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Pyrolysis of Waste Polystyrene and  
High-Density Polyethylene 

Kyong-Hwan Lee 
Korea Institute of Energy Research 

South Korea 

1. Introduction 

As the rate of consumption of plastic materials in the world is greatly expanded, more waste 

plastics are generated. In recent years, their generation amount in Korea becomes about four 

million tons per year, according to data from the National Institute of Environmental 

Research. The disposal of waste plastic is mostly achieved by conventional ways such as 

landfill or incineration. However, these methods have a problem of a social resistance due to 

the air pollution, soil contamination, and the economical resistance caused by an increase of 

a space and a disposal cost. Thus, the recycling of plastic wastes as a cheap source of raw 

materials has become a predominant subject over all countries. The development of 

technologies acceptable from the environmental and economical fields is one of the most 

important key factors. 

Generally, the recycling methods are classified as the material recycling and chemical 
recycling. The former is one of the most conventional methods but is limited by difficulties 
in maintaining the high quality and adequate price of final products, in particular, for the 
mixture of plastic waste. Thus, application of other procedures such as chemical recycling 
and energy recovery is required (Al-Salem et al., 2009).  

The chemical recycling, referred to as an advanced recycling technology, is included in a 
tertiary recycling. The process is converted from plastic wastes into smaller molecules 
corresponding to chemical intermediates through the use of heat and chemical treatment, 
such as liquids, gases and waxes. These chemical intermediates can be used as the fuel oil 
and feed stocks of petrochemicals processes, etc. The chemical recycling is described by the 
routes as follows (Kumar et al., 2011).  

The chemical recycling can be mainly explained by the chemical recovery systems, which 
are classified as a heterogeneous and a homogeneous process. The chemolysis methods as 
homogeneous process utilize chemical agents as catalysts for depolymerization of polymers 
to obtain the products with low molecular wieghts. Chemolysis includes the processes such 
as glycolysis, hydrolysis, methanolysis and alcoholysis. On the other hand, heterogeneous 
processes are greatly described by gasification and pyrolysis. Gasification as partial 
oxidation (using oxygen or steam) can generate a mixture of hydrocarbons and synthesis 
gas (CO and H2), which are dependent on the type of polymer, biomass, coal and co-
mixture, and on quantity of and quality of resulting product. 
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Fig. 1. Schemes of chemical recycling. 

The pyrolysis involves the degradation of the polymeric materials by heating in the absence 

of oxygen. The method has the routes as the thermal cracking, catalytic cracking and hydro 

cracking. The recycling of waste plastics by thermal and catalytic degradation processes can 

be an important source producing alternative fuel oil from the view point of an economical 

aspect and contributing to the environmental protection from the view point of an 

environmental aspect (Demirbas, 2004). The method of pyrolysis takes advantage over the 

incineration and landfill methods because it is based on relatively simplicity into the oil for 

all thermoplastic mixtures without using the separation treatment for plastic type in the 

mixture and to lower the environment resistance for air pollutant and soil contamination. 

In the pyrolysis, thermal degradation is a simple method for upgrading plastic waste into 

liquid product at medium temperature (400-600 OC) in the absence of oxygen. However, this 

process requires relatively high energy consumption, due to a low thermal conductivity of 

waste plastic and to an endothermic reaction by degradation of waste plastic. Moreover, the 

oil obtained by pyrolysis of plastic wastes has a wide molecular weight distribution with 

poor economical value, which does not have a sufficient quality to use as alternative fuel oils 

(Marcilla et al., 2009). The pyrolysis of polyethylene with high proportion in mixed plastic 

produces much more unstable heavy compounds with high viscosity as low grade product 

(Marcilla et al., 2009; Lee & Shin, 2007). The characteristics of these products depend on the 

nature of plastic waste and process conditions.  

The catalytic degradation process, based on the addition of catalyst, can be conducted at low 

temperatures and high quality products are obtained in a comparison with thermal 
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degradation process (Miskolczi et al., 2004). The most commonly used catalysts are (1) solid 

acid catalysts such as zeolite, silica-alumina, FCC catalyst and MCM-41, etc [Miskolczi et al., 

2004; Lee et al., 2002; Garcia et al., 2005; Seddegi et al., 2002; Achilias et al., 2007; Miskolczi et 

al., 2006; Marcilla et al., 2005; Lin & Yang, 2007] and (2) bifunctional catalysts (Buekens & 

Huang, 1998). In the degradation of the polymer chain using acidic catalyst, the molecular 

weight of polymer chain could be rapidly reduced through cracking reaction and then 

carbonium ion intermediates would be rearranged by hydrogen and carbon atoms shifts 

with producing the isomers of high quality. In the case of bifunctional catalyst consisting of 

both acidic and metal material as reforming catalyst, the metallic sites catalyze 

hydrogenation/ dehydrogenation, while the acidic sites on the support catalyze the 

isomerization reaction. These reactions would improve the octane numbers of light 

hydrocarbons. Also, hydro-cracking involves the reaction with hydrogen over a bimetallic 

catalyst at moderate temperatures and pressures, which is focused on obtaining a high 

quality hydrocarbon product. These catalysts used in refinery hydro-cracking reaction for 

heavy hydrocarbons incorporate both cracking and hydrogenation. 

With regards to the reactant used in this chapter, high-density polyethylene has a linear 

structure with no or little branching, while polystyrene is cyclic structure with relatively low 

degradation temperature. Polyolefinic and polystyrene polymers that have above 70% 

fraction in plastic waste are the major polymeric materials in a municipal plastic waste 

stream. In case of western Europe, polyethylene plastics make up over 40% of the total 

plastic content of municipal solid waste (Onwudili et al., 2009). These polymers consisting of 

mainly hydrogen and carbon atoms are so close to crude oil that the plastic waste would be 

processed by the reaction methods such as the thermal and catalytic cracking. In the 

pyrolysis process, polystyrene can be thermally degraded to the corresponding monomer or 

aromatics with its high selectivity at lower temperatures, whilst thermal degradation of 

polyolefinic polymers occurs at higher temperatures and lead to a complex mixture of 

aliphatic hydrocarbons.  

This chapter presents the pyrolysis of both polystyrene and high-density polyethylene with 
different physiochemical properties and also the upgrading of low-grade oil product 
obtained by thermal degradation. Moreover, the effect of mixing of two plastics and catalyst 
addition for the pyrolysis would be explained by the yield for gas, liquid, solid products 
and the composition of liquid components, etc. 

2. Basic pyrolysis 

2.1 Reaction mechanism of high-density polyethylene and polystyrene 

The pyrolysis is basically degraded for large hydrocarbons into smaller ones. From this 

process, the polymer is converted into paraffins and olefins, etc., with low molecular 

weights. Thermal degradation is accompanied with a free radical chain reaction. When free 

radicals react with hydrocarbons, new hydrocarbons and new free radicals are produced. 

Also, free radicals can decompose into olefins and new radicals. In the reaction mechanism 

by polymer type (Scheirs & Kaminsky, 2006), high-density polyethylene consisting of 

straight long carbon chains is pyrolyzed through the random-chain scission, which is broken 

up randomly into smaller molecules with various chain lengths. This product is obtained 
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with a wide distribution of molecular weight, including hydrocarbons with high boiling 

point and/or low valuable products like wax. Thus, this means that the addition of catalyst 

in the pyrolysis can be a more efficient method to produce high valuable products with 

mainly gasoline range components. On the other hand, pyrolysis of polystyrene with cyclic 

structure is occurred by both end-chain and random-chain scissions. This polymer is broken 

up from the end groups successively yielding the corresponding monomers, as well as its 

breakage randomly into smaller molecules of one or more benzene-ring structures. This 

product is monomer recovery with a high fraction. 

2.2 Thermal and catalytic degradation (Scheirs & Kaminsky, 2006 ) 

(a) Thermal and (b) catalytic degradation of heavy hydrocarbons can be comparatively 

described with the following items 

(a) Thermal degradation 

1. High production of C1s and C2s in the gas product. 

2. Olefins less branched. 

3. Some diolefins made at high temperature 

4. Wide distribution of molecular weight in the liquid product (poor gasoline 

selectivity)  

5. High fraction of gas and coke products  

6. Relatively slow reactions. 

(b) Catalytic degradation 

1. Short in the reaction time and low in degradation temperature 

2. High production of C3s and C4s in the gas product 

3. Olefins as the primary products and more branched by isomerization 

4. More C5-C10 products in the liquid product (high gasoline selectivity) 

5. Aromatics produced by olefin cyclization 

6. More reactive for larger molecules 

7. No reaction for pure aromatics 

8. Paraffins produced by H2 transfer 

9. Product distribution controlled by the selection of a catalyst 

2.3 Mass balance 

To demonstrate the mass balance, it is essential to determine the product yield for gas, 

liquid and residue, and also the composition of liquid products at different conditions of the 

various operating parameters such as temperature, residence time and pressure. From this, 

it is required to mention the economical aspect. Raw materials in a pyrolysis process contain 

nonproductive constituents, such as moisture, inorganic material, etc. These loss factors 

have to take into a consideration for the establishment of mass balance. Generally, mass 

balance is established by input and output amount, based on 100% of feeding amount. In the 

pyrolysis process, the important operating point is controlled by the maximum of valuable 

products and minimum of sludge amount. Thus, the operating margin must reach a 

reasonable level for mass balance in the economic aspect.  
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3. Pyrolysis of pure waste high-density polyethylene and polystyrene  

Although the catalytic degradation of polyethylene over a wide variety of catalysts have 

been tested, zeolites have proven effective by many researchers [[Miskolczi et al., 2004; Lee 

et al., 2002; Garcia et al., 2005; Seddegi et al., 2002; Achilias et al., 2007; Miskolczi et al., 2006; 

Marcilla et al., 2005; Lin & Yang, 2007; Buekens & Hunang, 1998]. Seo et al (Seo et al.,2003) 

reports that the product characteristics for both thermal and catalytic degradation of waste 

HDPE using various zeolites are relatively compared as the yields of gas, liquid and residue, 

and carbon number distribution of liquid products, as shown in Table 1. Yields of liquid 

were over 70% using all zeolites, with the exception of ZSM-5, as well as thermal 

degradation. However, the catalytic degradation was produced much more light 

hydrocarbons (C6-C12) than that of thermal degradation, and moreover ZSM-5 and zeolite 

Y were more effective than mordenite. ZSM-5 and zeolite Y have a unique three-

dimensional micropore structure as well as a strongly acidic property, whereas mordenite 

has only a parallel one-dimensional pore structure with a restricted diffusion of reactant. 

Especially, ZSM-5 with a smaller pore size, rather than that of zeolite Y was more cracked 

into light hydrocarbons such as C6-C12 components and gas products. Since the initially 

degraded materials on the external surface of catalyst can be dispersed into the smaller 

internal cavities of catalyst, they can be further degraded to the smaller size of gaseous 

hydrocarbons. These findings mean that the pore properties of catalyst are important factor 

in the degradation of heavy hydrocarbons.  

 

Catalysts 
 Yield   Liquid fraction* 

Liquid Gas Coke  C6-C12 C13-C23 ≥C24 

Thermal cracking 84.00% 13.00% 3.00%  56.55% 37.79% 5.66% 

ZSM-5 (powder) 35.00% 63.50% 1.50%  99.92% 0.08% 0% 

Zeolite Y (powder) 71.50% 27.00% 1.50%  96.99% 3.01% 0% 

Zeolite Y (pellet) 81.00% 17.50% 1.50%  86.07% 11.59% 2.34% 

Mordenite (pellet) 78.50% 18.50% 3.00%  71.06% 28.67% 0.27% 

* wt% were determined by GC/MS 

Table 1. Yields of liquid, gas and coke produced from thermal and catalytic degradation of 

waste HDPE with various catalysts at 450OC (Seo et al.,2003). 

In the characteristics of oil product, paraffin, olefin, naphthene and aromatic (PONA) 

distribution is one of the important factors which can determine the quality of oil product, 

as shown in Table 2. Oil product from thermal degradation of HDPE consists of 40.47wt% 

paraffins, 39.93wt% olefin, 18.50wt% naphthenes and a trace amount of aromatics. Relative 

to thermal degradation of HDPE, catalytic degradation is known to occur at a faster reaction 

rate and lead to subsequent reactions including isomerization and aromatization, as well as 

cracking reaction (Vento & Habib, 1979). Subsequent reactions proceeding through 

carbenium ion-type intermediate generated by acidic catalysts contribute to the greater 

formation of olefins and aromatics, as shown in Table 2. 
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Catalyst 
Total-

Paraffin

(Total-Paraffin) Total-
Olefin 

Naphthene Aromatics Others* 
n-paraffin i-paraffin 

Thermal cracking 40.75 40.47 0.28 39.93 18.50 0.68 0.14 

ZSM-5(powder) 1.63 1.51 0.12 16.08 23.55 58.75 0.01 

ZeoliteY(powder) 5.39 0.00 5.39 79.92 7.68 7.01 0.00 

Zeolite Y(pellet) 25.10 20.68 4.42 49.28 12.05 8.43 5.14 

Mordenite(pellet) 31.07 30.89 0.18 57.07 11.51 0.13 0.22 

*Others mean hydrocarbons containing oxygen or unidentified organic compounds. 

Table 2. Weight fraction of each PONA Group in oil products from thermal and catalytic 
degradation of HDPE with various catalysts at 450OC (Seo et al.,2003). 

Catalytic degradation using ZSM-5 with small size increases aromatic hydrocarbons up to 

59wt%, as a shape selectivity of catalyst, which is mainly consisting of the alkyl-aromatics 

with one-benzene ring structure. ZSM-5 is superior to zeolite Y in terms of aromatic 

formation. Also, the hydrogen atoms in ZSM-5 catalytic degradation contribute to the 

formation of naphthenes with largely C6-C8 hydrocarbons. Paraffins and olefins contain 

mostly lighter hydrocarbons. 

It has been demonstrated that rare earth exchanged zeolite Y is more active than silica-

alumina as cracking catalyst (Lin&Yang, 2007; Onwudili et al., 2009), because zeolite can 

provide a greater acidic site density. Since zeolite Y has more favorable shape selectivity for 

aromatic formation than non-zeolite catalyst, some intermediate carbenium ion formed by 

acidic zeolite will choose a pathway to aromatic formation, and some will be left over as 

olefin. Thus, the oil product from zeolite Y was mostly consisted of C6-C9 molecules which 

would be produced as largely light olefins and some cyclics. Zeolite Y improved the 

formation of branched isomers by the isomerization of light olefins and in cyclic products, 

naphthenes and aromatics by cyclization were mostly consisted of C6 and C7-C10 molecules, 

respectively.  

The oil product over mordenite, among zeolites, appeared differently from other zeolites. 

This product distribution was similarly shown with that of thermal degradation, rather than 

other zeolites. This contrasting result of both mordenite and other zeolites seems to be 

correlated with the crystalline pore structure. Since this physical property is adopted for 

greater diffusion, mordenite with large pore size of one-dimensional pore structure can 

provide a greater initial activity than zeolite Y, but it would tend to lose activity more 

rapidly with time on stream. Coke formation in mordenite is known to be significant in a 

literature(Chen et al., 1989). As the result, the lighter molecules were less formed in 

mordenite.  

4. Pyrolysis of mixture of waste HDPE and PS 

When the pyrolysis is conducted to obtain the oil product, the effects of the mixing of HDPE 

and PS are described in this section. For the catalytic degradation of two polymers with a 

different mixing proportions, the cumulative amount distributions of liquid products as a 
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function of reaction lapsed time are shown in Fig. 2. The experiments were performed with 

a stirred semi-batch reactor at a catalyst amount of 9.1 wt % and at a temperature of 400 OC 

with the same reaction temperature programming.  

The cumulative amount distributions of liquid products clearly increase with an increase in 

the mixing proportions of PS against HDPE. These results are due to the fact that the 

increase of PS content in HDPE and PS mixture has much high yield of liquid product and 

high degradation rate. This means that pyrolysis of PS is predominant over the pyrolysis of 

HDPE in the mixture. According to the previous result (Lee et al.,2002), waste PS showed 

higher liquid yield and higher initial degradation rate in the catalytic degradation than 

waste PP and PE, because PS is mainly converted into stable aromatic components as liquid 

phase and also the low degradation temperature. 
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Fig. 2. Cumulative amount distributions of liquid products for catalytic degradation of 

waste HDPE and PS mixture using spent FCC catalyst at 400OC. (A: Initial degradation 

region, B: Final degradation region) (Lee et al., 2004). 
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The slope of the cumulative amount of liquid product versus reaction lapsed time represents 

as the degradation rate of HDPE and PS mixtures which is needed to obtain liquid products. 

The initial liquid product was obtained at around 400 OC of reaction temperature. These can 

be classified as two region of initial (A; initial degradation region) and final (B; final 

degradation region) lapse time in the reaction time and were appeared as initial and final 

degradation rate with a function of PS content, as shown in Fig. 3. The initial degradation 

rates are exponentially increased with increasing PS content in the mixture, while the final 

degradation rates were also suddenly decreased with increasing PS content, due to the 

influence of HDPE in the mixture. These results show that the polymers studied do not react 

independently, but some interaction between samples was observed.  
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Fig. 3. Initial and final degradation rate as a function of PS content for catalytic degradation 
of waste HDPE and PS mixture using spent FCC catalyst at 400OC (Lee et al., 2004). 

The commercial pyrolysis process yields the pyrolytic oil from the reactor at short contact 

time of 1-2 hours. It is necessary to know the characteristics of product oil in initial 

degradation region of Fig. 2. For these results, the distribution of liquid paraffin, olefin, 

naphthene and aromatic (PONA) products is presented in Fig. 4. Hydrocarbon group 

compositions of degraded products are strongly dependent on chemical properties of plastic 

type in plastic waste. As PS is included in the mixture, even though it is low or high, the 

pyrolysis of this mixture greatly improves the formation of aromatics, whereas the olefins 

produced by pyrolysis of polyolefins mainly has a much low fraction. This can be explained 

by the fact that the acceleration of aromatic products stems from the aromatic fragments of 

PS degradation as well as the cyclization of paraffinic and olefinic intermediates in FCC 
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catalyst containing zeolite. Both the degradation of plastic mixture and the characteristics of 

oil product obtained are significantly influenced by plastic type in the mixture, as well as 

zeolite type in the catalyst. 
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Fig. 4. The distribution of liquid paraffin, olefin, naphthene and aromatic (PONA) products 
for catalytic degradation of waste HDPE and PS mixture using spent FCC catalyst in the 
initial degradation time is presented with a function of PS content (Lee et al., 2004). 

5. Pyrolysis of municipal plastic waste 

Pyrolysis is a suitable process for thermoplastics like polyethylene and polystyrene. For a 

small mixture of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) included in 

municipal plastic waste (MPW), an issue of environment and operation problems occurs in 

pyrolysis process. Thus, the removal of PVC and PET in MPW may be conducted by 

separation methods such as water separation, because of relatively high density of PVC and 

PET in a comparison for polyethylene and polystyrene with specific gravity 1.2 or less. Also, 

after the pretreatment of MPW, the inorganic materials contained with very low content are 

deposited in solid carbon residue during the pyrolysis. The MPWs are classified as low 

MPW(<1.0), medium MPW(1.0-1.1) and high MPW(1.1-1.2), based on the specific gravity 1.2 

or less. The pyrolysis corresponding to three type MPWs is conducted.  

Table 3 shows the yields of liquid, gas and residue products obtained by the pyrolysis of 

three different MPWs at a stirred batch reactor of 1.1 liter volume size, under the same 

experimental conditions. From these results, the product distribution is clearly different 
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over various samples of MPW. Basically, the yield of liquid products in all samples is 75% or 

over. Note the corresponding liquid yields is in the following order; medium MPW >> low 

MPW > high MPW. Especially, the medium MPW shows highest liquid yield with about 

90%. On the contrary, the order of gas and residue yield shows reverse relationship. It can 

be explained by the result that the plastic type contained in each MPW separated by a 

difference of specific gravity is an important key on the product distribution obtained. Lee et 

al. (Lee et al., 2002) have reported the influence of plastic type on liquid, gas and residue 

yield for pyrolysis of plastic wastes. The pyrolysis of polystyrene, due to the structure of 

stable benzene-ring, shows higher liquid yield and lower gas yield than that of polyolefinic 

polymer (PE, PP) with a straight hydrocarbon structure. Polystyrene is less cracked to gas 

product of 5 carbon numbers or less. Hence, the product distribution is strongly dependent 

on the plastic type including in municipal plastic wastes. 

 

Sample (S.G..) Liquid yield (wt%) Gas yield(wt%) Residue (wt%) 

Low MPW (<1.0) 80.9 11.1 8.0 

Medium MPW(1.0-1.1) 89.8 2.9 7.3 

High MPW (1.1-1.2) 76.0 9.7 14.3 

Table 3. Product yields obtained from pyrolysis of various MPWs at 400OC (Lee, 2007). 

As the characteristics of liquid product, the paraffin, olefin, naphthene and aromatic (PONA) 

components, etc are compared over three different MPWs, as shown in Table 4. Also, their 

carbon number distributions are plotted in Fig. 5, respectively. These showed a peculiar 

product distribution, due to the chemical nature and structure of plastic type in MPW.  

 

Product Composition 

Sample (S.G.) 

Low MPW 
(<1.0) 

Medium MPW 
(1.0-1.1) 

High MPW 
(1.1-1.2) 

Paraffins 4.61 1.82 0.06 

Olefins 75.93 0.02 0.10 

Naphthenes 6.08 0 0.46 

Aromatics 11.97 97.19 22.24 

Phenols 0.25 - 17.05 

Nitro-aromatics 0.15 0.97 1.88 

Aldehydes 1.01 - - 

Methylesters 0 - 58.21 

<C13 92.89 92.05 99.13 

C13-C24 7.01 7.95 0.87 

>C24 0.10 0 0 

Table 4. Liquid product composition obtained from pyrolysis of various MPWs at 400OC 
(Lee, 2007). 
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Fig. 5. Carbon number distribution of liquid paraffin, olefin, naphthene and aromatic 

products obtained from pyrolysis of MPW at 400OC (specific gravity : <1.0(a), 1.0-1.1(b),  

1.1-1.2(c)) (Lee, 2007). 

In the case of low MPW sample, the fractions of liquid paraffin, olefin, naphthene and 

aromatic products are about 5%, about 76%, about 6% and about 12%, respectively. 

Primary liquid product is olefin components and secondary is aromatic components. In 

the liquid product, naphthene and paraffin components are produced with a little 

amount. This means that low MPW mainly consists of PP polymer, among polyolefinic 

polymers, with relatively low degradation temperatures and high olefin fraction of liquid 

product in pyrolysis process (Lee et al., 2002). Also, aromatic products show 10% or more, 

because of including a little PS in low MPW. These results were demonstrated by the 
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carbon number distribution of liquid PONA products over the case of low MPW, as 

shown in Fig. 4(a). Main liquid product was light olefin component with 9 of carbon 

number. This result was consistent with that of Sakata et al.(Sakata et al., 1999), who 

produced much more light hydrocarbon with 9 of carbon number from thermal 

degradation of PP at relatively low degradation temperature. 

On the other hand, medium MPW showed highest fraction of liquid product with about 

90% and lowest fraction of gas product, among three samples. In liquid product, aromatic 

components showed about 97% fraction and the rest was less than 2% fraction, respectively, 

as shown in Table 4. Moreover, phenol, aldehyde and methylester components in liquid 

products were not appeared and only nitro-aromatic products showed less than 2% fraction. 

It can be explained by the results that plastic type contained in medium MPW is mostly 

consisting of polymers with benzene-ring structures, especially PS among these polymers. 

This result can be reflected by carbon number distribution of liquid product, as shown in 

Fig. 4(b). Here, carbon number distribution was very short, mainly ranged from 8 to 9, as 

aromatic components. This result show a similar tendency in a comparison with that of 

Demirbas study (Demirbas, 2004), which is mainly consisting of 50-60% fraction of styrene 

and 10-20% fraction of C5-C8 hydrocarbons. 

For pyrolysis of high MPW sample, the distribution of liquid products shows about 58% 

fraction in methylmethacrylate component, about 22% fraction in aromatic components and 

about 17% fraction in phenol components, as a main liquid product. However, straight 

hydrocarbon and naphthene components mainly obtained from pyrolysis of polyolefinic 

polymers are produced with very little amount (Lee et al., 2004). This result indicates that 

high MPW sample did not almost contain polyolefinic polymer type, and was mostly 

consisting of PMMA and then a little PS. This is demonstrated by the carbon number 

distribution of liquid products, as shown in Fig. 4 (c). Note the main product is 

methylmethacrylate monomer, producing from the pyrolysis of PMMA (Smolders & 

Baeyens, 2004). 

6. Upgrading of pyrolysis oil with low quality 

6.1 Constant stirred tank reactor 

Pyrolytic oil is mainly composed of heavy hydrocarbons with low quality, as well as light 

hydrocarbons. Heavy hydrocarbons must be cracked to light hydrocarbons, in order to 

use as the fuel oil. The degradation experiment of pyrolytic oil is conducted by a heating 

rate of 10OC/min up to 420OC/min and then holding time of 5 hours at that temperature. 

The effects of degradation temperature and holding time at high degradation temperature 

on pyrolysis process are investigated. When the pyrolytic oil is degraded in a stirred semi-

batch reactor with a bench scale under the condition of degradation temperature 

programming, the low degradation temperature (at 420 OC or below, short lapse time) 

only distills each hydrocarbon with the corresponding boiling point within the pyrolytic 

oil, while at high degradation temperature and long lapse time heavy hydrocarbons are 

much more decomposed into light hydrocarbons like gasoline ranged components and 

also a little middle hydrocarbons., as a pattern of GC (gas chromatography) peaks shown 

in Fig. 6.  
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Fig. 6. GC peaks of product oils for thermal degradation of raw pyrolytic oil under 

degradation temperature programming (Lee, 2009). 

Also, the catalytic degradation of pyrolytic oil using powder type FCC catalyst as a 

commercial cracking catalyst is investigated by a stirred tank reactor. The purpose of the 

catalytic degradation is to identify the possibility for utility of spent FCC catalyst as a waste 

catalyst, as well as the application of fresh FCC catalyst. A simple pyrolysis and catalytic 

degradation using spent or fresh FCC catalyst are compared by cumulative amount 

distribution of liquid product as a function of lapse time of reaction, as shown in Fig. 7. 

When a little catalyst (10%) is quickly loaded in the reactor at 420OC, the cumulative yield of 

liquid product is improved by the effects of catalyst, due to more cracking of heavy 

hydrocarbons into liquid product. Also, the cumulative yield distribution from catalytic 

degradation using both spent and fresh FCC catalysts is slightly deviated. This shows that 

spent FCC catalyst, compared to fresh FCC catalyst, has an effective result on the pyrolysis 

process.  
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Fig. 7. Cumulative yield distribution of oil product for thermal and catalytic degradation of 

pyrolytic oil (Lee, 2009). 

6.2 Fixed bed reactor 

In chemical recycling, the pyrolysis process of plastic wastes by the use of commercial rotary 

kiln reactor can be taken into a consideration as an efficient method. From this system, 

municipal plastic waste as a reactant is converted into gas product, oil product (liquid 

product+wax) and residue. Among pyrolytic oil, the wax oil with a high proportion has a 

low value for a practical use in industrial companies and moreover difficulty to supply it as 

an alternative fuel oil, due to its high viscosity and low quality, etc. The SIMDIST (simulated 

distillation) curves, as the boiling point distribution, over the pyrolysis wax oil and the 

commercial oils (gasoline, kerosene and diesel) are shown in Fig. 8. The pyrolysis wax oil 

has much higher boiling point distribution, ranging from approximately 300OC to 550OC, 

compared to those of commercial oils. It mainly consists of paraffin components and a very 

wide carbon number distribution ranging from an approximate carbon number of 10 to a 

carbon number of nearly 40 (Lee, 2012).  

Thus, the catalytic upgrading of low-grade pyrolysis wax oil is conducted by a fixed bed 

reactor, as a continuous gas-phase reaction using zeolite. The distribution of liquid 

product, gas product and coke over several types of commercial zeolite catalysts is listed 

in Table 5. Five commercial zeolite catalysts (ZSM-5, zeolite Y and mordenite, with or 

without clay or alumina as a supporter) used have their unique and different 

physicochemical properties.  
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Fig. 8. Boiling point distribution as a function of mass fraction for pyrolysis wax oil and 
commercial oils (Lee, 2012). 

 

Items Liquid(wt%) Gas(wt%) Coke (wt%) 

ZSM-5 (HZ30) 47.18 51.04 1.78 

Zeolite Y (HY80) 66.98 28.95 4.08 

Zeolite Y(80%)+Clay(20%) (HYC8) 74.12 22.95 2.93 

Mordenite(80%)+Clay(20%) (HMC11) 92.12 7.72 0.16 

Mordenite(80%)+Alumina(20%) (HMA6) 82.59 15.11 2.3 

Table 5. Product distribution for catalytic upgrading of pyrolysis wax oil at 450OC, 1hr (Lee, 
2012). 

The order of the zeolite for the catalytic degradation of pyrolysis wax oil to gas products is 
ZSM-5 > zeolite Y > mordenite. ZSM-5 catalyst with a three-dimension pore structure shows 
the highest activity to gas product at nearly 50%. On the other hand, the catalyst containing 
mordenite with a one-dimensional pore structure shows the lowest conversion of heavy 
hydrocarbons into gas product. This indicates that the catalyst of zeolite type plays an 
important role in the catalytic degradation. As the effect of supporter, the distribution of gas 
products and coke with both pure zeolite Y and zeolite Y(80%)+clay(20%) shows a slight 
difference. The catalyst containing clay has low fraction of gas product and coke, compared 
to pure zeolite Y. The case of mordenite with a different supporter (clay or alumina) also 
shows a slight difference in the product distribution. It is concluded that the adequate 
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design of both zeolite as a role of main reaction and supporter is a major key to determine 
the product distribution.  

This result can be also sufficiently illustrated by the distribution of the liquid paraffin 

(normal/iso), olefin (normal/iso), naphthene and aromatic (PONA) products according to 

zeolite catalysts, as shown in Table 6. Raw pyrolysis wax oil is composed of predominantly 

normal paraffins and small amount of normal olefins. Among zeolites, ZSM-5 shows the 

 

Items Paraffins (wt%) Olefins (wt%) 
Naphthenes 

(wt%) 
Aromatics 

(wt%) 

 N- Iso- Total N- Iso- Total   

Raw wax 70.7 - 70.7 8.0 - 8.0 - - 

HZ30 2.4 0.5 2.9 - - - 17.7 76.8 

HY80 12.5 28.5 41.0 6.4 7.5 13.9 9.4 30.2 

HYC8 12.2 25.6 37.9 5.5 8.4 13.9 11.9 28.7 

HMC11 71.8 - 71.8 8.2 1.6 9.8 0.6 1.8 

HMA6 61.3 - 61.3 7.0 10.2 17.2 2.2 8.7 

Table 6. Composition of liquid paraffin, olefin, naphthene and aromatic products for 
catalytic upgrading of pyrolysis wax oil at 450OC, 1hr (Lee, 2012). 
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Fig. 9. Carbon number distributions of product oil for catalytic upgrading of raw pyrolysis 
wax oil at 450OC (Lee, 2012). 
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highest fraction of aromatic products through the cyclization of light paraffins and olefins. 

Aromatic products are mainly C6, C7 and C8 components of benzene, toluene, xylene and 

ethylbenzene, as shown in Fig. 9, due to shape selectivity of ZSM-5. The case of zeolite Y 

mainly used in a commercial cracking process like FCC process and the hydrocracking 

process shows also different PONA pattern. Zeolite Y has the highest fraction of branched 

hydrocarbons with high octane number and also high fraction of aromatic products in the 

liquid products, which mainly produces gasoline ranged components in liquid product. 

However, the catalysts containing mordenite with a one-dimension pore structure shows a 

PONA distribution similar to raw pyrolysis wax oil and also has a wide carbon number 

distribution ranging from approximately 10 to 40, as shown in Fig. 9. The catalysts 

contained mordenite do not sufficiently crack for pyrolysis wax oil into light hydrocarbons, 

as its relatively low activity. 
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