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Miniaturized Mass Spectrometer in  
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The Performance and Possibilities 

Shuichi Shimma and Michisato Toyoda 
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Japan 

1. Introduction 

It is no doubt that mass spectrometry (MS) is widely applied to several research fields. In 
recent years, design and development of novel miniaturized mass spectrometers have been 
at the forefront of research in MS. A lot of miniaturized mass spectrometers are reported 
and commercialized from a lot of institutes and industries. The instruments have 
widespread applications, for example, detection and identification of chemical and 
biological hazards for the homeland security (Contreras et al., 2008; Smith et al., 2011), the 
food safety (Garcia-Reyes et al., 2009) and so on. Because of their small size and lightweight, 
miniaturized mass spectrometers have a potential for field use. These features are absolutely 
suitable for on-site environmental analyses, especially in greenhouse gases analyses. 
However, there are few reports on application of miniaturized mass spectrometers in this 
research field. This chapter describes instrumentation and application feasibility of 
miniaturized mass spectrometers to the greenhouse gases analysis. This chapter is consists 
of following four sections. 

1. New analytical concept of “On-site mass spectrometry” and field usable mass 
spectrometers, 

2. Introduction of our technology: multi-turn time-of-flight (TOF) mass spectrometer 
(MULTUM), 

3. Miniaturized ultra-high mass resolution multi-turn TOF mass spectrometer 
“MULTUM-S II”, 

4. Application of greenhouse gases detection using MULTUM-S II. 

2. “On-site mass spectrometry” using miniaturized mass spectrometers 

In this section, a novel analytical concept “On-site mass spectrometry”, overview of several 
reported miniaturized mass spectrometers and issues for the field use are mentioned.  

2.1 On-site mass spectrometry 

The basis of science is to measure phenomena of nature in real-time and with strict accuracy. 

However, we know that it is the most difficult to perform such measurements using high 
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performance analyzers. We must often prepare a lot of appropriate instruments to detect 

each target. In this sense, the features of mass spectrometers, for example variations of 

detectable targets, sensitivity and throughput, have advantages over other analytical 

instruments. Based on this point, “On-site mass spectrometry” is to bring high specifications 

mass spectrometers into field sites and to provide high quality mass spectrometric data in 

real-time. This concept is challenging, but on-site mass spectrometry attracts rising 

attention. 

Considering conventional analytical methodologies using mass spectrometers, samples 

are usually taken from field sites. Then, the samples are brought into laboratories and 

purified before introducing into high performance mass spectrometers. Here, high 

performance mass spectrometers equipped in the laboratory have generally large size. To 

bring mass spectrometers into the on-site is required in several research fields, however, 

can we bring such instruments into the on-site? The answer is probably impossible. It is 

essential to miniaturize mass spectrometers with keeping performances ideally. 

Furthermore, we have to require not only simple and high performance miniaturized 

mass spectrometers to measure poorly purified samples but also simple sampling 

methods/sample preparations.  

2.2 Overview of miniaturized mass spectrometers 

Methods to reduce weight and size were attempted by various research groups. 

According to the reported papers on miniaturized mass spectrometers, a wide variety of 

instruments type including ion traps, quadrupole mass filters (QMF) (Geear et al., 2005), 

magnetic sector mass spectrometers (Diaz et al., 2001a; Diaz et al., 2001b), and TOF mass 

spectrometers (Cornish&Cotter, 1997; Cotter et al., 1999; Berkout et al., 2001; Ecelberger et 

al., 2004) were described. The main specifications are summarized in Table 1. It is 

considered that ion traps or QMF are more favourable than other instruments for 

miniaturization. In fact, almost all commercialized miniature mass spectrometers, for 

example Guardion-7 (Lammert et al., 2006) and Griffin Analytical 600 in Table 1, have 

adopted ion traps and QMF. In addition, it can be noted that there is a large variety of ion 

traps: (1) three dimensional hyperbolic ion traps, (2) rectilinear ion traps (Liang et al., 

2008; Fico et al., 2009; Li et al., 2009; Ouyang et al., 2009), (3) toroidal ion traps (Lammert 

et al., 2006), (4) planar electrode ion traps (Austin et al., 2007; Austin et al., 2008; Yang et 

al., 2008), and (5) cylindrical ion traps (Van Amerom et al., 2008; Wells et al., 2008; 

Chaudhary et al., 2009). 

Why were a lot of miniaturized mass spectrometers developed using ion trap techniques? 

The main reasons for choosing ion traps for portable instruments are that ion traps provide 

a relaxed vacuum condition, simple structures for easily miniaturized geometry with weight 

saving. A portable ion trap mass spectrometer system “Mini 11” was reported in 2009 (Gao 

et al., 2009), whose total weight with batteries is 5.0 kg, power consumption is 35 W, and 

dimensions are 22 cm x 12 cm x 18 cm. In addition to the miniaturized characteristics, the 

instrument has been coupled with wide varieties of ambient ionization sources, for example 

desorption electrospray ionization, electrospray ionization and paper spray ionization (Li et 

al., 2011; Soparawalla et al., 2011).  
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Instrument Weight (kg) Power (W) Size (H x L x W mm) Analyzer type 

Mini 11 4 30 180 x 220 x 120 Rectilinear ion trap 
Guardion-7 14.5 120 380 x 390 x 230 Toroidal ion trap 
HAPSITE 

system 
19 30 180 x 460 x 430 QMF 

Griffin 450 8.6 600 488 x 488 x 536 Cylindrical ion trap 
Suitcase 

TOF 
- - - TOF 

IonCam 19 150 438 x 432 x 254 Mattauch-Herzog sector 
MULTUM-S 

II 
36 600 450 x 640 x 230 TOF 

Instrument Ionization method 
Mass (m/z) 

range 
Resolution Vendor/institute 

Mini 11 
MIMS, direct leak, 

ESI, DESI 
2000 100 Purdue University 

Guardion-7 EI 40 – 500 540 
Torion 

Technologies Inc. 
HAPSITE 

system 
EI 41 – 300 - INFICON 

Griffin 450 EI 40 – 425 400 FLIR 
Suitcase 

TOF 
MALDI 50 000 30 

Johns Hopkins 
Univ. 

IonCam EI 7 – 250 250 O. I. Analytical 
MULTUM-S 

II 
EI 1 - 1000 30 000 Osaka University 

Table 1. Specifications of miniaturized mass spectrometers. MIMS, membrane inlet MS; EI, 
electron ionization; DESI, desorption electrospray ionization; ESI, electro spray ionization; 
MALDI, matrix-assisted laser desorption ionization.  

2.3 A few issues for miniaturized mass spectrometers 

Miniaturized instruments, especially ion traps or QMF described above, appear to have 

usable performance in the field use. However, sensitivity and mass resolution in these 

physically smaller devices are lower compared to laboratory instruments. To overcome the 

loss of sensitivity due to lower transmission of ions into and out of the analyzer, ion traps 

using array geometry were proposed. On the other hand, high mass resolution cannot in 

principal be obtained in QMF or ion traps. The typical mass resolution in miniaturized mass 

spectrometers is less than a few hundreds as shown in Table 1. 

We consider that miniaturized instruments would be more commonly utilized in the future. 

In particular, high mass resolution is important when it is difficult to perform sufficient 

sample preparations as described in section 1. In this case, high mass resolution is important 

to avoid false positive and false negative from contaminant peaks. 

How can we realize miniaturized high mass resolution mass spectrometers? In general, 

mass spectrometers for high mass resolution mass spectrometry are magnetic sector mass 

analyzers, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers (Marshall 
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et al., 1998; Hu et al., 2005), and TOF mass spectrometers. However, if high mass resolution 

is to be achieved in these instruments, the size of instruments will become large and heavy. 

Especially, magnetic sector mass analyzers and FT-ICR mass spectrometers are required 

large electrical magnets and superconductive magnets. Therefore, it is difficult for simply 

miniaturized these instruments to improve mass resolution. This point is supported by 

specifications of IonCam listed in Table 1 (Hadjar et al., 2011).  

According to the structural simplicity and weight, TOF mass spectrometers are more 

favorable for reduction in size. Here, the mass resolution (m/m) of TOF can be written as 

 
2


 
m T

m T
 (1) 

T and T are TOF and a peak width (FWHM: full-width at half maximum), respectively. We 

can easily find that mass resolution is directly proportional to TOF (i. e., the size of the 

instrument). Therefore, simply shortening of the flight length to miniaturize the 

instrumentation size decreases mass resolution.  

To overcome this fundamental problem, the flight length is extended by various methods. 
The proposed systems are listed as follows: 

1. Electrostatic multi-pass mirror systems (Wollnik&Przewloka, 1990; Casares et al., 2001; 
Wollnik&Casares, 2003). 

2. Helical or jig-saw type systems (Matsuda, 2000; Satoh et al., 2005; Satoh et al., 2007; 
Yavor et al., 2008; Satoh et al., 2011). 

3. Multi-turn ion optical geometries using electrostatic sectors (Poschenrieder, 1972). 

In our laboratory, the multi-turn type TOF mass spectrometers, which have a figure of eight 

flight path, are mainly designed and constructed. The first multi-turn TOF mass 

spectrometer “MULTUM-Linear plus” was constructed. In the next section, we will 

introduce the overview and the developing history. 

3. History of multi-turn time-of-flight (TOF) mass spectrometers in Osaka 
University 

Detailed discussions about the ion optical conditions which need to be met for operation of 

the multi-turn TOF mass spectrometer have been given elsewhere (Ishihara et al., 2000). 

Here, we simply explain the overview of our developed system and features of the ion 

optical system of the multi-turn TOF mass spectrometer. 

3.1 Development history of MULTUM at Osaka University 

Figure 1 shows the development history of multi-turn TOF mass spectrometers at Osaka 

University. We designed and constructed the first multi-turn TOF mass spectrometer 

“MULTUM Linear plus” as a laboratory model for cometary exploration (Matsuo et al., 

1999; Toyoda et al., 2000; Toyoda et al., 2003). The system consists of four discrete units, each 

comprised of an electrostatic quadrupole lens, a cylindrical electrostatic sector and an 

electrostatic quadrupole lens. The total path length of one cycle is 1.284 m. The entire system 
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was fixed on a base plate of 40 cm x 40 cm. Using the electron ionization (EI) for a gas 

analysis, a maximum mass resolution using this instrument of 350 000 (m/z 28 of N2+) was 

achieved after 500 cycles (approximately 645 m in flight length). This system was not simple 

for operation; 28 electrostatic quadrupole lenses were used. As a next generation multi-turn 

mass spectrometer, we studied more simplified optical geometries. As a result, a new 

geometry of “MULTUM II” was designed and constructed (Okumura et al., 2004a; Okumura 

et al., 2004b). In the MULTUM II geometry, no quadrupole lenses were used. MULTUM II 

consisted of only four toroidal electrostatic sectors. The components were dramatically 

reduced. The total path length of one cycle was 1.308 m. 

 

Fig. 1. Development history of MULTUM series. 

The maximum mass resolution of 250 000 (m/z 28 of N2+) was achieved after 1200 cycles 

(approximately 1500 m in flight length). MULTUM II was equipped with not only the EI ion 

source but a matrix-assisted laser desorption/ionization (MALDI) ion source for biological 

applications. Using the MALDI ion source, a mass resolution of 61 000 was achieved for a 

deca peptide of angiotensin I. 

Recently, we have been developing various types of mass spectrometers based on the 

MULTUM II technology. The first instrument was a tandem TOF mass spectrometer 

“MULTUM-TOF/TOF” for the structural analysis of biomolecules (Toyoda et al., 2007). The 

second instruments were used for imaging mass spectrometry. Here, imaging mass 
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spectrometry is a novel visualization method using mass spectrometry (Amstalden et al., 

2010). The stigmatic imaging was performed with “MULTUM-IMG” (Hazama et al., 2008a; 

Hazama et al., 2008b). Another instrument was equipped with an ionization source for 

secondary ion mass spectrometry (SIMS), so that the instrument was used for high spatial 

resolution (approximately sub micrometer) imaging mass spectrometry. The third 

instruments were miniaturized multi-turn TOF mass spectrometers “MULTUM-S” and 

“MULTUM-S II” (Shimma et al., 2010). MULTUM-S was the first prototype. This instrument 

was manufactured using a wide-use lathe and milling machine, resulting in a lack of 

manufacturing precision and assembly accuracy. The “MULTUM-S II” was optimized the 

design of ion optics and manufacturing precision. The detailed descriptions of MULTUM-S 

II are found in section 4. 

3.2 Ion optics of MULTUM 

There are two conditions that are required for multi-turn systems. The first is the 

geometrical conditions, namely the necessity to close the ion optical orbit. Multi-turn TOF 

mass spectrometer geometries with such an orbit have previously been proposed 

(Poschenrieder, 1972; Sakurai et al., 1999). They did not, however, satisfy the second 

condition, namely the “perfect focusing” condition (Ishihara et al., 2000). Therefore, in these 

cases, it is expected that the ion beam will diverge in both time and space. Then, both the 

mass resolution and the ion transmission (sensitivity) are compromised as the number of 

cycles around the instrument increases. To avoid this problem, ions should return to the 

point of origin in the system. In other words, the absolute value of the position and angle at 

the final position (which is identical with the initial position) should be the same as at the 

initial position in both the horizontal and vertical directions. Such conditions can be 

expressed using the transfer matrix method in the first order approximation as 
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0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0
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Here, the ion optical position vectors (x,, y, ,, ), where x, y and ,  denote the lateral 
and angular deviations of the ion under consideration from a reference ion at the object. The 

mass and energy deviations and pathlength deviation are described as , and. The 
subscripts i and f represent initial and final position, respectively. It should be noted that the 
character 0 (zero with underline) means the matrix element which should be forced to be 
zero. Accordingly, we require the “nine-fold focusing”, i.e. the nine 0 elements should be 
zero. By introducing symmetry in the arrangement of the ion optical components (i. e. the 
figure of eight geometry), multiple focusing conditions are easily achieved. We found ion 
optical systems (“MULTUM”, “MULTUM II”) for a multi-turn TOF mass spectrometer 
which satisfy perfect focusing. 
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4. Miniaturized multi-turn TOF mass spectrometer “MULTUM-S II” 

In this section, we explain the system and novel characteristics of the recently developed 
miniaturized TOF mass spectrometer “MULTUM-S II” 

4.1 Overview of MULTUM-S II 

Photograph of the developed MULTUM-S II system are shown in Fig. 2. The size of the 
analyzer is less than 20 cm x 20 cm, which is the half size of MULTUM II (Fig. 2a). The 
photograph of the whole system is shown in Fig. 2b. The developed system consists of the 
following: the ion source, multi-turn mass analyzer, vacuum system, and high voltage 
circuit unit. The complete mass spectrometer weighs 35 kg. The total size of the instrument 
is 45 cm x 25 cm x 64 cm. The equipped ionization source is a two-stage acceleration ion 
source of EI type introduced by W. C. Wiley and I. H. McLaren (Wiley&McLaren, 1955). The 
accelerated ions are focused using the Einzel lens. After focusing, the ions are injected into 
the multi-turn TOF mass spectrometer. 

 

Fig. 2. Desktop high-mass resolution TOF mass spectrometer “MULTUM-S II”; (a) the inside 
of the analyzer, (b) the outside of the system. 

The main geometry of the analyzer was the same as MULTUM II. In the miniaturized 
instruments, it is an important issue on how ions are introduced with high efficiency into 
the mass analyzer from the ion source. Additionally, introduced ions need to travel with 
stability in the closed orbit to obtain high mass resolution. In the previous MULTUM system 
described in section 3, the ion beam passed through small holes in the outer electrodes of 
two of the electric sectors. When ions were injected or ejected, the voltages applied to the 
sector electrodes were switched. To prevent the reduction of resolution due to instability of 
the power supply for switching, we offer higher stability (< 50 ppm) (Toyoda et al., 2007). 

In order to overcome the problem of ion injection/ejection and stable traveling, MULTUM-S 
II has two additional sectors shown in Fig. 2a. Since these sectors specialized in ion 
injection/ejection, the static voltage is simply applied to the orbiting sectors. For this reason, 
the electrical circuits for MULTUM-S II could be simplified and miniaturized. 

www.intechopen.com



 
Greenhouse Gases – Emission, Measurement and Management 

 

242 

4.2 Data acquisition methods 

 

Fig. 3. Operation diagram of MULTUM-S II. 

Block diagrams of the timing control are shown in Fig. 3. In the basic operation, the ions 

were extracted from the EI ion source by applying the pulsed voltage to the push electrode. 

The voltage applied to Injection Electrode was turned on when ions were injected into the 

analyzer part. After the ions had been injected into the analyzer, the voltage applied to 

Injection Electrode was turned off. On the other hand, the voltage applied to Ejection 

Electrode was initially switched off; thus, the ion packets flew into the closed orbit 

composed of Orbiting Electrodes. After a preset number of cycles, the voltage applied to 

Ejection Electrode was switched on, and the ion packets were ejected from the closed orbit. 

Then, the ions were detected. Therefore, the switching timing of Ejection Electrode 

controlled the number of cycles. Due to the performance of the digitizer equipped in our 

system, the repetition time of the cycle in Fig. 3 was 1 kHz. Therefore, acquisition time for 

one spectrum was 1 millisecond. 

This feature becomes powerful tool for specific ion measurement, however “Overtaking 

problem” will appear in detection of ions over the wide mass range. During orbiting, lighter 

ions take over the heavier ions, because the ion speed depends on the mass of the ion. To 

avoid the over taking problem, the measuring mass range is divided into some segments. In 

this multi-segment mode, Ion Gate equipped in the orbiting trajectory controls the mass 

range. Therefore, the switching timing of Ion Gate and Ejection Electrode are individually 

configured as shown in Fig. 3. In this operation mode, our software automatically calculates 

www.intechopen.com



Miniaturized Mass Spectrometer in Analysis of 
Greenhouse Gases: The Performance and Possibilities 

 

243 

the timing of Ion Gate and Ejection Electrode. Users can only input the target mass value 

and the number of cycles. After spectra acquisition, obtained segment mass spectra are 

merged in one spectrum as shown in Fig. 3. 

4.3 Obtained mass spectra of low mass ions using MULTUM-S II 

In the specifications of mass spectrometer, the detectable mass range is important. The 

wide mass range is obviously preferred. The upper mass is restricted to the ionization 

methods, so that the upper mass value of MULTUM-S II is approximately m/z 1000. The 

lower limit is also important for the simultaneous gas analysis. However, high resolution 

MS in the low mass region, which is less than m/z 50, is generally difficult due to the 

electric noise from the instruments. As shown in Table 1, the lower mass limits of almost 

all instruments are m/z 40. In our instrument, the electric circuits are very simple. This 

feature becomes a strong advantage in detection of low mass molecules. Figure 4 is 

detection of hydrogen. In this experiment, standard gas of hydrogen was directly 

introduced into the ionization chamber via a needle valve. The peak at m/z 2 derived from 

hydrogen molecules were clearly detected. The detected peaks around m/z 15 were 

derived from residual gases. This result demonstrated that the detectable mass range in 

MULTUM-S II was very wide. 

 

Fig. 4. Detection of molecules in the low mass region. Hydrogen molecule was detected with 
low electrical noise. 

The next result is a separation of helium atom (He) and deuterium molecules (D2). Since 

both He and D2 had the nominal mass of m/z 4, He and D2 were detected as one peak in 

the low mass resolution mass spectrum (Fig. 5a). To obtain this spectrum, the standard 

gases of He and D2 were directly introduced into the ionization chamber via the needle 

valve. Before the introduction, these two gases were mixed in the gas-sampling bag. 

Figure 5b is the high mass resolution mass spectrum at 10 cycles. The values of the 

accurate mass were 4.0026 in He and 4.0282 in D2. Although the mass difference between 

He and D2 was 0.025 u, MULTUM-S II was able to easily separate He and D2 even in the 

miniaturized instrument. 
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Fig. 5. Separation of 4He and D2 doublet; (a) the low mass resolution mass spectrum and (b) 
high mass resolution mass spectrum. The number of cycles was 10 cycles.  

5. Applications for greenhouse gases detection using “MULTUM-S II” 

As shown in section 4, MULTUM-S II have a powerful potential especially for the gas 
detection. The final section describes application of MULTUM-S II for high resolution and 
simultaneous greenhouse gases detection, especially carbon dioxide (CO2), nitrous oxide 
(N2O) and methane (CH4). In the conventional methodology in the field study, researchers 
collect samples in the field, bring them into laboratory, and then analyze using laboratory 
equipped instruments. As another procedure, researchers prepare and place several 
detectors to detect each species directly in the field. However, a great variety of detectable 
species and portability in MULTUM-S II will be the powerful merits for the field study in 
the future. This high quality gas analyzer will also help the reduction of systematic error 
attributed to different detectors and measurement conditions.  

5.1 High mass resolution mass spectra of greenhouse gases 

Figure 6 is a high-mass resolution mass spectrum of CH4 at 10 cycles. In this spectrum, the 
peak of CH4 is separated from the oxygen peak (both nominal mass is m/z 16) derived from 
the fragment ion of the oxygen molecule or di-charged ion of oxygen molecule. The 
obtained mass resolution was 3200. We consider that this feature is merit for monitoring of 
CH4 without oxygen contamination. 

 

Fig. 6. High-resolution mass spectrum of oxygen and methane. 
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Real-time monitoring of N2O is required to elucidate the generating mechanism and 
investigate its trend of spread. N2O is known as the greenhouse gas, and the warming effect is 
about 310 times larger than CO2. Furthermore, N2O is one of the ozone-depleting substances 
(Ravishankara et al., 2009). If we try to carry out real-time monitoring of N2O and CO2 
simultaneously using mass spectrometry, a mass spectrometer with high mass resolution is 
required, because the nominal mass of N2O is the same as that of CO2. However, the difference 
of accurate mass between CO2 and N2O is 0.0113 u, therefore these two peaks were expected to 
be separated in MULTUM-S II as shown in Fig. 5 (b) and Fig. 6 . In this experiment, the 
mixture of ultrapure CO2 and N2O (49.4%:50.6%) was purchased from DAIHO SANGYO Inc. 
(Minato-ku, Tokyo, Japan). This standard gas was introduced into the EI ion source via the 
needle valve. Figure 7 shows the obtained mass spectra by changing the number of cycles. 
Figure 7a shows the mass spectrum of the CO2 and N2O doublet peak after 10 cycles. In this 
cycle, the doublet peak did not still separate due to the lack of mass resolution. After 20 cycles 
(Fig. 7b), the top of the peak began to separate. After 50 cycles (Fig. 7c), these two peaks were 

 

  

Fig. 7. Separation of CO2 and N2O doublet; the spectrum at (a) 10 cycles, (b) 20 cycles and (c) 
50 cycles. 
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completely separated, and consequently, the obtained mass resolution was 30 000. This ultra 
high mass resolution was firstly achieved in the miniaturized mass spectrometers. This mass 
resolution was comparable to those of laboratory-equipped instruments. We would like to 
note that the maximal time to acquire one spectrum was 1 millisecond as described in section 
4.2. Therefore, high mass resolution accompanying the fast data acquisition will be helpful for 
the on-site real-time monitoring. 

Achieving high mass resolution is advantageous when trying to determine accurate masses. 
In the previous study, the mass accuracy of 2.3 ppm was achieved (Shimma et al., 2010). 
Availability of accurate mass measurement in the miniaturized mass spectrometer is 
another advantage to MULTUM-S II. 

5.2 Direct sample injection method 

We could confirm the separation of CO2 and N2O doublet using MULTUM-S II. The next 
experiment was to perform the simultaneous gas detection. In the simultaneous gas 
detection, there was concern about a dynamic range. To confirm the capability of detection 
in both low and high concentration species, detection of 30 ppm N2O in the air was 
performed. The standard gas of 30 ppm N2O (N2 balanced) was purchased from DAIHO 
SANGYO Inc. In this experiment, the operation mode of multi-segment mode was used. 
Three segments were configured to detect N2, O2, CO2 and N2O. The obtained mass 
spectrum at 50 cycles is shown in Fig. 8. 

 

Fig. 8. Simultaneous gas detection of N2, O2, CO2 and N2O in 50 cycles. 

As shown in Fig. 8, the balanced N2 peak was predominantly detected. The 30 ppm N2O 
was detected with complete separation of CO2, however, the peak intensities of other species 
were extremely low. Considering the concentration of N2O in the nature, the concentration 
is much lower than 30 ppm. Therefore, the dominant species of N2 and O2 in the air should 
be removed to realize the higher sensitive N2O detection. 
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5.3 Combination of rough separation and high resolution MS for real-time monitoring 

In the conventional gas chromatographic technique, the main contents of air (N2, O2, Ar) 

and (CO2, N2O) can be separated using Carbon PLOT column. We firstly performed the 

gas chromatography of their content using a gas chromatography coupled with 

MULTUM-S II (Fig. 9a). In this experiment, the GS-CarbonPLOT column (30 m x 0.32 mm 

i.d.; 3 m film thickness) was purchased from Agilent Technologies (Santa Clara, CA, 

USA). The column temperature was kept an isothermal condition of 40oC. The obtained 

the total ion chromatogram and mass chromatogram of m/z 44 are shown in Fig. 9b. In 

these chromatograms, the non-polar contents of N2, O2 and Ar were clearly separated 

from CO2 and N2O. Furthermore, due to the different polarity of CO2 and N2O, the 

enough separation of these peaks was also achieved. However, the duration of analysis 

was three minutes.  

The generation of N2O via activities of microorganisms is known as a fast process 
(HAYATSU et al., 2008; Kool et al., 2010). Therefore, higher sampling rate is likely to be 
required. According to the GC techniques, one of the methodologies to shorten analysis time 
is truncation of the capillary column. Understandably, the separation capability of the 
capillary column is reduced.  

 

Fig. 9. (a) GC-MULTUM system; (b) the conventional chromatographic separation of (N2, 
O2, Ar) and (CO2, N2O) 

Here, we consider that higher separation capability for the GC system is unnecessary in this 

case. As shown in Fig. 7, the complete separation of CO2 and N2O can be available in our 

system. Therefore, we have only to perform the rough GC separation of (N2, O2, Ar) and 

(CO2, N2O). To demonstrate this idea, we performed gas chromatography with a 10 m PLOT 

column.  

The obtained chromatograms are shown in Fig. 10. We found that the separation was 

completed within one minute. In this experiment, the ions of N2 and O2 were not detected, 

because their retention time was too fast. According to the value of the vacuum gauge just 

after sample injection, the large amount of gases seemed to be injected into the ionization 

source at a time. Under this condition, electrical discharge could occur. Therefore, we 

applied the high voltage to the ionization source after five seconds of sample injection.  

Due to the short capillary column, the peaks derived from CO2 and N2O were not 

separated in the total ion chromatogram shown in Fig. 10. However, the averaged mass 

spectra from the retention time 0.3 min to 0.35 min, the high-mass resolution mass 
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spectrometry was performed (inset of Fig. 10a). The obtained mass chromatograms are 

also shown in Fig. 10b and Fig. 10c. These results indicate that our idea worked correctly. 

We could establish the combination of rough gas chromatograph and high mass 

resolution mass spectrometry.  

 

Fig. 10. The rough chromatographic separation of CO2 and N2O; (a) total ion chromatogram, 
(b) the mass chromatogram of CO2, and (c) the mass chromatogram of N2O. 
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5.4 Future tasks for on-site simultaneous greenhouse gas detection 

We successfully confirmed the methodology to inject the main components of air and 

greenhouse gases separately into the ionization source. Considering the field use, to bring 

GC system to the field is unrealistic for the real-time monitoring. To overcome this problem, 

we designed and developed a simple automatic gas sampler (Fig. 11). This sampling system 

is consists of a six port valve, two solenoid valves, a mass flow controller, a sampling loop, a 

diaphragm pump for the gas sampling, and the short PLOT column. The operation of valves 

is controlled using a lab-built LabVIEW base software. In our laboratory, the performance 

evaluation of this sampling system including the optimization of sampling condition is 

ongoing.  

 
 

 
 

Fig. 11. Proposed automatic gas sampler. 

Another task to realize the high sensitive on-site greenhouse gas monitor is reduction of 

background pressure in the analyzer. The typical pressure value during measurement was 

between 8 x 10-5 Pa and 1 x 10-4 Pa. This pressure was insufficient for the sub ppm level N2O 

detection. Due to higher background pressure, contamination peaks derived from residual 

gases in analyzer were detected. Ionization space in the EI source is understandably finite, 

therefore the total number of ions stored in the ionization source is also finite. This is known 

as the space charge effect. If the contaminant ions are reduced, the number of ions of interest 

will be relatively increased. To realize the pressure below 10-5 Pa level, we designed a highly 

sealed ionization chamber specialized for the gas monitoring. The material of the chamber 

was titanium to reduce outgassing from the inner chamber wall. This chamber will be 

manufactured in the near future. 

6. Conclusion 

In this chapter, we described the overview of novel miniaturized mass spectrometers and 

their applications. Our developed the unique miniaturized TOF mass spectrometer 

“MULTUM-S II” has comparable mass resolution to lab-equipped mass spectrometers 

(m/m > 30 000). At present, we performed proof-of-concept studies for real-time 
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greenhouse gas monitoring system using MULTUM-S II. Based on issues from this study, 

MULTUM-S II is under improvement for the high sensitive gas detection.  

7. Acknowledgement 

The authors thank Prof. Ryusuke Hatano of Hokkaido University for his fruitful discussion. 

This work was supported by a Supporting Program for Creating University Ventures, from 

the Japan Science and Technology Agency (JST). One of the authors (M. T.) was supported 

by Grant in Aid for Young Scientists (A) (21685010) from the Ministry of Education, Culture, 

Sports, Science and Technology, Japan. 

8. References 

Amstalden v.H., Smith D.F. & Heeren R.M.A. (2010). A concise review of mass spectrometry 

imaging.   Journal of Chromatography A, Vol. 1217, No. 25, pp. 3946-3954, ISSN 0021-

9673. 

Austin D.E., Peng Y., Hansen B.J., Miller I.W., Rockwood A.L., Hawkins A.R. & Tolley S.E. 

(2008). Novel ion traps using planar resistive electrodes: Implications for 

miniaturized mass analyzers.   J. Am. Soc. Mass Spectrom., Vol. 19, No. 10, pp. 1435-

1441, ISSN 1044-0305. 

Austin D.E., Wang M., Tolley S.E., Maas J.D., Hawkins A.R., Rockwood A.L., Tolley H.D., 

Lee E.D. & Lee M.L. (2007). Halo ion trap mass spectrometer. Anal. Chem., Vol. 79, 

No. 7, pp. 2927-2932, ISSN 0003-2700. 

Berkout V.D., Cotter R.J. & Segers D.P. (2001). Miniaturized EI/Q/oa TOF mass 

spectrometer.  J. Am. Soc. Mass Spectrom., Vol. 12, No. 6, pp. 641-647, ISSN 1044-

0305. 

Casares A., Kholomeev A. & Wollnik H. (2001). Multipass time-of-flight mass spectrometers 

with high resolving powers. Int. J. Mass Spectrom., Vol. 206, No. 3, pp. 267-273, ISSN 

1387-3806. 

Chaudhary A., van Amerom F.H.W. & Short R.T. (2009). Development of microfabricated 

cylindrical ion trap mass spectrometer arrays. J. Microelectromech. S., Vol. 18, No. 2, 

pp. 442-448, ISSN 1057-7157. 

Contreras J.A., Murray J.A., Tolley S.E., Oliphant J.L., Tolley H.D., Lammert S.A., Lee E.D., 

Later D.W. & Lee M.L. (2008). Hand-portable gas chromatograph-toroidal ion trap 

mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. 

Mass Spectrom., Vol. 19, No. 10, pp. 1425-1434, ISSN 1044-0305. 

Cornish T.J. & Cotter R.J. (1997). High-order kinetic energy focusing in an end cap reflectron 

time-of-flight mass spectrometer. Anal.Chem., Vol. 69, No. 22, pp. 4615-4618, ISSN 

0003-2700. 

Cotter R.J., Fancher C. & Cornish T.J. (1999). Miniaturized time-of-flight mass spectrometer 

for peptide and oligonucleotide analysis. J. Mass Spectrom., Vol. 34, No. 12, pp. 

1368-1372, ISSN 1076-5174. 

Diaz J.A., Giese C.F. & Gentry W.R. (2001a). Portable double-focusing mass-spectrometer 

system for field gas monitoring. Field Anal. Chem. Technol., Vol. 5, No. 3, pp. 156-

167, ISSN 1086-900X. 

www.intechopen.com



Miniaturized Mass Spectrometer in Analysis of 
Greenhouse Gases: The Performance and Possibilities 

 

251 

Diaz J.A., Giese C.F. & Gentry W.R. (2001b). Sub-miniature ExB sector-field mass 

spectrometer.  J. Am. Soc. Mass Spectrom., Vol. 12, No. 6, pp. 619-632, ISSN 1044-

0305. 

Ecelberger S.A., Cornish T.J., Collins B.F., Lewis D.L. & Bryden W.A. (2004). Suitcase TOF: A 

man-portable time-of-flight mass spectrometer. Johns Hopkins APL Tech. Dig., Vol. 

25, No. 1, pp. 14-19, ISSN 0270-5214. 

Fico M., Maas J.D., Smith S.A., Costa A.B., Ouyang Z., Chappell W.J. & Cooks R.G. (2009). 

Circular arrays of polymer-based miniature rectilinear ion traps. Analyst, Vol. 134, 

No. 7, pp. 1338-1347, ISSN 0003-2654. 

Gao L., Li G.T., Nie Z.X., Duncan J., Ouyang Z. & Cooks R.G. (2009). Characterization of a 

discontinuous atmospheric pressure interface. multiple ion introduction pulses for 

improved performance.  Int. J. Mass Spectrom., Vol. 283, No. 1-3, pp. 30-34, ISSN 

1387-3806. 

Garcia-Reyes J.F., Jackson A.U., Molina-Diaz A. & Cooks R.G. (2009). Desorption 

electrospray ionization mass spectrometry for trace analysis of agrochemicals in 

food. Anal. Chem., Vol. 81, No. 2, pp. 820-829, ISSN 0003-2700. 

Geear M., Syms R.R.A., Wright S. & Holmes A.S. (2005). Monolithic MEMS quadrupole 

mass spectrometers by deep silicon etching. J. Microelectromech. S., Vol. 14, No. 5, 

pp. 1156-1166, ISSN 1057-7157. 

Hadjar O., Johnson G., Laskin J., Kibelka G., Shill S., Kuhn K., Cameron C. & Kassan S. 

(2011). IonCCD fordirect position-sensitive charged-particle detection: From 

electrons and keV ions to hyperthermal biomolecular ions. J. Am. Soc. Mass 

Spectrom., Vol. 22, No. 4, pp. 612-623, ISSN 1044-0305. 

Hayatsu M., Tago K. & Saito M. (2008). Various players in the nitrogen cycle: Diversity and 

functions of the microorganisms involved in nitrification and denitrification. Soil 

Science & Plant Nutrition, Vol. 54, No. 1, pp. 33-45, ISSN 1747-0765. 

Hazama H., Aoki J., Nagao H., Suzuki R., Tashima T., Fujii K., Masuda K., Awazu K., 

Toyoda M. & Naito Y. (2008a). Construction of a novel stigmatic MALDI imaging 

mass spectrometer. Appl. Surf. Sci., Vol. 255, No. 4, pp. 1257-1263, ISSN 0169-4332. 

Hazama H., Nagao H., Suzuki R., Toyoda M., Masuda K., Naito Y. & Awazu K. (2008b). 

Comparison of mass spectra of peptides in different matrices using matrix-assisted 

laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, 

MULTUM-IMG.  Rapid Commun. Mass Spectrom., Vol. 22, No. 10, pp. 1461-1466, 

ISSN 0951-4198. 

Hu Q.Z., Noll R.J., Li H.Y., Makarov A., Hardman M. & Cooks R.G. (2005). The orbitrap: A 

new mass spectrometer J. Mass Spectrom., Vol. 40, No. 4, pp. 430-443, ISSN 1076-

5174. 

Ishihara M., Toyoda M. & Matsuo T. (2000). Perfect space and time focusing ion optics for 

multiturn time of flight mass spectrometers. Int. J. Mass Spectrom., Vol. 197, No. 1-3, 

pp. 179-189, ISSN 1387-3806. 

Kool D.M., Wrage N., Zechmeister-Boltenstern S., Pfeffer M., Brus D., Oenema O. & Van 

Groenigen J.-. (2010). Nitrifier denitrification can be a source of N2O from soil: A 

revised approach to the dual-isotope labelling method. Eur. J. Soil Sci., Vol. 61, No. 

5, pp. 759-772, ISSN 1365-2389. 

www.intechopen.com



 
Greenhouse Gases – Emission, Measurement and Management 

 

252 

Lammert S., Rockwood A., Wang M., Lee M., Lee E., Tolley S., Oliphant J., Jones J. & Waite 

R. (2006). Miniature toroidal radio frequency ion trap mass analyzer. J. Am. Soc. 

Mass Spectrom., Vol. 17, No. 7, pp. 916-922, ISSN 1044-0305. 

Li A., Wang H., Ouyang Z. & Cooks R.G. (2011). Paper spray ionization of polar analytes 

using non-polar solvents. Chem. Commun., Vol. 47, No. 10, pp. 2811-2813, ISSN 

1359-7345. 

Li X.X., Jiang G.Y., Luo C., Xu F.X., Wang Y.Y., Ding L. & Ding C.F. (2009). Ion trap array 

mass analyzer: Structure and performance. Anal. Chem., Vol. 81, No. 12, pp. 4840-

4846, ISSN 0003-2700. 

Liang G., Sugiarto A., Harper J.D., Cooks R.G. & Zheng O.Y. (2008). Design and 

characterization of a multisource hand-held tandem mass spectrometer. Anal. 

Chem., Vol. 80, No. 19, pp. 7198-7205, ISSN 0003-2700. 

Marshall A.G., Hendrickson C.L. & Jackson G.S. (1998). Fourier transform ion cyclotron 

resonance mass spectrometry: A primer. Mass Spectrom.Rev., Vol. 17, No. 1, pp. 1-

35, ISSN 0277-7037. 

Matsuda H. (2000). Spiral orbit time of flight mass spectrometer. J. Mass Spectrom. Soc. Jpn, 

Vol. 48, No. 5, pp. 303-305, ISSN 1340-8097. 

Matsuo T., Ishihara M., Toyoda M., Ito H., Yamaguchi S., Roll R. & Rosenbauer H. (1999). A 

space time-of-flight mass spectrometer for exobiologically-oriented applications. 

Adv. Space Res., Vol. 23, No. 2, pp. 341-348, ISSN 0273-1177. 

Okumura D., Toyoda M., Ishihara M. & Katakuse I. (2004a). Application of a multi-turn 

time-of-flight mass spectrometer, MULTUM II, to organic compounds ionized by 

matrix-assisted laser desorption/ionization. J. Mass Spectrom., Vol. 39, No. 1, pp. 86-

90, ISSN 1076-5174. 

Okumura D., Toyoda M., Ishihara M. & Katakuse I. (2004b). A compact sector-type multi-

turn time-of-flight mass spectrometer ‘MULTUM II’.  Nucl. Instr. Meth. A, Vol. 519, 

No. 1-2, pp. 331-337, ISSN 0168-9002. 

Ouyang Z., Noll R.J. & Cooks R.G. (2009). Handheld miniature ion trap mass spectrometers. 

Anal. Chem., Vol. 81, No. 7, pp. 2421-2425, ISSN 0003-2700. 

Poschenrieder W.P. (1972). Multiple-focusing time-of-flight mass spectrometers part II. 

TOFMS with equal energy acceleration. Int. J. Mass Spectom. Ion Phys., Vol. 9, No. 4, 

pp. 357-373, ISSN 0020-7381. 

Ravishankara A.R., Daniel J.S. & Portmann R.W. (2009). Nitrous oxide (N2O): The dominant 

ozone-depleting substance emitted in the 21st century. Science, Vol. 326, No. 5949, 

pp. 123-125, ISSN 0036-8075. 

Sakurai T., Nakabushi H., Hiasa T. & Okanishi K. (1999). A new multi-passage time-of-flight 

mass spectrometer at JAIST. Nucl. Instr. Meth. A, Vol. 427, No. 1,2, pp. 182-186, 

ISSN 0168-9002. 

Satoh T., Sato T. & Tamura J. (2007). Development of a high-performance MALDI-TOF mass 

spectrometer utilizing a spiral ion trajectory. J. Am. Soc. Mass Spectrom., Vol. 18, No. 

7, pp. 1318-1323, ISSN 1044-0305. 

Satoh T., Tsuno H., Iwanaga M. & Kammei Y. (2005). The design and characteristic features 

of a new time-of-flight mass spectrometer with a spiral ion trajectory. J. Am. Soc. 

Mass Spectrom., Vol. 16, No. 12, pp. 1969-1975, ISSN 1044-0305. 

www.intechopen.com



Miniaturized Mass Spectrometer in Analysis of 
Greenhouse Gases: The Performance and Possibilities 

 

253 

Satoh T., Sato T., Kubo A. & Tamura J. (2011). Tandem time-of-flight mass spectrometer with 

high precursor ion selectivity employing spiral ion trajectory and improved offset 

parabolic reflectron. J. Am. Soc. Mass Spectrom., Vol. 22, No. 5, pp. 797-803, ISSN 

1044-0305. 

Shimma S., Nagao H., Aoki J., Takahashi K., Miki S. & Toyoda M. (2010). Miniaturized high-

resolution time-of-flight mass spectrometer MULTUM-S II with an infinite flight 

path. Anal. Chem., Vol. 82, No. 20, pp. 8456-8463, ISSN 0003-2700. 

Smith J.N., Noll R.J. & Cooks R.G. (2011). Facility monitoring of chemical warfare agent 

simulants in air using an automated, field-deployable, miniature mass 

spectrometer. Rapid Commun. Mass Spectrom., Vol. 25, No. 10, pp. 1437-1444, ISSN 

1097-0231. 

Soparawalla S., Tadjimukhamedov F.K., Wiley J.S., Ouyang Z. & Cooks R.G. (2011). In situ 

analysis of agrochemical residues on fruit using ambient ionization on a handheld 

mass spectrometer.  Analyst, ISSN 0003-2654. 

Toyoda M., Giannakopulos A.E., Colburn A.W. & Derrick P.J. (2007). High-energy collision 

induced dissociation fragmentation pathways of peptides, probed using a 

multuitum tandem time-of-flight mass spectrometer "MULUM-TOF/FOF". Rev. Sci. 

Instrum., Vol. 78, pp. 074101,. 

Toyoda M., Ishihara M., Yamaguchi S., Ito H., Matsuo T., Roll R. & Rosenbauer H. (2000). 

Construction of a new multi-turn time-of-flight mass spectrometer. J. Mass 

Spectrom., Vol. 35, No. 2, pp. 163-167, ISSN 1076-5174. 

Toyoda M., Okumura D., Ishihara M. & Katakuse I. (2003). Multi-turn time-of-flight mass 

spectrometers with electrostatic sectors. J. Mass Spectrom., Vol. 38, No. 11, pp. 1125-

1142, ISSN 1076-5174. 

Van Amerom F.H.W., Chaudhary A., Cardenas M., Bumgarner J. & Short R.T. (2008). 

Microfabrication of cylindrical ion trap mass spectrometer arrays for handheld 

chemical analyzers. Chem. Eng. Commun., Vol. 195, No. 2, pp. 98-114, ISSN 0098-

6445. 

Wells J.M., Roth M.J., Keil A.D., Grossenbacher J.W., Justes D.R., Patterson G.E. & Barket 

D.J. (2008). Implementation of DART and DESI ionization on a fieldable mass 

spectrometer. J. Am. Soc. Mass Spectrom., Vol. 19, No. 10, pp. 1419-1424, ISSN 1044-

0305. 

Wiley W.C. & McLaren I.H. (1955). Time-of-flight mass spectrometer with improved 

resolution.  Rev. Sci. Instrum., Vol. 26, No. 12, pp. 1150-1157,. 

Wollnik H. & Casares A. (2003). An energy-isochronous multi-pass time-of-flight mass 

spectrometer consisting of two coaxial electrostatic mirrors. Int. J. Mass Spectrom., 

Vol. 227, No. 2, pp. 217-222, ISSN 1387-3806. 

Wollnik H. & Przewloka M. (1990). Time-of-flight mass spectrometers with multiply 

reflected ion trajectories. Int. J. Mass Spectrom. Ion Proc., Vol. 96, No. 3, pp. 267-274, 

ISSN 0168-1176. 

Yang M., Kim T.Y., Hwang H.C., Yi S.K. & Kim D.H. (2008). Development of a palm 

portable mass spectrometer. J. Am. Soc. Mass Spectrom., Vol. 19, No. 10, pp. 1442-

1448, ISSN 1044-0305. 

www.intechopen.com



 
Greenhouse Gases – Emission, Measurement and Management 

 

254 

Yavor M.I., Verentchikov A.N., Hasin J., Kozlov B., Gavrik M. & Trufanov A. (2008). Planar 

multi-reflecting time-of-flight mass analyzer with a jig-saw ion path. Physics 

Procedia, Vol. 1, No. 1, pp. 391-400, ISSN 1875-3892. 

www.intechopen.com



Greenhouse Gases - Emission, Measurement and Management

Edited by Dr Guoxiang Liu

ISBN 978-953-51-0323-3

Hard cover, 504 pages

Publisher InTech

Published online 14, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Understanding greenhouse gas sources, emissions, measurements, and management is essential for capture,

utilization, reduction, and storage of greenhouse gas, which plays a crucial role in issues such as global

warming and climate change. Taking advantage of the authors' experience in greenhouse gases, this book

discusses an overview of recently developed techniques, methods, and strategies: - A comprehensive source

investigation of greenhouse gases that are emitted from hydrocarbon reservoirs, vehicle transportation,

agricultural landscapes, farms, non-cattle confined buildings, and so on. - Recently developed detection and

measurement techniques and methods such as photoacoustic spectroscopy, landfill-based carbon dioxide and

methane measurement, and miniaturized mass spectrometer.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shuichi Shimma and Michisato Toyoda (2012). Miniaturized Mass Spectrometer in Analysis of Greenhouse

Gases: The Performance and Possibilities, Greenhouse Gases - Emission, Measurement and Management,

Dr Guoxiang Liu (Ed.), ISBN: 978-953-51-0323-3, InTech, Available from:

http://www.intechopen.com/books/greenhouse-gases-emission-measurement-and-management/miniaturized-

mass-spectrometer-in-analysis-of-greenhouse-gases-the-performance-and-possibilities-



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


