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The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 
Japan 

1. Introduction 

Gastroesophageal reflux disease (GERD) is one of the representative esophageal disorders 
and can severely influence the quality of life in humans (Jung, 2011; Moayyedi & Talley, 
2006; Salvatore & Vandenplas, 2003). In GERD patients, abnormal reflux of gastric contents 
to the esophagus causes chest pain and heartburn (Moayyedi & Talley, 2006; Salvatore & 
Vandenplas, 2003). Esophageal mucosal erosions and/or ulcers are formed by acid exposure 
(Moayyedi & Talley, 2006; Salvatore & Vandenplas, 2003). On the other hand, patients with 
nonerosive reflux disease (NERD), one phenotype of GERD, have typical reflux symptoms 
induced by intraesophageal reflux of gastric contents but have no visible esophageal 
mucosal injury (Long & Orlando, 2008; Tack, 2005; Winter & Heading, 2008). GERD is 
caused mainly by acid reflux due to abnormal relaxation of the lower esophageal sphincter 
(LES) and/or low activity of clearance in the esophageal body (DeMeester et al., 1979; Grossi 
et al., 1998; Grossi et al., 2006; Moayyedi & Talley, 2006; Nagahama et al., 2003). Abnormal 
relaxation of the LES and low activity of clearance might be associated with dysmotility of 
the esophagus. The motility in the esophageal body and LES is regulated by both the central 
and peripheral nervous systems (Clouse & Diamant, 2006; Conklin & Christensen, 1994; 
Cunningham & Sawchenko, 1990; Jean, 2001; Neuhuber et al., 2006; Park & Conklin, 1999; 
Wörl & Neuhuber, 2005). Therefore, dysfunction of neural regulation seems to cause 
abnormal motility in the esophagus, resulting in excessive acid reflux and then GERD 
(Moayyedi & Talley, 2006; Orlando, 1997; Parkman & Fisher, 1997; Salvatore & Vandenplas, 
2003; Vandenplas & Hassall, 2002).  

In fact, there are many reports about the involvement of esophageal dysmotility in the 

pathogenic mechanism of GERD (Dogan & Mittal, 2006; Moayyedi & Talley, 2006; Orlando, 

1997; Parkman & Fisher, 1997; Salvatore & Vandenplas, 2003; Shiina et al., 2010; Vandenplas 

& Hassall, 2002). On the other hand, since neural regulatory mechanisms of esophageal 

motiliy, especially roles of the intrinsic nervous system in the striated muscle portion, have 

remained to be clarified (Clouse & Diamant, 2006; Conklin & Christensen, 1994; Goyal & 

Chaudhury, 2008), little attention has been paid to the relationship between intrinsic neural 

regulatory mechanisms for esophageal motility and pathophysiology of GERD. Discussion 

of this relationship is important and might indicate novel therapeutic targets for GERD. In 

this chapter, we describe neural regulation of the esophageal motility on the basis of results 
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of our studies, and we discuss the relationship between pathogenic mechanisms of GERD 

and esophageal dysmotility.  

2. Neural regulation of esophageal motility 

The tunica muscularis of the stomach, small intestine and large intestine is constituted 
entirely of smooth muscle (Makhlouf & Murthy, 2009). Gastrointestinal smooth muscle 
motility is regulated by the enteric nervous system (Furness, 2006; Hansen, 2003; Kunze & 
Furness, 1999; Olsson & Holmgren, 2001; 2011). The sequence of peristaltic events does not 
depend on extrinsic autonomic innervation but rather involves the activation of intrinsic 
sensory neurons, which are coupled via modulatory interneurons to excitatory and 
inhibitory motor neurons projecting into the smooth muscle layer (Furness, 2006; Hansen, 
2003; Kunze & Furness, 1999; Olsson & Holmgren, 2001; 2011). 

In contrast to other gastrointestinal tracts, the external muscle layer of the mammalian 
esophagus contains striated muscle fibers, which extend from the pharyngoesophageal 
junction to the thoracic or even abdominal portion, depending on the species (Izumi et al., 
2002; Neuhuber et al., 2006; Shiina et al., 2005; Wooldridge et al., 2002; Wörl & Neuhuber, 
2005) (Fig.1). In humans, horses, cats and pigs, the upper and lower portions of the 
esophagus are composed of striated and smooth muscles, respectively, with a mixed portion 
between them. In dogs, ruminants and rodents including mice, rats and hamsters, the 
muscle layer of the esophagus consists mostly of striated muscle fibers. On the other hand, 
the tunica muscularis of the LES consists of smooth muscles (Neuhuber et al., 2006; Wörl & 
Neuhuber, 2005). Esophageal motility is controlled centrally by an extrinsic neuronal 
mechanism and peripherally by an intrinsic neuronal mechanism (Clouse & Diamant, 2006; 
Conklin & Christensen, 1994; Cunningham & Sawchenko, 1990; Goyal & Chaudhury, 2008; 
Jean, 2001; Neuhuber et al., 2006; Park & Conklin, 1999; Wörl & Neuhuber, 2005). Below, we 
describe the neuronal controls of these two muscle types in the esophageal body and 
smooth muscles in the LES. 

 

Fig. 1. Tunica muscularis of the esophageal body in mammals. Left is oral side and right is 
aboral side. 
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2.1 Esophageal body 

The mechanisms of peristalsis control are different between striated muscle and smooth 
muscle in the esophageal body. However, in both portions, esophageal peristalsis is 
controlled by the swallowing pattern generator (SPG) located in the brainstem (Bieger, 1993; 
Bieger & Neuhuber, 2006; Conklin & Christensen, 1994; Jean, 2001; Jean & Dallaporta, 2006), 
depending on extrinsic neurons unlike other gastrointestinal tracts. 

2.1.1 Neural control of peristalsis in the esophageal striated muscle portion  

According to the conventional view, the SPG both initiates and organizes peristalsis in the 
striated esophageal muscle, i.e., both primary and secondary peristaltic contractions are 
centrally mediated in the striated muscle portion (Bieger, 1993; Bieger & Neuhuber, 2006; 
Conklin & Christensen, 1994; Goyal & Chaudhury, 2008; Jean & Dallaporta, 2006). Striated 
muscle fibers are innervated exclusively by excitatory vagal efferents that arise from motor 
neurons localized in the nucleus ambiguus and terminate on motor endplates (Bieger & 
Hopkins, 1987; Cunningham & Sawchenko, 1990; Neuhuber et al., 1998). We could confirm 
this view additionally by demonstrating that vagal nerve stimulation evokes twitch 
contractile responses of the striated muscle in an isolated segment of mammalian 
esophagus, which are abolished by d-tubocurarine, an antagonist of nicotinic acetylcholine 
receptors on the striated muscle, but not by atropine, an antagonist of muscarinic 
acetylcholine receptors on the smooth muscle, or hexamethonium, a blocker of ganglionic 
acetylcholine receptors (Boudaka et al., 2007a; Boudaka et al., 2007b; Izumi et al., 2003; 
Shiina et al., 2006). Peristalsis in the striated esophageal muscle is executed according to a 
sequence pre-programmed in the compact formation of the nucleus ambiguus (Andrew, 
1956). The compact formation of the nucleus ambiguus receives projections from the central 
subnucleus of the nucleus of the solitary tract (Barrett et al., 1994; Cunningham & 
Sawchenko, 1989; Lu & Bieger, 1998), which in turn receives vagal afferents from the 
esophagus (Altschuler et al., 1989; Ross et al., 1985), thus closing a reflex loop for esophageal 
motor control (Bieger, 1993; Cunningham & Sawchenko, 1990; Lu & Bieger, 1998). Neural 
controls of motility in the striated muscle esophagus are illustrated in Fig. 2. 

 

Fig. 2. Neural control of peristalsis in the striated muscle portion of the esophagus by vago-
vagal reflex. ACh; acetylcholine.  
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2.1.2 Neural control of peristalsis in the esophageal smooth muscle portion 

In contrast to striated muscle, motor innervation of the smooth muscle esophagus is more 
complex. Here, the SPG initiates peristalsis via preganglionic neurons in the dorsal motor 
nucleus of the vagus that project to the myenteric ganglia in the esophagus, i.e., the primary 
peristalsis involves both central and peripheral mechanisms (Conklin & Christensen, 1994). 
The smooth muscle is innervated by myenteric motor neurons that can release acetylcholine, 
tachykinins or nitric oxide (NO) (Conklin & Christensen, 1994; Furness, 2006). However, the 
progressing front of contraction is organized by virtue of their local reflex circuits that are 
composed of sensory neurons, interneurons and motor neurons as elsewhere in the gut, i.e., 
the secondary peristalsis is entirely due to peripheral mechanisms in the smooth muscle 
esophagus (Clouse & Diamant, 2006; Conklin & Christensen, 1994; Goyal & Chaudhury, 
2008). In fact, the smooth muscle esophagus can exhibit propulsive peristaltic contractions in 
response to an intraluminal bolus of food even in a vagotomy model (Cannon, 1907; 
Tieffenbach & Roman, 1972). Moreover, peristaltic reflexes can be elicited by distention in an 
isolated segment of the smooth muscle esophagus from the opossum (Christensen & Lund, 
1969). Neural controls of motility in the smooth muscle esophagus are illustrated in Fig. 3. 

 

Fig. 3. Neural control of peristalsis in the smooth muscle portion of the esophagus. (A) Vagal 
innervation for primary peristalsis. (B) Local reflex circuit by enteric neurons for secondary 
peristalsis. ACh; acetylcholine. TK; tachykinin. NO; nitric oxide. 

2.2 Involvement of intrinsic neurons in motility of the esophageal striated muscle 

The striated muscle fibers in the esophagus were hitherto considered as ‘classical’ skeletal 
muscle fibers, innervated exclusively by excitatory vagal motor neurons, which terminate on 
motor endplates (Bieger & Hopkins, 1987; Cunningham & Sawchenko, 1990; Neuhuber et 
al., 1998). It is believed that peristalsis in the striated esophageal muscle is executed 
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according to a sequence pre-programmed in a medullary swallowing network and 
modulated via vago-vagal reflexes as described above (Clouse & Diamant, 2006; Conklin & 
Christensen, 1994; Jean, 2001; Mukhopadhyay & Weisbrodt, 1975; Park & Conklin, 1999; 
Roman & Gonella, 1987). On the other hand, the presence of a distinct ganglionated 
myenteric plexus in the striated muscle portion of the mammalian esophagus, comparable 
to other gastrointestinal tracts, has been well known for a long time (Gruber, 1968; Stefanelli, 
1938). However, functional roles of the intrinsic nervous system in peristalsis of the striated 
muscle in the esophagus have remained enigmatic and have been neglected in concepts of 
peristaltic control (Clouse & Diamant, 2006; Conklin & Christensen, 1994; Diamant, 1989; 
Wörl & Neuhuber, 2005). To clarify roles of the intrinsic nervous system in motility of the 
esophageal striated muscle, morphological and then functional studies have been 
performed.  

2.2.1 Morphological investigation 

Investigation of the regulatory role of intrinsic neurons in the esophagus was advanced by 

the discovery of ‘enteric co-innervation’ of esophageal motor endplates (Neuhuber et al., 

1994; Wörl et al., 1994). The enteric co-innervation challenged the conventional view of 

peristalsis control in the striated esophageal muscle. Originally described in the rat, 

esophageal striated muscle receives dual innervation from both vagal motor fibers 

originating in the brainstem and varicose intrinsic nerve fibers originating in the myenteric 

plexus (Neuhuber et al., 1994; Wörl et al., 1994). This new paradigm of striated muscle 

innervation has meanwhile been confirmed in a variety of species including humans, 

underlining its significance (Kallmunzer et al., 2008; Wörl & Neuhuber, 2005). It has been 

demonstrated that neuronal nitric oxide synthase (nNOS) was highly colocalized with 

vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), galanin and Met-enkephalin in 

enteric nerve terminals on esophageal motor endplates (Kuramoto & Endo, 1995; Neuhuber 

et al., 2001; Neuhuber et al., 1994; Wörl et al., 1998; Wörl et al., 1994; Wörl et al., 1997; Wu et 

al., 2003). These markers are suggestive of inhibitory modulation of vagally-induced striated 

muscle contraction (Wörl & Neuhuber, 2005). Since morphological studies revealed further 

that spinal afferent nerve fibers closely innervate myenteric neurons in the esophagus 

(Holzer, 1988; Kuramoto et al., 2004; Mazzia & Clerc, 1997; Wörl & Neuhuber, 2005), the 

presence of ‘a peripheral mechanism’ regulating the motility of esophageal striated muscle 

including afferent and enteric neurons in the esophagus was suggested (Neuhuber et al., 

2001; Wörl & Neuhuber, 2005). 

2.2.2 Functional aproaches 

Efforts have been made to demonstrate ‘a peripheral mechanism’ regulating the motility of 
esophageal striated muscle by functional experiments, but it had been difficult to prove the 
hypothesis. For example, in an approach using a vagus nerve–esophagus preparation from 
the rat, Storr et al. tested effects of exogenous application of VIP, galanin, a NOS inhibitor, 
and an NO-donor on vagally induced contraction of the striated esophageal muscle, but no 
significant effect could be ascertained (Storr et al., 2001). They also demonstrated inhibitory 
effects of exogenous application of endomorphin-1 and -2 on striated and smooth muscle 
contraction in the rat esophagus but did not provide evidences that endogenously released 
intrinsic neural components can affect the esophageal motility (Storr et al., 2000). 
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However, our research group demonstrated roles of intrinsic neuorns in the esophageal 
striated muscle by functional studies using stimulants of sensory neurons such as capsaicin 
and piperine, which are main pungents from red pepper and black pepper, respectively 
(Boudaka et al., 2007a; Boudaka et al., 2007b; Boudaka et al., 2009; Izumi et al., 2003; Shiina 
et al., 2006). In brief, we isolated rodent esophagi and performed electrical stimulation of the 
vagal nerves, which evoked contractile responses of the striated esophageal muscle. 
Capsaicin or piperine inhibited the vagally-mediated contractions of the esophageal 
preparations via attenuating acetylcholine release from the vagus nerve. In addition, the 
inhibitory effects of capsaicin or piperine on the contractile responses were blocked by 
inhibitors to prevent funtions of several neurotransmitters in enteric or sensory neurons 
such as NO, tachykinins and galanin (Boudaka et al., 2007a; Boudaka et al., 2007b; Boudaka 
et al., 2009; Izumi et al., 2003; Shiina et al., 2006). The experiments demonstrated that 
capsaicin or piperine can induce release of endogenous neurotransmitters, which exert the 
inhibitiory effects on motility of the esophagus. These findings indicate that the mammalian 
esophagus has a putative local neural reflex that regulates the motility of striated muscle by 
inhibiting acetylcholine release from vagal motor neurons pre-synaptically (Figs. 4, 5 and 6), 
which solidify and extend the recently raised hypothesis on the basis of results of 
morphological studies (Wörl & Neuhuber, 2005). This reflex arc consists of capsaicin-
sensitive, transient receptor potential vanilloid 1 (TRPV1)-positive, afferent neurons and 
inhbitory myenteric neurons. The local neural reflex might be involved in coordinating 
esophageal peristalsis in the striated muscle portion (Shiina et al., 2010).  

 

Fig. 4. Local neural reflex in the striated muscle portion of the rat esophagus. Acid as well as 
capsaicin can stimulate primary afferent neurons and then activate the local reflex arc. ACh; 
acetylcholine. TK; tachykinin. NO; nitric oxide. TRPV1; transient receptor potential vanilloid 1. 

For these experiments, hamsters, rats and mice have been used. Interestingly, neuronal 
pathways for the inhibitory effects of capsaicin or piperine are slightly different depending 
on the species. In the rat esophagus, the inhibitory effect of capsaicin on contractile 
responses was blocked by a NOS inhibitor or a tachykinin NK1 receptor antagonist, 
suggesting that the local neural reflex invloves tachykininergic afferent neurons and 
intrinsic nitrergic neurons (Shiina et al., 2006) (Fig. 4). Hamsters and mice also have a similar 
neural pathway (Figs. 5 and 6). In addition to trials using capsacin as a stimulator for 
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afferents, piperine was used in experiments with mice and hamsters. In the hamster 
esophagus, the piperine-activated neural pathway seems to be similar to the capsaicin-
activated one, which invloves caisain-sensitive afferent neurons and myenteric nitrergic 
neurons (Izumi et al., 2003) (Fig. 5).  

 

Fig. 5. Local neural reflex in the striated muscle portion of the hamster esophagus. Acid as 
well as capsaicin and piperine can stimulate primary afferent neurons and then activate the 
local reflex arc. ACh; acetylcholine. TK; tachykinin. NO; nitric oxide. TRPV1; transient 
receptor potential vanilloid 1. 

However, in the mouse esophagus, these two pathways are independent because piperine 
can exert inhibitory action on esophageal contractions even after desentitization of 
capsaisin-sensitive neurons by pretreatment with capsaicin (Boudaka et al., 2007a) (Fig. 6). 
This is supported by evidence that the capsaicin-mediated inhibition was reversed by a NOS 
inhibitor or a tachykinin NK1 receptor antagonist but that the piperine-sensitive pathway 
was not affected by the same treatments (Boudaka et al., 2007a). In addition, it has been 
demonstrated that mice have another neural reflex arc including myenteric galaninergic 
neurons in the esophagus (Boudaka et al., 2009) (Fig. 6). 

Rodents including the rat, mouse, guinea pig and hamster have mainly been used as model 

animals for analysis of the intrinsic nervous system in the esophageal striated muscle 

because their esophagi are composed entirely of striated muscles (Wörl & Neuhuber, 2005). 

Suncus murinus (a house musk shrew; ‘suncus’ used as a laboratory name) is a small 

laboratory animal that belongs to a species of insectivore (Tsutsui et al., 2009; Ueno et al., 

1987). Suncus has the ability to vomit in response to mild shaking or ingestion of chemicals 

(Andrews et al., 1996; Ueno et al., 1987). Since rodents including rats and mice do not show 

an emetic reflex, suncus has been extensively used to examine the mechanism of emetic 

responses and to develop antiemetic drugs (Andrews et al., 1996; Cheng et al., 2005; Sam et 

al., 2003; Uchino et al., 2002; Yamamoto et al., 2009). Hempfling et al. reported that the 

suncus esophagus has morphological features similar to those in rats and mice: intrinsic 

nitrergic nerves innervate motor endplates on striated muscle cells, which is called ‘enteric 

co-innervation’ (Hempfling et al., 2009). In addition, our examinations demonstrated 
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functionally that the striated muscle portion in the suncus esophagus has a peripheral 

neuronal mechanism by nitrergic neurons as in rodent esophagi (unpublished data). This 

fact indicates that the presence of intrinsic nervous regulation on esophageal striated muscle 

is across species, which might imply pathological and physiological significance of the 

intrinsic nervous system in the regulation of esophageal motility. 

It should be noted that the majority of findings described is related to the striated muscle of 
the animal esophagus and cannot be simply transferred to the human esophagus. Thus, 
more progress in basic research on the human esophagus may be required to elucidate the 
pathogenesis of GERD. 

 

Fig. 6. Local neural reflex in the striated muscle portion of the mouse esophagus. Acid as 
well as capsaicin can stimulate primary afferent neurons and then activate the local reflex 
arc. ACh; acetylcholine. TK; tachykinin. NO; nitric oxide. GAL; galanin. TRPV1; transient 
receptor potential vanilloid 1. 

2.3 LES 

The LES is a specialized region of the esophageal circular smooth muscle that allows the 
passage of a swallowed bolus to the stomach and prevents reflux of gastric contents into the 
esophagus (Farre & Sifrim, 2008; Clouse & Diamant, 2006; Conklin & Christensen, 1994; 
Goyal & Chaudhury, 2008). Appropriate opening and closure of the LES is controlled by 
neuronal mechanisms that normally maintain tonic contration of the musculature to prevent 
reflux and cause relaxation during swallowing (Mittal et al., 1995; Yuan et al., 1998). The LES 
is innervated by both extatory and inhibitory motor neurons that are located in the 
myenteric plexus of the LES and the esophgeal body (Brookes et al., 1996). Acetylcholine 
and NO are the main excitatory and inhibitory neurotransmitters involved in LES 
contraction and relaxation, respectively (Farre & Sifrim, 2008). In addition, VIP, ATP, carbon 
monoxide (CO), and calcitonin gene-related peptide (CGRP) also have been proposed as 
putative neurotransmitters in the LES (Chang et al., 2003; Farre et al., 2006; Farre & Sifrim, 
2008; Uc et al., 1999). A subclass of intrinsic neurons are innervated by vagal preganglionic 
fibers as postganglionic neurons (Diamant, 1989; Goyal & Chaudhury, 2008). Neural 
controls of motility in the LES are illustrated in Fig. 7. 
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3. Dysmotility of the esophagus and GERD  

As described above, esophageal motility is regulated centrally by vagal motor neurons and 
peripherally by myenteric neurons, especially cholinergic and nitrergic neurons (Figs. 2 and 
3). Here, we have discussed the hypothesis that dysmotility of the esophagus is involved in 
the pathogenic mechanisms of GERD.  

 

Fig. 7. Neural control of the the lower esophageal sphincter (LES). Acid can stimulate 
primary afferent neurons and then activate intrinsic motor neurons. ACh; acetylcholine. TK; 
tachykinin. NO; nitric oxide.  

3.1 Gastroesophageal reflux and dysfunction of neural controls of esophageal 
motility 

GERD is caused mainly by acid reflux due to abnormal relaxation of the LES and/or low 
activity of clearance in the esophageal body (DeMeester et al., 1979; Grossi et al., 2006; Grossi 
et al., 1998; Moayyedi & Talley, 2006; Nagahama et al., 2003). Gastroesophageal reflux itself 
occurs in almost all individuals to some degree (Holloway, 2000; Vandenplas & Hassall, 2002). 
The esophageal body is a major component of the antireflux mechanism. Once reflux has 
occured, the reflux contents can be cleared by peristaltic sequences (Holloway, 2000). An intact 
peristaltic mechanism is essential for effective acid clearance. Thus, disruption of esophageal 
persistalsis affects clearance of the refluxate, resulting in exceccive acid reflux and then onset 
of GERD (Kahrilas et al., 1988; Moayyedi & Talley, 2006).  

In fact, it has been suggested that the pathogenesis of some esophageal disorders icluding 

GERD is involved in dysfunction of neural regulation such as imbalance of excitatory and 

inhibitory components of neurons and disruption of neural components (Banerjee et al., 

2007; Kim et al., 2008; Mittal & Bhalla, 2004; Shiina et al., 2010). In GERD patients, ineffective 

esophageal motility (IEM), a typical hypocontractile disorder, is the most common motor 

abnormality (Lemme et al., 2005). IEM patients have more than the normal number of 

nNOS-positive neurons in circular muscle in the esophagus, which might result in 

enhancement of inhibitory neural components (Leite et al., 1997; Lemme et al., 2005). On the 
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other hand, esophageal dysfunctions and then GERD occur frequently in patients with 

diabetes mellitus (Phillips et al., 2006; Sellin & Chang, 2008). This is a typical symptom of 

diabetic neuropathy in which enteric neurons decrease (Chandrasekharan & Srinivasan, 

2007). These facts indicate that imbalance of excitatory and inhibitory innervations, resulting 

in disfunction of esophageal persistalsis in the esophageal body, can be associated with 

onset of GERD possibly via attenuation of clearance activity and then excessive acid reflux. 

3.2 Involvement of excessive activation of the local inhibitory neural reflex in onset of 
GERD 

We have reported that application of capsaicin remarkably can attenuate the mechanical 

activity of the esophageal striated muscle via activation of the local neural reflex including 

primary afferents and intrinsic neuorns in our experimental conditions in vitro (Boudaka et 

al., 2007a; Boudaka et al., 2007b; Izumi et al., 2003; Shiina et al., 2006). Thus, the local neural 

reflex might be involved in not only coordinating esophageal peristalsis but also dysmotility 

of the esophagus and then the pathogenesis of GERD. Acid exposure not only induces 

inflammation in the esophageal mucosa (Rieder et al., 2010) but also might influence 

afferent neurons expressing TRPV1, which can be stimulated by protons (Tominaga & 

Tominaga, 2005). If acid excessively activates local neural reflex in the esophageal body, 

esophageal motility might be attenuated, resulting in decrease of clearance activity (Figs. 4, 

5, 6). In accordance with this, low pH can attenuate contractile activity in isolated 

esophageal segments from rats and mice like as capsaicin and piperine (unpublished data). 

In addition, functional changes of TRPV1 by proinflammatory mediators such as 

prostaglandin E2 (Adcock, 2009; Lopshire & Nicol, 1998) might facilitate activation of the 

inhibitory local neural reflex, resulting in low clearance activity. Decrease of clearance 

activity might permit further acid reflux, which would cause severe symptoms of GERD. 

Therefore, it is presumed that excessive activation of the local inhibitory neural reflex might 

be involved in the pathophysiology of GERD.  

Challenge of acid exposure enhances TRPV1 and substance P expression in TRPV1-positive 

neurons accompanying esophageal mucosa inflammation (Banerjee et al., 2007). In 

accordance with this, acid-induced esophagitis is not so severe in TRPV1-deficient mice 

(Fujino et al., 2006). Interestingly, it has been reported that TRPV1-positive neurons are local 

effectors of mucosal protection (Bass et al., 1991) and are associated with a protective effect 

of an H2-receptor antagonist on reflux esophagitis (Nagahama et al., 2003). Enhancement of 

TRPV1 and tachykinins expression also might result in intensification of local neural 

regulation, which is an exacerbating factor of GERD. 

Of course, dysmotility of the striated muscle portion of the esophagus described here might 
not directly be involved in gastroesophageal reflux in human because the external muscle 
layer in the distal portion of human esophagus is composed with smooth muscle fibers 
(Wörl & Neuhuber, 2005). The inhibitory neural pathway activated by acid reflex has not 
been demonstrated in smooth muscle of the human esophagus. In fact, spastic contractions 
are induced by acid reflux in the distal esophagus (diffuse esophageal spasm), which 
frequently are responsible of chest pain in GERD (Richter, 2007; Tutuian & Castell, 2006). 
This excessive contraction of smooth muscle is in contrast to the inhibition of striated muscle 
contraction via the local neural reflex activated by acid reflex. 
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3.3 Abnormal relaxation of the LES and GERD 

Abnormal relaxation of the LES is one of causes for GERD. LES hypotension may be due to a 
number of potential disturbances, including abnormality of the muscle function itself, lack of 
normal cholinergic activation, decreased reflex excitation, decreased responsiveness to 
circulating substances such as gastrin, and activation of inhibitory system (Clouse & Diamant, 
2006). The LES is innervated by inhbitory and excitatory intrinsic neurons that are located in 
the myenteric plexus not only of the LES but also of the esophgeal body (Fig. 7) (Brookes et al., 
1996). Abnormal activation of vagal afferents and/or efferents might activate inhibitory 
intrinsic neurons and cause LES relaxation and then excessive acid reflux from the stomach to 
the esophagus (Mittal et al., 1995). Kuramto et al. reported that a subpopulation of myenteric 
nitrergic neurons is immunoreactive for a tachykinin receptor in the rat esophageal body 
(Kuramoto et al., 2004). Considering that myenteric neurons are closely innervated by spinal 
afferents in which TRPV1 and tachykinins might be expressed in the esophagus (Holzer, 1988; 
Kuramoto & Endo, 1995; Mazzia & Clerc, 1997; Wörl & Neuhuber, 2005) as well as vagal 
afferent neurons, it is possible that acid can induce release of tachykinins from afferent 
neurons and subsequently tachykinins would act on intrinsic nitrergic neurons innervated to 
the LES (Fig. 7). This suggests that excessive acid reflux to the esophageal body might evoke 
abnormal relaxation of the LES by NO, resulting in severe GERD.  

3.4 A putative vicious circle in onset and exacerbation of GERD 

Chronic esophagitis, a symptom of GERD, may damage not only the mucosa but also intrinsic 
neurons (Rieder et al., 2010). In fact, it has been reported that proinflammatory cytokines 
contribute to reducing esophageal contraction by inhibiting release of acetylcholine from 
myenteric neurons (Cao et al., 2004). Esophageal dysmotility might subject the mucosa to 
further acid exposure, which would cause more severe inflammation by directly influencing 
the mucosa or neurogenic mechanism via TRPV1-positive neurons and peptidergic 
neurotransmitters (Bozic et al., 1996; Richardson & Vasko, 2002). Considering that the severity 
of myenteric plexus damage is positively correlated with the duration of history of esophageal 
diseases (Gockel et al., 2008), there might be a vicious circle in GERD (Fig. 8). 

 

Fig. 8. A predicted vicious circle model of GERD. The circle might exacerbate GERD. GERD; 
gastroesophageal reflux disease. NERD; nonerosive reflux disease. LES; lower esophageal 
sphincter. TRPV1; transient receptor potential vanilloid 1.  
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4. Conclusion 

Motor functions of the esophagus are controlled by both vagal neurons arising in the 
brainstem and locally intrinsic neurons in the striated and smooth muscles. The 
pathogenesis of GERD might be involved in dysfunction of neural networks in the 
esophagus. We propose new aspects of the involvement of pathophysiology of GERD in 
excessive activation of the local neural reflex by intrinsic neurons on the basis of results of 
our morphological and functional studies on esophageal motility.  
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