et al., 1999). There are several drug candidates in development such as small 

molecule A aggregation inhibitors, copper-zinc chelators and A specific antibodies. 

 

Fig. 5. Targets for amyloid treatment and diagnosis (taken from Y. Kim et al., 2009) 

2.5.1 Anti-amyloidogenesis 

For last two decades, AD drug discovery has targeted amyloidogenesis and there have been 
various types of drug candidates such as small molecules, peptides, natural products and 

antibodies. Monomeric A has been considered as the precursor to neurotoxic species such 
as soluble oligomers and insoluble protofibrils (Barrow and Zagorski, 1991; Lazo et al., 2005; 
Xu et al., 2005) and induced R&D of aggregation inhibitors to prevent amyloidogenesis and 
to reduce neurotoxicity. Toxic oligomers and protofibrils are interesting targets for anti-

inflammatory research (Finder and Glockshuber, 2007). A oligomer of molecular weight 56 

kDa (A*56) is one of the well-known neurotoxic species (Reed et al., 2009).  

Tramiprosate (Alzhemed), 3-amino-1-propanesulfonic acid, was a small molecule targeting 

A aggregation (Gervais et al., 2007), which was unfortunately dropped in clinical trial III. It 

was reported to bind to soluble A and to maintain the peptide in a ǂ-helical rich 

conformation to inhibit A deposition. It was also claimed that it might interrupt GAG from 

stabilizing amyloidogenesis. Tramiprosate decreased A-induced neuronal cell death and 
crossed the BBB. An AD transgenic mouse model study resulted in significant reduction of 

A fibrils and decrease in the levels of soluble and insoluble A in the brain (Sullivan, 2007). 
A type of NSAIDs, Flurizan ((R)-flurbiprofen) (Black, 2007), by Myriad Genetics was also 

dropped in clinical study as an A lowering drug candidate. The immunotherapeutic 

approach is based on the function of antibodies binding to A or lowering A aggregates in 
AD brains. Clinical trial of AN-1792 (Patton et al., 2006), a drug candidate to induce an 

immune response against A, was stopped after severe symptoms of aseptic 
meningoencephalitis. Bapineuzumab (AAB-001) (Melnikova, 2007), a humanized 

monoclonal antibody against A, is currently in final stage of clinical trial. 

2.5.2 RAGE inhibitors 

The receptor for advanced glycation end products (RAGE) is an influx transporter of A 
monomer across the blood-brain barrier (BBB) into the brain from plasma, while the low-

density lipoprotein receptor-related protein (LRP-1) regulates efflux of A out of the brain. 
Given the critical role of RAGE in AD development, RAGE is considered as a potent target 
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for AD therapy. RAGE inhibitors have a significant advantage in R&D because they do not 
have to cross BBB even though their role is to treat a brain disease. Pfizer’s PF-04494700 
(TTP488) was the most advanced inhibitor of RAGE activation in clinical trial until the 
company discontinued its development at the end of 2011. 

2.5.3 Secretase modulators 

Preventing proteolysis of APP from Aǃ release has been a promising therapeutic target. ǃ-
Secretase cleaves extracellular domain of APP to form a cell membrane-bound fragment, 
C99, of which transmembrane domain is then sequentially cleaved by Ǆ-secretase to produce 
Aǃ. The physiological function of ǃ-secretase cleavage of APP is unknown. Numbers of 
secretase inhibitors have been developed and entered clinical trials by many global drug 
industries, but none of them received FDA approval yet. 

2.5.4 Mitochondria dysfunction 

Rediscovery of an anti-histamine drug, Dimebon (3,6-dimethyl-9-(2-methyl-pyridyl-5)-
ethyl-1,2,3,4-tetrahydro-Ǆ-carboline dihydrochloride), as an Alzheimer effective drug 
triggered high interests in mitochondria-mediated apoptosis in AD brain. Mitochondrial 
permeability transition pore (mPTP) is consisted of three major components, adenine 
nucleotide translocase (ANT), cyclophilin D (CypD) and the voltage-dependent anion 
channel (VDAC). Recent studies revealed direct interaction between Aǃ and CypD and 
suggested mPTP opening as a promising therapeutic target for AD. Because mPTP 
regulates apoptosis in many cells, it is a common drug target for a wide variety of 
disorders. 

2.5.5 Neurotransmitters 

In AD brains, cholinergic neurons and neurotransmitters such as acetylcholine (ACh) are 
significantly reduced (Bartus et al., 1982; Bowen et al., 1992; Davies and Maloney, 1976). 
Thus, enhancement of central cholinergic neurotransmission has been a therapeutic 
strategy (Bartus et al., 1982; Camps and Muñoz-Torrero, 2002). Currently available major 
drugs to treat AD are AChE inhibitors, such as tacrine (Cognex) (Knapp et al., 1994), 
rivastigmine (Exelon) (Jann, 2000), donepezil (Aricept) (Rogers et al., 1998) and 
galantamine (Reminyl) (Wilcock et al., 2000) and used for mild to moderate AD. However, 
the AChEI approach is only for temporal symptomatic improvements of cognition (Ibach 
and Haen, 2004).  

2.5.6 Anti-oxidants and metal chelators 

Studies on neurotoxic A aggregates suggested that excess generation of radical oxygen 
species (ROS) can be led by amyloidogenesis and induce neuronal cell death (Butterfield et 
al., 2001; Frank and Gupta, 2005; Tabner et al., 2001). The ROS hypothesis is supported by 
numbers of clinical evidences in AD brains such as increased level of neurotoxic trace 
elements (Fe, Al, and Hg), lipid peroxidation, protein oxidation, DNA oxidation, and 
decreased energy metabolism/cytochrome c oxidation (Markesbery, 1997). Thus, anti-
oxidant protection strategy to reduce neuronal oxidative injuries can contribute to attenuate 
neurodegeneration (Behl, 1999). It was revealed that formation of oxygen free radicals needs 
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to be potentiated by FeII, CuII, and ZnII (Behl et al., 1994; Bush et al., 2003; Butterfield et al., 
2001; Doraiswamy and Finefrock, 2004; Gaggelli et al., 2006; Smith et al., 1997). Studies on 
metal chelators showed chemical interference of ROS formation and neuronal cell protection 

from A-induced neurotoxicity. It was found anti-oxidants inhibited amyloidogenesis both 
in vitro and in vivo (Ono et al., 2006). 

2.5.7 Anti-inflammation 

Neuro-inflammation has been recognized as one of the most critical factors in many 
neurodegenerative diseases (Halliday et al., 2000; McGeer and McGeer, 1999). Inflammatory 

activity is often found co-localized with A fibrils in AD patients and such correlation 
suggested non-steroidal anti-inflammatory drugs (NSAIDs) to treat AD (Bullock, 2002; Hull 
et al., 1999). Significantly declined risk of AD development in rheumatoid arthritis patients 
administered NSAIDs brought attentions of AD researchers on anti-inflammation via 
inhibition of COX-1 and COX-2 pathways (McGeer et al., 1996; Pasinetti, 2001; Stewart et al., 
1997)(X. Liang et al., 2005). 

 

Fig. 6. Drug targets in amyloid cascade 

2.5.8 Anti-tau phosphrylation 

Prevention of tau pathology has begun to emerge as a feasible approach to prevent 
neurodegeneration, although efforts in this area lag behind the anti-amyloid research. The 
current tau-oriented therapies are focused on preventing tau phosphorylation. Recent data 

have implicated both GSK3 and CDK5 in aberrant tau phosphorylation and association 
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with microtubules (Spittaels et al., 2000), and growing evidences also suggest that ERK2 is 
one of the key regulators of neurofilamentary degeneration (Perry et al., 1999). Currently, 

these three kinases, GSK3, CDK5, and ERK2, are the major drug targets for tau-oriented 
therapeutics.  

3. Parkinson’s disease (PD) 

PD is the second most common neurodegenerative disease, accompanied by extrapyramidal 
motor dysfunction. It is a progressive disease, and the prevalence increases with age, 
affecting 1 % of people over 60 years of age, 3.4 % of those over 70, and 4% of those over 80 
(de Lau and Breteler, 2006; Olanow et al., 2009). The primary symptoms of PD include 
resting tremor, bradykinesia, rigidity and postural stability, and as the disease progresses, 
other symptoms such as depression, dementia, sleep abnormalities and autonomic failure 
also become evident (Chaudhuri and Schapira, 2009). 

Because the primary symptoms of PD are related to the deficiency in the neurotransmitter 
DA, the current treatment of PD involves administration of drugs that will facilitate DAergic 
neurotransmission. This includes the DA precursor L-3,4-dihydroxyphenylalanine (L-
DOPA), monoamine oxidase inhibitors, and DA receptor agonists. Deep brain stimulation 
following surgical manipulation is also being utilized in patients with severe motor 
fluctuations. None of the currently available therapies, however, can delay the degeneration 
itself, and chronic treatment with L-DOPA often causes motor and psychiatric side effects 
(Fahn, 1989). Currently, ways to modify the disease course by neuroprotection are actively 
being sought for. 

3.1 Pathology 

PD is associated with a selective loss of the neurons in the midbrain area called the 

substantia nigra pars compacta. These neurons contain the neurotransmitter DA, and their 

projecting nerve fibers reside in the striatum. Two pathological hallmarks of the postmortem 

brains of PD patients are the presence of proteinacious inclusion bodies called Lewy bodies 

and the presence of a reactive microgliosis in the affected areas. 

While the majority of PD cases are sporadic (90–95%), rare familial forms involving 
mutations in a number of genes have been described. Although the familial forms represent 
only a small fraction of PD cases, the mechanism by which mutation of these genes lead to 
degeneration of DAergic neurons have shed light to understanding of the pathophysiology 
of PD. Gene multiplication or missense mutations in the ǂ-synuclein gene have been linked 
to PD (Farrer, 2006). In two genome-wide association studies, the ǂ-synuclein gene locus has 
been identified as a major risk factor for PD (Satake et al., 2009; Simon-Sanchez et al., 2009). 
Aggregated ǂ-synuclein is a major constituent of the Lew bodies (Spillantini et al., 1998). 
Gene knockout of ǂ-synuclein gene renders mice resistant to a DAergic cytotoxin (Dauer et 
al., 2002). Mutations of the parkin or PINK1 genes are causes of autosomal recessive PD. 
Their gene products are mitochondrial proteins, and mutations in the respective genes lead 
to mitochondrial defects, free radical formation, and consequently cell demise (Gandhi et al., 
2009; Gegg et al., 2009; Grunewald et al., 2009). Mutations in the LRRK2 gene represent the 
most common cause among the familial cases of PD. The LRRK2 gene product is a large 
multidomain protein with a kinase domain (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). 
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Mutations in the DJ- 1 gene are associated with an early onset autosomal recessive 
PD.(Bonifati et al., 2003) The loss of DJ-1 renders the cells vulnerable to oxidative stress, 
whereas overexpression of DJ-1 provides protection, suggesting the DJ-1 may be an 
antioxidant protein. Indeed, DJ-1 has been shown to have an atypical peroxiredoxin-
peroxidase activity (Andres-Mateos et al., 2007). High temperature requirement A2 
(HtrA2/Omi) is a serine protease that is present predominantly in the intermembrane space 
of mitochondria, where it is thought to be involved in protein quality control, and its 
heterozygous missense mutations have been found in sporadic cases of PD (Strauss et al., 
2005). 

As the majority of PD cases are sporadic, environmental factors play a critical role in the 
etiology of PD. Occupational uses of herbicides or pesticides increase the risk of PD 
(Barbeau et al., 1987; Kamel et al., 2007; Semchuk et al., 1992; Tanner et al., 2009). In animals, 
the pesticide rotenone and the broad-spectrum herbicide paraquat reproduce the PD 
phenotype in animals (Betarbet et al., 2000; Przedborski et al., 2004). In addition, exposure to 
organic solvents, carbon monoxide, and carbon disulfide (Corrigan et al., 1998) are thought 
to play roles, and more generally, industrialization, rural environment, well water, plant-
derived toxins, and bacterial and viral infection (Schapira and Jenner, 2011). Interestingly, 
caffeine intake and cigarette smoking reduce the risk of PD, although the mechanism is not 
understood (Ascherio et al., 2001; Warner and Schapira, 2003). Aging is an obvious factor 
associated with the onset of PD, and it is generally speculated that failure of normal cellular 
processes that occurs with aging causes increased vulnerability of DAergic neurons (Obeso 
et al., 2010). 

3.2 Oxidative stress 

Oxidative stress occurs when an imbalance is formed between production of reactive 
oxygen species (ROS) and cellular antioxidant activity. Oxidative stress is thought to be 
the underlying mechanism that leads to cellular dysfunction and demise in PD (Andersen, 
2004; Jenner, 2003). The substantia nigra of PD patients exhibit increased levels of 
oxidized lipids (Bosco et al., 2006), proteins and DNA (Nakabeppu et al., 2007) and 
decreased levels of reduced glutathione (GSH) (Zeevalk et al., 2008). Because of the 
presence of ROS-generating enzymes such as tyrosine hydroxylase, monoamine oxidase 
and tyrosinase, the DAergic neurons are particularly prone to oxidative stress. In 
addition, the nigral DAergic neurons contain iron, which catalyzes the Fenton reaction, in 
which superoxide radicals and hydrogen peroxide can create further oxidative stress 
(Halliwell, 1992). Because of this intrinsic sensitivity to reactive species, a moderate 
oxidative stress can trigger a cascade of events that lead to cell demise. The major sources 
of such oxidative stress generated for the nigral DAergic neurons are thought to be the 
ROS produced during DA metabolism, mitochondrial dysfunction, and inflammation, as 
discussed below in more detail. 

Oxidative stress is generated from DA metabolism, mitochondrial dysfunction and 
microglial activation. Mitochondrial dysfunction can occur as a result of environmental 
factors such as dopaminergic toxins, as well as mutation of genes whose gene products are 
important for mitochondrial function, such as Parkin, PINK1, DJ-1, and HtrA2. 
Mitochondrial dysfunction leads to accumulation of ROS and release of cytochrome c and 
HtrA2, both of which lead to apoptosis. 
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Fig. 7. Molecular cascades of DAergic neurodegeneration in the pathophysiology of PD. 

3.3 DA metabolism 

The neurotransmitter DA itself can be a source of oxidative stress. Lines of evidence suggest 
oxidation of DA and consequent quinone modification and oxidative stress as a major factor 
contributing to the vulnerability of DAergic cells (Asanuma et al., 2003; H.J. Choi et al., 2003; 
Hastings and Zigmond, 1997). Although DA is normally stored in vesicles, excess cytosolic 
DA is easily oxidized both spontaneously (Hastings and Zigmond, 1997) and enzymatically 
(Maker et al., 1981) to produce DA quinone. 

The DA quinone species are capable of covalently modifying cellular nucleophiles, 

including low molecular weight sulfhydryls such as GSH and protein cysteinyl residues 

(Graham, 1978), whose normal functions are important for cell survival. Notably, DA 

quinone has been shown to modify a number of proteins whose dysfunctions have been 

linked to PD pathophysiology, such as -synuclein, parkin, DJ-1, and ubiquitin C-terminal 

hydrolase L1 (UCH-L1). DA quinone covalently modifies -synuclein monomer (Dunnett 

and Bjorklund, 1999) and promotes the conversion of ǂ-synuclein to the cytotoxic protofibril 

form (Conway et al., 2001). The DA quinone-modified ǂ-synuclein is not only poorly 

degraded but also inhibits the normal degradation of other proteins by chaperone-mediated 

autophagy (Martinez-Vicente et al., 2008). Conversely, ǂ-synuclein can bind to and 

permeabilize the vesicle membrane, causing leakage of DA into the cytosol (Lotharius and 

Brundin, 2002). Parkin is also covalently modified by DA and becomes insoluble, which 

leads to inactivation of its E2 ubiquitin ligase activity (LaVoie et al., 2005). Catechol-mofieid 
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parkin has been detected in the substantia nigra but not other regions of human brain, and 

parkin insolubility is observed in PD brain (LaVoie et al., 2005). In addition, DA quinone 

modification of UCH-L1, the enzyme whose gene mutation leads to autosomal dominant 

PD, and DJ-1 have also been observed both in brain mitochondrial preparations and 

DAergic cells (Van Laar et al., 2009). Since both UCH-L1 and DJ-1 contain a cysteine residue 

that is important for their activity (Nishikawa et al., 2003; Qu et al., 2009) and their oxidative 

modification at cysteine has been observed in PD(J. Choi et al., 2004; J. Choi et al., 2006), the 

DA quinone modification is likely the cause of inactivation of these enzymes. 

DA quinone has also been shown to cause inactivation of the DA transporter and tyrosine 
hydroxylase (Kuhn et al., 1999). In addition, it leads to mitochondrial dysfunction (C.S. Lee 
et al., 2002) and swelling of brain mitochondria (Berman and Hastings, 1999). Accordingly, 
the subunits of Complex I and Complex III of the electron transport chain in the 
mitochondria, whose dysfunction can affect mitochondrial respiration and ROS production, 
were also shown to be targets of DA quinone modification (Van Laar et al., 2009). In 
addition, ER-60/GRP58/ERp57 and protein disulfide isomerase-5, the proteins involved in 
protein folding in the endoplasmic reticulum, are also modified by DA quinone (Van Laar et 
al., 2009). 

 

Fig. 8. Dopaminergic neurodegeneration.  
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In addition, when in excess, DA quinone cyclizes to become the highly reactive 
aminochrome, whose redox-cycling leads to generation of superoxide and depletion of 
cellular NADPH and ultimately polymerize to form neuromelanin (Jenner and Olanow, 
1996). Neuromelanin in turn can exacerbate the neurodegenerative process by triggering 
neuroinflammation (Zecca et al., 2008), as described below. Furthermore, hydrogen peroxide 
is generated during DA metabolism by monoamine oxidase (Maker et al., 1981) and is 
subsequently converted to the highly reactive hydroxyl radical in the presence of transition 
metal ions (Halliwell, 1992), which also contributes to oxidative stress. DA metabolites have 
been shown to induce proteosomal inhibition, which can lead the cells to undergo apoptosis 
(Zafar et al., 2007; Zafar, Inayat-Hussain, et al., 2006). 

A line of evidence points to the existence of in vivo DA oxidation and its toxicity in human 
brain. Neuromelanin, the final product of DA oxidation, is accumulated in the nigral region 
(Zecca et al., 2003). Higher levels of cysteinyl-catechol derivatives are found in postmortem 
nigral tissues of PD patients compared to age-matched controls, suggesting cytotoxic nature 
of DA oxidation (Spencer et al., 1998). In animals, DA directly injected into the striatum 
caused selective toxicity to DAergic terminals that was proportional to the levels of DA 
oxidation and quinone-modified proteins (Rabinovic et al., 2000). Mice expressing a low 
level of ventricular monoamine transporter-2, presumably with increased cytosolic DA 
level, showed evidence of DA oxidation and the age-dependent loss of nigral DA neurons 
(Caudle et al., 2008). In addition, accumulation of cytosolic DA induced via expression of 
DA transporter rendered the striatal GABA neurons vulnerable (Chen et al., 2008). 

DA is either enzymatically or spontaneously converted to the highly reactive DA quinone, 
which depletes cellular GSH, modifies cellular proteins at their sulfhydryl groups, and 
induces fibrilization of ǂ-synuclein. 

3.4 Mitochondrial dysfunction  

Mitochondrial dysfunction and the resulting oxidative stress are associated with the 
pathogenesis of PD (Schapira and Gegg, 2011). Oxidative stress causes peroxidation of the 
mitochondria-specific lipid cardiolipin, which results in release of cytochrome c to the 
cytosol, triggering the apoptotic pathway. Neurons heavily depend on aerobic respiration 
for ATP, and hydrogen peroxide and superoxide radicals are normally produced during 
oxidative phosphorylation as byproducts in the mitochondria. Any pathological situation 
leading to mitochondrial dysfunction can cause a dramatic increase in ROS and overwhelm 
the cellular antioxidant mechanisms.  

Because DAergic neurons are intrinsically more ROS-generating and vulnerable as 
described above, any event that triggers further oxidative stress can be harmful to the cell. 
Damage to Complex I in the electron transport chain is thought to be especially critical. The 
mitochondrial complex I inhibitors rotenone and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), when injected intraperitoneally, exert preferential cytotoxicity 
to the DAergic neurons (Betarbet et al., 2002). Reduced Complex I activity has been found in 
tissues from subjects with PD (Benecke et al., 1993; Mizuno et al., 1989; Parker et al., 1989). 
Higher numbers of respiratory chain deficient DA neurons have been found in PD patients 
than in age-matched controls (Bender et al., 2006). Furthermore, mitochondrial density in 
the somatodendritic region of nigral neurons has been observed to be abnormally low (C.L. 
Liang et al., 2007). 
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Perhaps the strongest evidence for mitochondrial dysfunction in PD pathophysiology comes 
from the findings that mutations in genes of mitochondrial proteins Parkin, DJ-1, 
HtrA2/Omi, and PINK have all been linked to familial forms of PD. The Parkin protein is an 
E3 ligase (Y. Zhang et al., 2000) and is associated with the mitochondrial outer membrane 
(Darios et al., 2003). Cells derived from patients with Parkin gene mutation show decreased 
Complex I activity and ATP production (Grunewald et al., 2010; Mortiboys et al., 2008; 
Muftuoglu et al., 2004). Mice deficient in Parkin gene have show reduced striatal respiratory 
chain activity along with oxidative damage (Palacino et al., 2004). Drosophila with 
functional deletions of parkin has fragmented mitochondria (Greene et al., 2003).  

PINK1 protein is a kinase that has been observed to be located in the mitochondria. 
Mutations in PINK1 induce mitochondrial dysfunction including reduced mitochondrial 
DNA, a deficiency of ATP, excess free radical formation and abnormal calcium handling 
(Gandhi et al., 2009; Gegg et al., 2009; Grunewald et al., 2009). Drosophila with functional 
deletions of PINK1 has fragmented mitochondria (I.E. Clark et al., 2006; Park et al., 2006). 

DJ-1 is a mitochondrially enriched, redox-sensitive protein and an atypical peroxiredoxin-
like peroxidase that scavenges H2O2 (Andres-Mateos et al., 2007; Canet-Aviles et al., 2004), 
and DJ-1 KO mice accumulate more ROS and exhibit fragmented mitochondrial phenotype 
(Andres-Mateos et al., 2007; Irrcher et al., 2010). Interestingly, this aberrant mitochondrial 
morphology could be rescued by the expression of PINK1 and parkin (Irrcher et al., 2010). 

HtrA2/Omi is a mitochondrially located serine protease and has been associated with PD. 
HtrA2/Omi seems to promote survival under physiological conditions by maintaining 
homeostasis and serving as a protein quality control factor, and loss of its activity results in 
accumulation of unfolded mitochondrial proteins (Jones et al., 2003; Krick et al., 2008; 
Martins et al., 2004; Moisoi et al., 2009). 

In addition, ǂ-synuclein, although mostly cytosolic, seems to interact with mitochondrial 
membranes (Nakamura et al., 2008) and to inhibit complex I (Devi et al., 2008; G. Liu et al., 
2009). Mice overexpressing mutant ǂ-synuclein exhibit abnormalities in the mitochondrial 
structure and function (Martin et al., 2006). ǂ-Synuclein has also been shown to inhibit 
mitochondrial fusion, and interestingly, this was rescued by PINK1, Parkin, and DJ-1 (Kamp 
et al., 2010), again suggesting the existence of a functional relationship among the products 
of these PD-related genes. 

3.5 Neuroinflammation  

Neuronal loss in PD is associated with chronic inflammation, which is controlled primarily 

by microglia, the resident innate immune cells and the main immune responsive cells in the 

central nervous system. Microglial reaction has been found in the SN of sporadic PD 

patients (Banati et al., 1998; Gerhard et al., 2006; Knott et al., 2000; McGeer et al., 1988) as 

well as familial PD patients (T. Yamada, 1993) and in the SN and/or striatum of PD animal 

models elicited by MPTP (Cicchetti et al., 2002; Francis et al., 1995; Kurkowska-Jastrzebska et 

al., 1999; T. Yamada, 1993). 

Microglia are activated in response to injury or toxic insult as a self-defensive mechanism to 
remove cell debris and pathogens. When activated, microglia release free radicals such as 
nitric oxide and superoxide, as well as proinflammatory cytokines including IL-1ǃ and TNF-
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ǂ, and proteases. Overactivated and/or chronically activated state of microglia causes 
excessive and uncontrolled neuroinflammatory responses, leading to self-perpetuating 
vicious cycle of neurodegeneration (Qian et al., 2010). This is thought to be exacerbated by 
inflammatory signals from molecules released from damaged neurons, leading to induction 
of reactive microgliosis (Qian et al., 2010). Molecules that are released from damaged nigral 
DAergic neurons and induce microglial activation include neuromelanin, ǂ-synuclein, and 
active form of MMP-3, as described below. 

Neuromelanin is the dark insoluble polymer made from DAchrome and confers the dark 
pigmentation to the substantia nigra. Insoluble extraneuronal neuromelanin granules have 
been observed in patients of juvenile PD (Ishikawa and Takahashi, 1998) and idiopathic PD, 
as well as those with MPTP-induced parkinsonism (Langston et al., 1999). Addition of 
neuromelanin extracted from PD brain to microglia culture caused increases in 
proinflammatory cytokines and nitric oxide (Wilms et al., 2003). Intracerebral injection of 
neuromelanin caused strong microglia activation and a loss of DAergic neurons in the 
substantia nigra (Zecca et al., 2008). Together with the finding that neuromelanin remains 
for a very long time in the extracellular space (Langston et al., 1999), neuromelanin has been 
proposed to be one of the molecules that are released from the nigral DAergic neurons and 
induce chronic neuroinflammation in PD.  

Cytoplasmic accumulation of fibrillar ǂ-synuclein in Lewy bodies (Spillantini et al., 1997) is 
thought to be related to pathophysiology of PD. Although mostly intracellular, a fraction of 
this protein is released from neurons (H.J. Lee et al., 2005), and ǂ-synuclein is found in the 
cerebrospinal fluid from PD patients and normal subjects (Borghi et al., 2000), and in human 
plasma (El-Agnaf et al., 2003). That the released ǂ-synuclein participates in 
neuroinflammation was demonstrated by the finding that the addition of aggregated human 
ǂ-synuclein to a primary mesencephalic neuron-glia culture caused activation of microglia 
and DAergic neurodegeneration and that this cytotoxicity did not occur in the absence of 
microglia (W. Zhang et al., 2005). In addition, neuron-derived ǂ-synuclein stimulates 
astrocytes to produce inflammatory modulators that augment microglial chemotaxis, 
activation and proliferation. (Farina et al., 2007) Nitration of ǂ-synuclein, presumably due to 
increased nitric oxide, facilitates the neuroinflammatory responses (Benner et al., 2008; Gao 
et al., 2008). More recently, it has been shown that transgenic mice expressing mutant ǂ-
synuclein developed persistent neuroinflammation and chronic progressive degeneration of 
the nigrostriatal DA pathway when inflammation was triggered by a low level of 
lipopolysaccharide (Gao et al., 2011). 

The active form of MMP-3 is released from apoptotic DAergic cells, and the MMP-3 activity 
causes microglial activation as evidenced by increased production of superoxide, TNF-ǂ, 
and IL-1ǃ (Y.S. Kim et al., 2005). In addition, the MMP-3 activity is increased in DAergic 
neurons in response to cell stress and triggers apoptotic signaling (D.H. Choi et al., 2008; 
E.M. Kim and Hwang, 2011; E.M. Kim et al., 2010). In MMP-3 knockout mice, the microglial 
activation following exposure to MPTP is abrogated, and this is accompanied by a lower 
level of superoxide production compared to their wild type (Y.S. Kim et al., 2007). A recent 
study has demonstrated that MMP-3 causes cleavage of protease activated receptor-1 (PAR-
1) (E.J. Lee et al., 2010), whose removal of N-terminal extracellular domain renders the 
remaining domain acting as a tethered ligand, subsequently triggering generation of 
intracellular signals (Vu et al., 1991) and activation of microglia (Suo et al., 2002). 
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Furthermore, the proform of IL-1ǃ is cleaved by MMP-3 to yield the biologically active IL-1ǃ 
(Schonbeck et al., 1998). In addition, MMP-3 expression is induced in activated microglial 
cells (Woo et al., 2008), and conversely, MMP-3 is induced by cytokines and free radicals in 
microglial cells (Jian Liu and Rosenberg, 2005). Therefore, a vicious cycle may exist, where 
MMP-3 released from DAergic neurons leads to production of cytokines and free radicals, 
and this in turn causes a further production of microglial MMP-3 and subsequent release. 
MMP-3 can also cause degradation of blood brain barrier and infiltration of neutrophils, 
which can further contribute to neuroinflammation (Gasche et al., 2001; Gurney et al., 2006). 

3.6 Therapeutic strategies of PD 

Currently, there is no therapy clinically available that delays the neurodegenerative process 
itself, and therefore modification of the disease course via neuroprotective therapy is an 
important unmet clinical need. Thus, understanding of the pathophysiology and etiology of 
the disease at cellular and molecular levels and finding molecular targets against which 
neuroprotective/disease-modifying therapy may be developed is the crucial issue in the 
field of PD research.  

Because the clinical symptoms of PD does not manifest until more than 70% of the nigral 

DA neurons have degenerated (Marek K, 2009), ways to delay the degenerative progression 

in the presymptomatic, early stage of degeneration will prove to be highly beneficial. Early 

detection of PD is now available with the advances in brain imaging techniques such as 

positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). 

Biomarkers that can be used for early diagnosis of PD as well as following disease 

progression are being actively sought for, and some promising biomarker candidates have 

been discussed (Gerlach et al., 2011). Once the presymptomatic PD patients have been 

identified, disease-modifying, neuroprotective therapy should be able to delay development 

of motor disabilities and prolong time to L-DOPA initiation, allowing the pre-symptomatic 

patients to lead a normal life for a longer period of time. In addition, the disease-modifying 

drugs administered in combination with the current therapy in patients with moderate-to-

advanced stages of PD may also be beneficial in improving the quality of life.  

As described above, oxidative stress derived from DA metabolism, inflammation and 

mitochondrial dysfunction is thought to be the hallmark of PD pathogenesis, and 

antioxidant mechanism should prove to an effective neuroprotective therapy for PD. 

However, no direct antioxidant, either administered alone or in combination, has been 

observed to completely halt the progression of PD. The direct antioxidants vitamin C and ǃ-

carotene have shown no neuroprotective effect on PD patients (Etminan et al., 2005). 

Supplemental vitamin E also did not delay the need to start levodopa therapy in patients 

with early untreated PD in the DATATOP study (Parker et al., 1989). Coenzyme Q10, which 

is both an antioxidant and an enhancer of mitochondrial function, did not show benefit 

(Investigators, 2007), and a 16-month phase III clinical trial in a large population (600 

patients with early PD (The QE3 study) was dropped in May 2011, because an interim 

analysis revealed no futility to complete the study (Clinicaltrials.gov).  

Attempts have been made to design disease-modifying neuroprotective therapies against 
neuroinflammation. The steroid dexamethasone has been reported to attenuate the 
degeneration of DA-containing neurons induced by MPTP (Kurkowska-Jastrzebska et al., 
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1999) or lipopolysaccharide (Castano et al., 2002). However, steroids have limitations for 
long-term use in clinical situations due to side effects. Although non-steroidal anti-
inflammatory drugs, such as salicylic acid, are able to attenuate the MPTP-induced striatal 
DA depletion (Sairam et al., 2003), there is no clinical evidence supporting their 
neuroprotective effect. In addition, the tetracycline derivatives minocycline (Du et al., 2001; 
Tikka et al., 2001; Wu et al., 2002) has shown to inhibit neuroinflammation both in vitro and 
in animal models. A pilot clinical study using minocycline as a potential disease-modifying 
drug for PD, however, has generated disappointing results. The drug, mainly due to the 
large dose required, led to unwanted side effects and a high drop-out rates among patients 
(Investigators., 2008). 

We have shown that doxycycline, another tetracycline derivative that penetrates the blood 

brain barrier, downregulates the cell stress-induced MMP-3 expression and release and 

attenuates apoptosis in the DAergic CATH.a cells (Cho et al., 2009). It also suppresses the 

increase in MMP-3 gene expression as well as nitric oxide and inflammatory cytokines in 

microglial cells in culture, and provides protection of the nigral DAergic neurons and 

suppresses micorglial activation and astrogliosis in the MPTP-induced mouse PD model.  

We have also synthesized a novel compound 7-hydroxy-6-methoxy-2-propionyl-1,2,3,4-

tetrahydroisoquinoline (PTIQ) which effectively suppressed induction of MMP-3 in DAergic 

cells and prevented the resulting cell death. PTIQ was able to downregulate expression of 

MMP-3 along with IL-1ǃ, TNF-ǂ and cyclooxygenase-2 and blocked nuclear translocation of 

NF-κB in activated microglia (Son et al., 2011). In MPTP-elicited mouse model of PD, PTIQ 

attenuated the associated motor deficits, prevented neurodegeneration, and suppressed 

microglial activation in the substantia nigra. It has a good potential as a drug for central 

nervous system, because it entered the brain rather rapidly, and it was relatively stable 

against liver microsomal enzymes, showed no apparent inhibitory effect on the cytochrome 

p450 subtypes or hERG channel, exhibited little cytotoxicity on liver cells or lethality.  

Other molecules that downregulate MMP-3 and neuroinflammation and provide DAergic 

neuroprotection have been reported. It has been observed that ghrelin, an endogenous 

ligand for growth hormone secretagogue receptor 1a (GHS-R1a), attenuates MMP-3 

expression, nigrostriatal DAergic neuron loss, microglial activation, and subsequent release 

of TNF-, IL-1, and nitrite in mesencephalic neurons in MPTP mouse model of PD (Moon 

et al., 2009). Another group of investigators has reported that exendin-4, a naturally 

occurring and more potent and stable analog of glucagons-like peptide-1 (GLP-1) that 

selectively binds at the GLP-1 receptor, also downregulates MMP-3 expression along with 

attenuation of DAergic neuron loss and microglial activation (S. Kim et al., 2009). 

3.6.1 NQO1 and its inducers as protective agents 

The enzyme NAD(P)H:quinone reductase (DT-diaphorase; NAD(P)H-(quinone acceptor) 
oxidoreductase; EC 1.6.99.2; NQO1) catalyzes two-electron reduction of quinone to the 
redox-stable hydroquinone (Cavelier and Amzel, 2001; Joseph et al., 2000). Since DA and its 
metabolites have been implicated in the pathogenesis of PD, NQO1 may exert a protective 
effect against such conditions. Indeed, the toxic accumulation of the DA quinone (as well as 
L-DOPA quinone) can be prevented by the action of NQO1. NQO1 protected against 
damaging effects of cyclized quinones and oxidative stress induced during their redox 
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cycling (Zafar, Inayat-Hussain, et al., 2006), and against DA (Zafar, Siegel, et al., 2006) and 6-
hydroxyDA (Jia et al., 2008). Induction of NQO1 by sulforaphane, dimethyl fumarate, 3H-
1,2-dithiole-3-thione, tert-butylhydroquinone (tBHQ), and butylated hydroxyanisole 
protected against neurocytotoxicity associated with DA quinone in vitro (H.J. Choi et al., 
2003; Duffy et al., 1998; Han et al., 2007; Hara et al., 2003; Jia et al., 2009; Jia et al., 2008; 
Miyazaki et al., 2006; Siebert et al., 2009);; and against MPTP-elicited toxicity in vivo (Jazwa 
et al., 2011). In addition, NQO1 is known to maintain both ǂ-tocopherol and coenzyme Q10 
in their reduced, antioxidant state (Siegel et al., 1997). 

While NQO1 is abundant in the liver where it participates in the phase II detoxification, the 
enzyme is also expressed in the brain (Stringer et al., 2004). In addition to its predominant 
expression in astrocytes (Flier et al., 2002), NQO1 is also expressed, albeit to a less degree, in 
DArgic neurons in the substantia nigra (van Muiswinkel et al., 2004). Moreover, a marked 
increase in the neuronal expression of NQO1 was consistently observed in the Parkinsonian 
substantia nigra (van Muiswinkel et al., 2004). Studies have shown that a polymorphism 
(C609T) of NQO1 that results in a decrease or total loss of its expression is associated with 
PD (Harada et al., 2001; Jiang et al., 2004), although another group reported no such 
association (Okada et al., 2005). 

Pharmacological induction of NQO1 is achieved by the transcription factor Nrf-2 binding to 
a cis-acting enhancer sequence termed antioxidant response element (ARE). Therefore, Nrf-2 
activation in DAergic neurons may be accompanied by coordinate elevation of expression of 
many other genes that also contain the ARE sequence. These include the enzymes that are 
known as cytoprotective proteins, such as glutathione S-transferase, epoxide hydrolase, 
heme oxygenase-1, catalase, and superoxide dismutase and glucuronosyltransferase, 
thioredoxin, glutathione peroxidase, the catalytic and modulatory subunits of gamma-
glutamyl synthase (GCLM, GCLC), and thioredoxin reductase (J. Clark and Simon, 2009). 
Which of these proteins are actually expressed and induced in the nigral DArgic neurons 
needs to be experimentally sorted out. It is likely that the protective effect of the known 
NQO1 inducers is contributed by the other cytoprotective enzymes coordinately induced 
along with NQO. It should be noted, however, that the direct ability of NQO1 to catalyze 
the detoxification of DA quinone metabolites seems most important in cellular defense of 
DAergic cells (Dinkova-Kostova and Talalay, 2010). It has been shown that catalase, 
superoxide dismutase, and heme oxygenase-1 are not effective in providing neuroprotection 
against DA quinone (Innamorato et al., 2010; Zafar, Inayat-Hussain, et al., 2006; Zafar, 
Siegel, et al., 2006). Therefore, NQO1 and Nrf2 should serve as viable cellular targets for 
neuroprotective therapy for PD.  
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