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1. Introduction

The present chapter illustrates the use of some recent alternative methods to deal with digital
image filtering and restoration. This collection of methods is inspired on the use of Markov
Random Fields (MRF), which introduces prior knowledge of information that will allow,
more efficiently, modeling the image acquisition process. The methods based on the MRF are
analyzed and proposed into a Bayesian framework and their principal objective is to eliminate
noise and some effects caused by excessive smoothness on the reconstruction process of
images which are rich in contours or edges. In order to preserve object edges into the image,
the use of certain convexity criteria into the MRF is proposed obtaining adequate weighting
of cost functions in cases where discontinuities are remarked and, even better, for cases where
such discontinuities are very smooth.

Some image analysis and processing tasks involve the filtering or image recovery x̂ (e.g.
restoration) after x passes by a degradation process giving the observed image y (see equation
(1)). Such degradation covers the noise perturbations, blurring effects due to focus of the
acquisition system lenses or to the bandwidth capacity, and other artifacts that may be added
to the correct data. The use of Bayesian methods proposed in the seventies (Besag, 1974; 1986;
Geman and Geman, 1984), are nowadays essential at least in the cases of image segmentation
and image restoration (Andrews and Hunt, 1977). The basic idea of these methods is to
construct a Maximum a posteriori (MAP) estimate of the modes or so called estimator of
true images by using MRF into a Bayesian framework. The general approach is based on
a robust scheme which could be adapted to reject outliers, tackling situations where noise is
present in different forms during the acquisition process (Bertaux et al., 2004; Cai et al, 2008;
Chan et al., 2006; Durand and Nikolova, 2006a;b; Nikolova, 2006; 2005; Nikolova and Ng,
2005; Pan and Reeves, 2006).

The restoration or recuperation of an image to its original condition given a degraded image,
passes thus by reverting the effects caused by noise or / and a distortion function. In
fact, the degradation characteristic is a crucial source of information and its mathematical

  

A Comparative Study of Some Markov  
Random Fields and Different Criteria 

Optimization in Image Restoration 

José I. De la Rosa, Jesús Villa, Ma. Auxiliadora Araiza,  

Efrén González and Enrique De la Rosa 
Laboratorio de Procesamiento Digital de Señales 

Facultad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas 
Mexico 

8

www.intechopen.com



2 Image Acquisition

function must be known or estimated during the inversion procedure. Typically, this is a
point spread function (PSF) which can be linked with the probability distribution of the
noise contamination or likelihood function. In the case of MAP filters, usually the additive
Gaussian noise is considered, however in some applications this noise is non-Gaussian
(Bertaux et al., 2004; Cai et al, 2008) or unknown noise probability distribution function
(pdf), p(e) = p(y|x), with some partial knowledge. In the latter case, we propose to
use the data itself to obtain a non-parametric entropy estimate (EE) of the log-likelihood
pdf, p̂n,h(e) (De la Rosa and Fleury, 2002; De la Rosa et al., 2003; De la Rosa, 2004). Then the
log-likelihood will be optimized (e.g. minimized) together with a log-MRF to obtain the MAP
image estimation. A variety of applications in signal processing and instrumentation, are
based in statistical modeling analysis. One of the most used is the linear regression model
(simple or multi-variable in the case of images)

yi,j = x⊤i,jθi,j + ei,j, with e ∼ p(e), (1)

where y represents the response (observed data, acquired data or explained variables), to x

explicative variables for i = 1, . . . , N and j = 1, . . . , M, and a system response parameterized
by θ (being θ a linear operator which models the image degradation (or PSF)) which is
associated to data (y, x). In some applications θ are functional parameters which will be
estimated by an identification procedure if x are known, but if θ are known and x are
unknown, the estimation is made about x, or the estimation can be made for both cases
(e.g. blind deconvolution). The e variables are independent random processes identically
distributed accordingly to p(e). A natural extension of the linear regression model is the
non-linear regression model based on a parameterized function f (x, θ) (see equation (2)). This
function is nonlinear with respect to the parameters, and its use is also considered because
it has been shown in a large variety of signal processing and control applications that the
modeling could be more realistic when using nonlinear functions. The perturbations affecting
the analyzed system are also modeled as stochastic processes. Then, for this case:

yi,j = f (x, θ)i,j + ei,j, with e ∼ p(e). (2)

Another source of information which imposes a key rule in the image processing context, is the
contextual or spatial information that represents the correlation between the intensity values
of a neighborhood of pixels well specified. The modellig, when using MRF, takes into account
such spatial interaction and it was introduced and formalized in (Besag, 1974), and extended
in some pioneering works (Besag, 1986; Bouman and Sauer, 1993; Geman and Geman, 1984;
Sauer and Bouman, 1992). Combining both kinds of information into a statistical framework,
the restoration is led by an estimation procedure given the MAP of the true images when
the distortion functionals are known. The algorithms implemented in this chapter were
developed considering a degraded signal, where the resulting non-linear recursive filters
show excellent characteristics to preserve all the details contained in the image and, on
the other hand, they smooth the noise components. Some existent optimization methods
are commented, since the optimization (e.g. maximization or minimization) task is central
during the reconstruction and its performance depends on the structure of the cost functionals.
Finally, a comparison between some existent Bayesian schemes and new proposed for noise
filtering and image deblurring is presented. Particularly, five MAP estimation schemes are
implemented where the first two schemes use two MRF; the semi-Huber (SH) potential
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A Comparative Study of Some Markov Random Fields and Different Criteria Optimization in Image Restoration 3

function which is proposed as an extension of some previous works (De la Rosa and Fleury,
2006; De la Rosa et al., 2007), and the generalized Gaussian MRF (GGMRF) introduced in
(Bouman and Sauer, 1993) in both cases, Gaussian noise is assumed. The other three MAP
schemes correspond to new MAP entropy estimators (MAPEE) for image filtering, where
unknown noise pdf assumptions are made and the generalized Gaussian MRF is also used.

The rest of this chapter is organized as follows. Section 2 describes the general definition of
a MRF and the proposal of the MAP estimator. The potential functions must be proposed to
conduct adequately the inversion process, some functions are described in section 3 where the
convexity level is the key to formulate an adequate criterion to be maximized or equivalently
minimized. In sections 4 and 5 are deduced some MAP estimators and commented
some optimization techniques resulting from different MRF structures for Gaussian noise
assumptions, and MAPEE estimators for unknown noise pdf. Section 6 introduces the
Kernel structures used for MAPEE estimators, while in section 7 results for Gaussian and
non-Gaussian restoration are discussed. Finally, some conclusions and comments are given in
section 8.

2. MAP estimation and Markov random fields

The problem of image estimation (e.g. restoration) into a Bayesian framework deals with
the solution of an inverse problem, where the estimation process is carried out in a whole
stochastic environment. The most popular estimators used nowadays are:

Maximum Likelihood estimator (ML): A classical procedure to estimate x when θ is known
(from equations (1) and (2)), is based in a cost function or criterion J (x) which varies in
function ψ(·) of residuals or noise e(x), where:

ei,j(x) = yi,j − x⊤i,jθi,j or ei,j(x) = yi,j − f (x, θ)i,j, (3)

and so

J (x) =
N

∑
i=1

M

∑
j=1

ψ(ei,j(x)). (4)

This is, for example, the case of the maximum likelihood (ML) estimator:

x̂ML = arg max
x∈X

p(y|x) = arg min
x∈X

(− log p(y|x)) ,

= arg min
x∈X

⎛
⎝−

N

∑
i=1

M

∑
j=1

log p(ei,j(x))

⎞
⎠ .

(5)

The ML estimator is optimal when all information about the distribution p(e) is accessible,
which is the case for Gaussian noise. When the knowledge about p(e) is imprecise or
wrong, the estimator x̂ML is possibly suboptimal. Moreover, under certain circumstances,
in image processing restoration, it results in an ill-posed problem or produces excessive
noise and also causes smooth of edges. The regularization of the ML estimator gives
both a more effective approach to reduce noise and smoothness (in fact, it depends on
the mathematical structure of the regularization term). In a probabilistic framework, the
regularization of the ML estimator leads to the Bayesian approach, where it is important
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4 Image Acquisition

to exploit all known information or so called prior information about any process under
study, which gives a better statistical estimator called

Maximum A Posteriori (MAP) estimator:

x̂MAP = arg max
x∈X

p(x|y),
= arg max

x∈X

(log p(y|x) + log g(x)) ,

= arg min
x∈X

(− log p(y|x)− log g(x)) .

(6)

In this case, the estimator is regularized by using a MRF function g(x) which models all
prior information as a whole probability distribution, where X is the set of pixels x capable
to maximize p(x|y), and p(y|x) is the likelihood function from y given x.

The Markov random fields (MRF) can be represented in a generic way by using the following
equation:

g(x) =
1
Z

exp

(
− ∑

c∈C

Vc(x)

)
, (7)

where Z is a normalization constant, C is a set of “cliques” c or local neighborhood of
pixels, and Vc(x) is a weighting function given over the local neighborhood. Generally, the
“cliques” correspond to the possible set of neighborhoods of pixels. A theorem introduced
by Hammersley-Clifford (Besag, 1974; Geman and Geman, 1984) probes the equivalence
between the Gibbs distribution and the MRFs. The Markov random fields have the capacity
to represent various images sources. The main partial disadvantage using MRFs is that
the estimation procedure deals with local minimization schemes (generally it grows the
computation time), while the proposal of global minimization schemes has been recently
introduced by modifying the local structure of the MRFs in order to establish a better trade-off
between quality of reconstruction and computation time. There is a variety of MRF models
which depend on the cost functions also known as potential functions that can be used. Each
potential function characterizes the interactions between pixels in the same local group. As
an example, the following family represents convex functions:

ρ(∆) = |∆|p (8)

where ∆ = λ[xs − xr ], λ is a constant parameter to be chosen, and p takes constant values
such as p ≥ 1 accordingly to the theorem 2 in (Bouman and Sauer, 1993).

3. MRFs and convexity of potential functions

In recent works (Champagnat and Idier, 2004; Ciuciu and Idier, 2002; Ciuciu et al., 2001;
Giovannelli et al., 2002; Idier, 2001; Rivera and Marroquin, 2003; 2004; Rivera, 2005) some
new potential functions were introduced. Such proposed functions are semi-quadratic
functionals or half-quadratic and they characterize certain convexity into the regularization
term (Geman and Reinolds, 1992; Geman and Yang, 1995)(eg. extension of penalization)
which permits to build efficient and robust estimators in the sense of data preservation which
is linked to the original or source image. Also, the necessary computation time decreases
with respect to other proposed schemes as shown in (Chan et al., 2006; Durand and Nikolova,
2006a;b; Nikolova, 2006; 2005; Nikolova and Ng, 2005; Nikolova and Chan, 2007) and
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A Comparative Study of Some Markov Random Fields and Different Criteria Optimization in Image Restoration 5

(Labat and Idier, 2006; Labat, 2006) in the case of non-convex and convex potential functions.
On the other hand, in previous works from (Gibbs, 2000) it has been proposed a way to
obtain the posterior distribution of the images; in this case, it is necessary to use sophisticated
stochastic simulation techniques based on the Markov Chain Monte Carlo (MCMC) methods
(Neal, 1993; Robert and Casella, 2004). If it is possible to obtain the posterior distribution of
any image, thus, it is also possible to sample from such posterior distribution and obtain the
MAP estimator, or other estimators such as the median estimator which is sensible to be as
well as the MAP estimator under certain circumstances imposed by the noise structure, the
MAP and the median estimators search the principal mode of the posterior distribution.

In the present chapter two already reported potential functions are revised and their
performance is compared. The generalized Guassian MRF introduced in (Bouman and Sauer,
1993; Sauer and Bouman, 1992) is compared with respect to semi-Huber functional used in
problems of one dimensional estimation in (De la Rosa and Fleury, 2006).

3.1 Generalized Gaussian MRF (GGMRF)

If one considers to generalize the Gaussian MRF (when p = q = 2 one has a GMRF, see
equation (15)) as proposed by Bouman, where the generalized potential functions correspond
to

ρ1(∆) = |∆|p , 1 < p < 2 (9)

obtaining the GGMRF

log g(x) = −λp

⎛
⎝∑

s∈S

asx
p
s + ∑

{s,r}∈C

bsr|xs − xr |p
⎞
⎠+ ct, (10)

where ct is a constant term, and theoretically as > 0 and bsr > 0, s is the site or pixel of
interest and S is the set of sites into the whole MRF, and r corresponds to the local neighbors.
In practice and for Gaussian noise assumptions, it is recommended to take as = 0, assuring
the unicity of x̂MAP, thus the GGMRF can be written as

log g(x) = −λp

⎛
⎝ ∑

{s,r}∈C

bsr|xs − xr|p
⎞
⎠+ ct, (11)

and from equation (2), log p(y|x) is strictly convex and so x̂MAP is continuous in y, and in p.
On the other hand, the MAPEE approach proposed here takes into account that the noise pdf
is unknown or non-Gaussian. For this particular case, it is recommended to take as = 1, since
the likelihood term is not given in terms of quadratic q = 2 functional, and in order to relax
the possible non-convexity problem it has been used

log g(x) = −λp

⎛
⎝∑

s∈S

asx2
s + ∑

{s,r}∈C

bsr|xs − xr |p
⎞
⎠+ ct, (12)
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6 Image Acquisition

also ensuring that log p(y|x) is convex and so x̂MAPEE is continuous in y, and in p. The choice
of p is capital, since it constrains the convergence speed of the local or global estimator, and
the quality of the restored image.

3.2 Semi-Huber potential function

In order to assure completely the robustness into the edge preserving image filtering,
diminishing at the same time the convergence speed, the Huber–like norm or semi–Huber
(SH) potential function is proposed as a half-quadratic (HQ) function. Such functional has
been used in one dimensional robust estimation as described in (De la Rosa and Fleury, 2006)
for the case of non-linear regression. This function is adjusted in two dimensions according to
the following equation:

log g(x) = −λ

⎛
⎝ ∑

{s,r}∈C

bsrρ2(x)

⎞
⎠+ ct, (13)

where

ρ2(x) =
∆2

0
2

(√
1 +

4ϕ1(x)

∆2
0

− 1

)
,

and where ∆0 > 0 is a constant value, bsr is a constant that depends on the distance between
the r and s pixels, and ϕ1(x) = e2 where e = (xs − xr). The potential function ρ2(x) fulfills the
following conditions

ρ2(x) ≥ 0, ∀x with ρ2(0) = 0,
ψ(x) ≡ ∂ρ2(x)/∂x, exists,

ρ2(x) = ρ2(−x), is symmetric,

w(x) ≡ ψ(x)
2x , exists,

limx→+∞ w(x) = µ, 0 ≤ µ < +∞,
limx→+0 w(x) = M, 0 < M < +∞.

(14)

4. MAP estimators for Gaussian noise and optimization

In this section some estimators are deduced. The single problem of filtering noise to restore
an observed signal y leads to establish the estimators.

4.1 Image filtering and optimization

The observation equation could be

y = x + e, where e ∼ N (0, Iσ2
n),

where I is the identity matrix. For this particular problem when using the GGMRF and under
hypothesis of Gaussian noise with variance σ2

n , the MAP estimator is given by,

x̂MAP1 = arg min
x∈X

⎧
⎨
⎩∑

s∈S

|ys − xs|q + σqλp ∑
{s,r}∈C

bs−r|xs − xr |p
⎫
⎬
⎭ , (15)
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A Comparative Study of Some Markov Random Fields and Different Criteria Optimization in Image Restoration 7

the minimization in equation (15) or optimization problem leads to consider various
methods (Allain et al., 2006; Chan et al., 2006; Nikolova, 2006; 2005; Nikolova and Ng, 2005;
Nikolova and Chan, 2007):

• global iterative techniques such as: the descendent gradient (Nikolova and Chan, 2007),
conjugate gradient (Rivera and Marroquin, 2003) (for recent propositions one can consult
the work (Labat and Idier, 2006; Labat, 2006)), Gauss-Seidel, Over-relaxed methods, etc.

• local minimization techniques: minimization at each pixel xs (which generally needs more
time, but from our point of view are more precise), where also some of the above methods
can be used.

In this work the local techniques were used, the expectation maximization (EM) was not
implemented, nor complete half-quadratic scheme as proposed in (Geman and Reinolds,
1992) and in (Geman and Yang, 1995), since all hyper-parameters included into the potential
functions were chosen heuristically or according to values proposed in references. Only, the
step of minimization with respect to x was implemented to probe convergence of estimators.
For example, the local MAP estimator for the GGMRF is given by

x̂s1 = arg min
x∈X

{
|ys − xs|q + σqλp ∑

r∈∂s

br−s|xs − xr |p
}

, (16)

where, according to the value of parameters p and q, the performance of such estimator varies.
For example, if p = q = 2, one has the Gaussian condition of the potential function where the
obtained estimator is similar to the least-squares one (L2 norm) since the likelihood function
is quadratic, with an additional quadratic term of penalization which degrades the estimated
image

x̂s =
ys + (σλ)2 ∑r∈∂s br−sxr

1 + (σλ)2 ∑r∈∂s br−s
. (17)

On the other hand, in the case of p = q = 1, the criterion is absolute (L1 norm), and the
estimator converges to the median estimator, which in practice, is difficult to implement in a
precise way

x̂s = median (ys, xr1 , . . . , xr I ) . (18)

This criterion is not differentiable at zero and this fact causes instability in the minimization
procedure. For intermediate values of p and q these estimators become sub-optimal, and the
iterated methods can be used to minimize the obtained criterions. Such iterative methods are
the sub–gradient, or the Levenberg–Marquardt method of MATLAB 7, the last method was
used as optimization technique in this work. For cases where q 
= p, for example q = 2
and 1 < p < 2, some studies and different propositions of a priori functions have been
proposed in (Durand and Nikolova, 2006a;b; Nikolova, 2006; 2005; Nikolova and Ng, 2005;
Nikolova and Chan, 2007), particulary in (Durand and Nikolova, 2006a;b; Nikolova, 2006;
Nikolova and Ng, 2005) where non-convex regularized least-squares schemes are deduced
and its convergence is analyzed.

The local or global condition of the estimator depends thus on

1) if one has values of 1 < p < 2: the estimator x̂min.loc → x̂min.glob, which means that a local
minimum would coincide with a global minimum,
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8 Image Acquisition

2) moreover, if p 
= q, the criterion is not homogeneous, but: x̂(αy, λ) = αx̂(y, α1−q/pλ) is
convex, assuring the convergence and existence of the estimator which is continuous with
respect to p.

Moreover, when the noise is Gaussian, the value of q = 2 is a good choice, but if the
noise is non-Gaussian, and if the structure of noise is known, thus the likelihood term
changes giving a particular estimator such as that proposed in (Bertaux et al., 2004), or in
(Cai et al, 2008), giving some properties of robustness to the minimization procedure. If the
structure of noise is supposed unknown, still one could reconsider the GGMRF with values
for q ∈ (1, 2], or consider also another type of MRFs as those described in some works of Idier
(Champagnat and Idier, 2004; Ciuciu and Idier, 2002; Ciuciu et al., 2001; Giovannelli et al.,
2002) and Nikolova (Nikolova, 2006; 2005; Nikolova and Ng, 2005; Nikolova and Chan, 2007).

A second MAP estimator can be obtained when using the SH potential function, the global
estimator can be described by the equation

x̂MAP2 = arg min
x∈X

⎧
⎨
⎩∑

s∈S

|ys − xs|2 + λ

⎛
⎝ ∑

{s,r}∈C

bs−rρ2(x)

⎞
⎠
⎫
⎬
⎭ . (19)

As in the previous MAP estimator, it has been proposed to implement the local estimator
which leads to a similar expression for the first local MAP estimator (see equation (16)), that
is

x̂s2 = arg min
x∈X

{
|ys − xs|2 + λ

(

∑
r∈∂s

bs−rρ2(x)

)}
. (20)

The use of a prior distribution function based on the logarithm, with any degree of convexity
and quasi-homogeneous, permits to consider a variety of possible choices of potential
functions. Maybe, the most important challenges that must be well solved are: the adequate
selection of hyper-parameters from potential functions, where different versions of the EM
algorithms try to tackle this problem (Champagnat and Idier, 2004; Giovannelli et al., 2002;
Idier, 2001; Nikolova and Ng, 2005), another is the minimization procedure which in any sense
will regulate the convergence speed as proposed in (Allain et al., 2006; Geman and Reinolds,
1992; Geman and Yang, 1995; Labat and Idier, 2006; Labat, 2006; Nikolova, 2006; 2005;
Rivera and Marroquin, 2003), etc.

4.2 Image deconvolution

On the other hand, for the problem of image deblurring to restore an observed signal y, the
observation equation used is given by

y = Θx + e, with e ∼ N (0, Iσ2
n). (21)

Now, for the two previous MAP estimators the likelihood term changes, such that,

x̂MAPk
= arg min

x∈X

{

∑
s∈S

|ys − Θxs|2 − log g(x)

}
, (22)
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A Comparative Study of Some Markov Random Fields and Different Criteria Optimization in Image Restoration 9

where the matrix Θ is known and given by the following truncated Gaussian blurring
function,

θ(i, j) = exp

(
−i2 − j2

2σ2
b

)
, for − 3 ≤ i, j ≤ 3, (23)

as used also in (Nikolova et al., 2010), with σb = 1.5. And k = 1, 2 according to the GGMRF,
and the SH potential functions. Here, the results were improved combining ideas introduced
in a similar Bayesian way by Levin (Levin et al., 2007a;b) adding a Sparse prior (SP) for
filtering and then reconstructing the image.

5. MAP entropy estimators (EE) for unknown noise pdf

Our proposition for a new MAP scheme is to use a generalized Gaussian MRF introduced
in section 3.1, together with three kernel estimators used in (De la Rosa and Fleury, 2002;
De la Rosa et al., 2003; De la Rosa, 2004) to obtain cost functionals or criterions based on the
entropy of the approximated likelihood function (first term of equation (6)) p̂n,h(e). Thus,
− log p(y|x) is built on the basis of the entropy of an estimate (EE) version p̂n,h(e) of the
distribution p(e). A first proposition is due to Pronzato and Thierry (Pronzato and Thierry,
2000a;b; 2001). The approximation is obtained using the classical kernel estimators which uses
the empirical distribution of the random vector e1(x), . . . , en(x). The next expression denote
such estimators:

p̂n,h(e) = p̂n,h(e|e1(x), . . . , en(x)) =
1
n

n

∑
i=1

Kh (e − ei) . (24)

This expression assumes the hypothesis that p(e) is symmetric, two times differentiable
and positive, indeed, it is assumed that K(z) is a kernel weighted function which
satisfies some imposed conditions treated in (Masry, 1983) and subsequently taken back
by Devroye (Devroye, 1992; 1989; Devroye and Krzyzȧk, 1999; Devroye, 1997), Berlinet
(Berlinet and Devroye, 1994), and Loader (Loader, 1999) in some of their research work. The
bandwidth h = hn is given in function of the sample size n. This parameter could be
considered as a sequence of positive numbers that must satisfy: hn → 0 and nhn → ∞ when
n → ∞. The strong uniform consistency of p̂n,h(e) and its convergence toward p(e), depend
on a convenable procedure of bandwidth selection. A simple and faster procedure which
has been retained in this work is the technique proposed and developed by Terrell (Terrell,
1990; Terrell and Scott, 1985). In the two dimensional kernel cases, the previous idea has been
extended in this work accordingly to the equation:

p̂n,h(e) = p̂n,h(e|e1,1(x), . . . , en,n(x))

=
1

n2

n

∑
k=1

n

∑
l=1

Kh

(
e − ek,l

)
. (25)

If the convergence and consistence of p̂n,h(e) are assumed, such that p̂n,h(e) → p(e), then the
entropy criterion over p̂n,h(e) can be approximated to − log p(y|x). The fact that the entropy
of any probability density function is invariant by translation, leads to consider one practical
artifact to build a suitable criterion. An extended criterion p̂n,h(eE) is based on the residuals
or noise extended vector which is given by: eE = {e1,1(x), . . . , en,n(x),−e1,1(x), . . . , en,n(x)}

151
A Comparative Study of Some Markov Random Fields 
and Different Criteria Optimization in Image Restoration

www.intechopen.com



10 Image Acquisition

and on a suitable choice of h:

Je(x) = HA

(
p̂n,h(eE)

)
≈ − log p(y|x), (26)

where HA( f ) = −
∫ An

−An

f (x) log f (x)dx. Finally, if we assume that the EE is a version of the

log-likelihood function into the MAP estimator, then a general version of the MAP-entropy
estimator (MAPEE) which assumes unknown noise pdf can be constructed from the fact
that − log p(y|x) can be approximated by the entropy of an estimate version p̂n,h(e) of the
distribution p(e), that is HA

(
p̂n,h(eE)

)
, thus:

x̂MAPEE = arg min
x∈X

{
HA

(
p̂n,h(eE)

)
− log g(x)

}
. (27)

Now, substituting a particular log g(x) such as the GGMRF into the equation (27) one could
obtain at least three MAPEE estimators given by

x̂MAPEEm
= arg min

x∈X

⎧
⎨
⎩HA

(
p̂n,h(eE)

)
− λp

⎛
⎝∑

s∈S

asx2
s + ∑

{s,r}∈C

bsr|xs − xr |p
⎞
⎠
⎫
⎬
⎭ , (28)

for m = 1, 2, 3 according to the three following kernels: Normal, cosine and Hilbert.

6. Kernel structures

A function of the form K(z) is assumed as a fixed kernel Kh(z) = 1/(hd)K(z/h), where
h is called the kernel bandwidth and h > 0. The fundamental problem in kernel density
estimation lies in both the selection of an appropriate value for h and the selection of the
kernel structure. The choice of K(z) could depend on the smoothness of p(e). Three different
kernels or nonparametric schemes are reviewed in this section to approximate p̂n,h(eE). The
gaussian kernel, which has proved to give good performance when h is selected by using
the over-smoothed principle introduced by Terrell (Terrell, 1990; Terrell and Scott, 1985) when
the errors vector is generally of finite length n. Second kernel is the cosine based weights
functions, where h is viewed in a different way. Finally, the third kernel is obtained from
a recent class of Hilbert kernels (Devroye and Krzyzȧk, 1999). It avoids the bandwidth h

selection and its performance depends on other parameters, whose selection is very easy
(parameters d and k are defined in section 6.3).

6.1 Normal or gaussian kernel

Among the different classical kernels (Berlinet and Devroye, 1994), the gaussian kernel has
been chosen since it is one of the most popular and easy to implement estimator. The following
expression resumes this estimator by a sum of exponentials:

p̂n,h(z) =
1

n2h
√

2π

n

∑
k=1

n

∑
l=1

exp

(
− (z − zk,l)

2

2h2

)
. (29)
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In such a case, and considering that a fixed kernel structure has been chosen, Terrell (Terrell,
1990) proposes to use an over-smoothed bandwidth h that corresponds to:

h = 3
(

1
2
√

π(35)

) 1
5

σn− 1
5 ,

this bandwidth value guarantees the minimization of the Mean Integrated Squared Error
(MISE), σ is the standard deviation of the sample z, and

∫
K(z)2dz = 1

(2
√

π)
. Under mild

conditions, the kernel density estimates based on the over-smoothing principle are consistent
and for sufficiently large sample sizes, they will display all information present in the
underlying errors density p(e), we chose n × n array of samples zk,l near z.

6.2 Cosine based weights functions

A sequence of special weight cosine functions

cq(z) = 1/(Aq) cos2q(z/2)

requires only O(q2n) arithmetic operations, where q is a slowly growing function that
increases without bound together with n (i.e. q(n) < n or q(n) > n). This estimator is similar
to the kernel classical estimators and evaluates a series expansion in a more efficient way. The
role of h is replaced by q (cq(z) ≡ Kh(z)) and the efficiency is attained (according to the time
of calculus), since the selection of q is generally more simple than h. Thus (25) is equivalent to

p̂n,q(z) =
1

n2 Aq

n

∑
k=1

n

∑
l=1

(
1 + cos(z − zk,l)

2

)q

, (30)

where the Aq value could be approximated by

Aq ≈ 2
√

π√
q

.

Sufficient consistency and convergence conditions are given in (Eğecioğlu and Srinivasan,
2000) for the one dimensional case.

6.3 The Hilbert kernel

Finally, other kernel density estimates called the Hilbert kernel estimate is used. The equation
Kh(z) = 1/(hd)K(z/h) is considered equivalent to K(u) = 1/‖u‖d, where the smoothing
factor h is canceled obtaining:

p̂n(z) =
1

n2

n

∑
k=1

n

∑
l=1

1
‖z − zk,l‖d

. (31)

The Hilbert estimates are viewed as a universally consistent density estimate whose expected
performance (L1, L∞, pointwise) is monotone in n (at least in theory) for all densities. The
consistency of this class of estimators is proved in Devroye and Krzyzȧk (1999)(see theorem
2). The Hilbert density estimate of order k (k > 0) is a redefined subclass that avoids the
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infinite peaks produced during estimation, in one dimensional case and using the value of
k = 2 the kernel estimate is given by:

p̂n(z) =

√
4

V2
d πn(n − 1) log n

∑
1≤i<j≤n

1
Deni,j

, (32)

where Deni,j = ‖z − zi‖2d + ‖z − zj‖2d and Vd is the volume of the unit ball in Rb. This
last expression is also called Cauchy density estimate, due to its similarity to the multivariate
Cauchy density, ‖ · ‖ denotes the L2 metric on Rd. Finally, it is assumed that p̂n(z) → p(z)
at least in probability for almost all z. For a suitable choice of An and alternatively of hn ,
q, or d and k, these estimators could be “blind asymptotically efficient”. The asymptotic
properties and the strong consistency of the truncated entropy estimators were analyzed
in (Pronzato and Thierry, 2000a;b; 2001). More over, in some other papers, the power of
these nonparametric tools have been largely used for different signal processing problems
(Pronzato et al., 2004), (Wolsztynski et al., 2004a) – (Wolsztynski et al., 2005c).

7. Denoising and deblurring experiments

Results presented in this section were obtained experimenting extensively with four images:
synthetic, Lena, Cameraman, and Boat (shown in Figure 1), to probe the performance of the
presented estimators.

7.1 Image filtering for Gaussian noise

Some estimation results are presented when images are contaminated by Gaussian noise, and
there are no other type of distortions (all θi,j = 1). The first experiment was made considering
that σn = 5, 10, 15. In the work (De la Rosa et al., 2003) some results were previously presented
based on the analysis of a synthetic image and the standard image of “Lena”, different levels
of noise were added to the images: e ∼ N (0, Iσ2

n), the values of σn are given such that the
obtained degradation is perceptible and difficult to eliminate. The obtained results were
compared using different values for p and λ preserving q = 2 (MAP1), and different values
for ∆0 and with λ = 1 (MAP2). Generally, with the two MAP estimators the filtering task
gives good visual results preserving contours and smoothing noise (see Figures 2 and 3), but
the computation time is different between them, the fastest estimator in general is the MAP2
(see image 2(d)), while the slowest is the MAP1 with p = 1.2. Table 1 shows the performance
of the MAP estimators for the problem of filtering Gaussian noise for different images, where
an objective evaluation is obtained accordingly to the peak signal to noise ratio (PSNR). Also
the computation times in MATLAB are shown in Table 1. Such comparative evaluation shows
that our proposed approach MAP2, gives better or similar performance with respect to MAP1.
Some interesting applications of robust estimation are particulary focused in phase recovery
from fringe patterns as presented in the work Villa et al. (2005), phase unwrapping, and
some other problems in optical instrumentation. In this sense, some filtering results were
thus obtained using the presented MAP estimators with similar results to those reported
here. On the other hand, the use of half-quadratic potential functions permits flexibility
for the computation time (Durand and Nikolova, 2006a;b; Nikolova and Ng, 2005). But still is
a challenge to tune correctly the hyper-parameters to obtain a better performance in the sense
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(a)

 

(b)

(c)

 

(d)

Fig. 1. The figure shows: (a) synthetical probe image; (b) the classical Lena image; (c) the
classical Cameraman image; (d) the classical Boat image.

� σn = 15 MAP1 MAP2

synthetic PSNR noise 24.6 24.7
35 × 35 PSNR filt. 27.6 28.8

Time (sec) 7.6 5.9
Lena PSNR noise 24.5 24.5

120 × 120 PSNR filt. 28.9 29.1
Time (sec) 80.6 75.3

Cameraman PSNR noise 24.7 24.6
256 × 256 PSNR filt. 28.8 28.9

Time (sec) 355.9 341.7
Boat PSNR noise 24.6 24.6

512 × 512 PSNR filt. 29.5 29.4
Time (sec) 1,545.5 1,243.3

Table 1. Results obtained when evaluating the filtering capacity of the two MAP estimators.

of restoration quality, the most simple potential function to tune is the semi-Huber (MAP2).
Also, making the correct hypothesis over the noise could help to improve the performance
of the estimator. This could be directly reflected by proposing a more adapted likelihood
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Lena Original

(a)

Lena, Gaussian noise σ = 15

(b)

MRF GG estimation, 29 dB

(c)

MRF SH estimation, 29.1 dB

(d)

Fig. 2. Results for Lena standard image: (a) describes the original Lena image; (b) describes
the noisy image using Gaussian noise with σn = 15; (c) filtered image using MAP1 (with
λ = 30, p = 1.2); (d) filtered image using MAP2 (with ∆0 = 20).

function, as proposed in section 5 for cases of non-Gaussian noise or unknown pdf. More
over, also the problem could be solved by using variational and partial differential equations
as illustrated in the famous work of Perona and Malik (Perona and Malik, 1990), and some
recent related works.

7.2 Image deconvolution

Now, for the problem of image deconvolution some estimation results are presented when
images are contaminated by Gaussian noise, and Gaussian distortion (with σb = 1.5) blurring
the image. This second experiment was carried out considering that σn = 3, 5, 7. The results
were also compared using different values for ∆0 and with λ = 1 (MAP2), different values for
p and λ preserving q = 2 (MAP1). Figure 4 shows a comparison of results obtained for the
Cameraman image accordingly to the two MAP estimators. One can notice that preserving
values of hyper-parameters near those for the filtering case, the estimators smooth the noise
but does not made a good recuperation of edges into the image. One must change the
hyper-parameters values searching a trade of between the granularity of the noise and the
sharpness of the image. Figure 5 shows the results obtained on the Cameraman image when
using a combination of proposed estimators together with a Sparse prior (SP) deconvolution
technique introduced in (Levin et al., 2007a;b), the improvement in restoration is visible. In
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Cameraman Original

(a)

Cameraman, Gaussian noise σ = 15

(b)

MRF GG estimation, 28.8 dB

(c)

MRF SH estimation, 28.9 dB

(d)

Fig. 3. Results for Cameraman standard image: (a) describes the original Cameraman image;
(b) describes the noisy image using Gaussian noise with σn = 15; (c) filtered image using
MAP1 (with λ = 30, p = 1.2); (d) filtered image using MAP2 (with ∆0 = 20).

the first stage only the SP deconvolution is obtained (see image 5(b)), where some ringing
and granularity artifacts occur due to noise and they cannot be correctly smoothed. Then,
applying first the filtering of noise and then the SP deconvolution, the images 5(c) and 5(d)
are obtained. In Table 2 it is shown the performance of the MAP estimators together with
the SP deconvolution for three images giving similar results. An objective evaluation is made
using the PSNR measure and also computation times in MATLAB are shown.

7.3 Image filtering for non-Gaussian noise

Now, for the problem of filtering non-Gaussian noise, some estimation results were obtained
when images are contaminated by Gamma, Beta, Uniform and impulsive noise. Here, it is
assumed that there are not other type of distortions (all θi,j = 1). The observation equation
then could be

y = x + e, where e ∼ G(α, β), e ∼ B(α, β), . . .

A third experiment was made considering Gamma noise where α = 1.5, 3.5, 7 and β = 1, 2, 3,
and also two factors of amplification of noise were used σa = 5, 10 (σaG(α, β)). The values of
α and β are given in such a way that the obtained degradation is perceptible and difficult to
eliminate.
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Cameraman Original

(a)

Observed image, Gaussian distortion + Gaussian noise

(b)

MRF GG restored

(c)

MRF SH restored

(d)

Fig. 4. Results for Cameraman standard image: (a) describes the original Cameraman image;
(b) describes the distorted image using Gaussian noise with σn = 3; (c) partially restored
image using MAP1 (λ = 30, p = 1.2); (d) partially restored image using MAP2 (∆0 = 20).

� σn = 3 MAP1 MAP2

Lena PSNR distorted 17.4 17.4
120 × 120 PSNR rest. 17.6 17.5

PSNR rest. SP 20.8 20.8
Time (sec) 91.3 58.9

Cameraman PSNR distorted 19.3 19.3
256 × 256 PSNR rest. 19.4 19.4

PSNR rest. SP 22.3 22.5
Time (sec) 408.0 257.7

Boat PSNR distorted 20.4 20.4
512 × 512 PSNR rest. 20.5 20.5

PSNR rest. SP 25.8 25.6
Time (sec) 1,606.5 1,014.9

Table 2. Results obtained when evaluating the deconvolution capacity of the two MAP
estimators.
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Cameraman Original

(a)

Only SP restored

(b)

MRF GG restored, using also SP

(c)

MRF SH restored, using also SP

(d)

Fig. 5. Results for Cameraman standard image: (a) describes the original Cameraman image;
(b) describes restored image using only a Sparse prior (SP) deconvolution technique
Levin et al. (2007a); (c) restored image using MAP1 and SP (λ = 0.15, p = 1.2); (d) restored
image using MAP2 and SP (∆0 = 20).

Figure 6 shows the filtering of the synthetical image using the three MAPEE estimators
introduced in section 5 for parameters λ = 10, p = 1.2 of the GGMRF. Generally, with the
three estimators the filtering task gives good performing results (see also Figure 7 where a
three dimensional-3D view is shown), but the computation times are different between them,
the fastest estimator was MAPEE3 (image 6(d)). Some objective measurements were obtained
for all probe images, such as the PSNR depicted in Table 3 which agree with the visual results.
Also all times of computation are shown in Table 3. On the other hand, in the filtering case
of the Cameraman and the Boat images the results coincide with those obtained for synthetic
and Lena images. Visually one can see in Figures 8 and 9 the robustness performance of
MAPEE estimators. Some other experiments were conducted for Beta and impulsive noise.
For the case of Beta noise generation we choose α = 1.5, 2.5, 5, 7.5 and β = 1, and also two
factors of amplification of noise were used σa = 10, 20 (σaB(α, β)). The filtering results are
promising for non-Gaussian noise, the obtained results for the Beta noise filtering also confirm
the robustness of the proposed approach. Moreover, as one can see for impulsive noise with a
15% of outliers in Figures 10 and 11, the robustness is assured when using the three MAPEE
estimators, where for instance, in the synthetic image case the PSNR was improved from 11.45
dB to 17.1 dB.

159
A Comparative Study of Some Markov Random Fields 
and Different Criteria Optimization in Image Restoration

www.intechopen.com



18 Image Acquisition

(a) (b)

(c) (d)

Fig. 6. Results for synthetical probe image: (a) describes the noisy synthetical image, for
Gamma noise with α = 1.5 and β = 2, and σa = 5; (b) filtered image using MAPEE1 (with
Normal kernel); (c) filtered image using MAPEE2 (with cosine kernel); and, (d) filtered image
using MAPEE3 (with Hilbert kernel).

� α = 1.5, β = 2 MAPEE1 MAPEE2 MAPEE3

synthetic PSNR noise 22.2 22.4 22.6
35 × 35 PSNR filtered 24.1 24.1 24.4

Time (sec) 10.6 12.1 9.3
Lena PSNR noise 16.3 16.2 16.3

120 × 120 PSNR filtered 17.9 17.9 18
Time (sec) 123.6 141.6 109.8

Cameraman PSNR noise 16.4 16.4 16.4
256 × 256 PSNR filtered 18.5 18.5 18.5

Time (sec) 563.2 644.8 499.9
Boat PSNR noise 16.3 16.4 16.4

512 × 512 PSNR filtered 18.7 18.7 18.8
Time (sec) 2,340.1 2,569.8 2,063.5

Table 3. Results obtained in evaluating the filtering capacity of the three MAPEE estimators
for Gamma G(α, β) noise, with σa = 10.
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Fig. 7. Results for synthetical image (3-D view): (a) describes the noisy synthetical image, for
Gamma noise; (b) filtered image using MAPEE1 (with Normal kernel); (c) filtered image
using MAPEE2 (with cosine kernel); and, (d) filtered image using MAPEE3 (with Hilbert
kernel).
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(a) (b)

(c) (d)

Fig. 8. Results for Cameraman image: (a) describes the noisy Cameraman image, for Gamma
noise with α = 3.5 and β = 2, and σa = 10; (b) filtered image using MAPEE1 (with Normal
kernel); (c) filtered image using MAPEE2 (with cosine kernel); and, (d) filtered image using
MAPEE3 (with Hilbert kernel).
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(a) (b)

(c) (d)

Fig. 9. Results for Boat image: (a) describes the noisy Boat image, for Gamma noise; (b)
filtered image using MAPEE1 (with Normal kernel); (c) filtered image using MAPEE2 (with
cosine kernel); and, (d) filtered image using MAPEE3 (with Hilbert kernel).
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(a) (b)

(c) (d)

Fig. 10. Results for Lena image: (a) describes the noisy Lena image, for impulsive noise; (b)
filtered image using MAPEE1 (with Normal kernel); (c) filtered image using MAPEE2 (with
cosine kernel); and, (d) filtered image using MAPEE3 (with Hilbert kernel).
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(a) (b)

(c) (d)

Fig. 11. Results for Cameraman image: (a) describes the noisy Cameraman image, for
impulsive noise; (b) filtered image using MAPEE1 (with Normal kernel); (c) filtered image
using MAPEE2 (with cosine kernel); and, (d) filtered image using MAPEE3 (with Hilbert
kernel).
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8. Conclusions and comments

Some advantages on the use of GGMRF as prior information into the Bayesian estimation
(MAP1) are: the continuity of the estimator is assured as a function of the data values when
1 < p ≤ 2 even for Gaussian and non-Gaussian noise assumptions. The edge preserving
is also assured, over all when p → 1 and obviously it depends on the choice between the
interval 1 < p < 2. The use of other semi-quadratic or half-quadratic potential functions
such as SH (MAP2) also presents some advantages: the convexity of these functions is relaxed
with respect to the GGMRF. This fact gives as a result the decrement of the computation time,
which is a good advantage over the GGMRF, since the tuning of hyper-parameters in the
GGMRF is more complicated, one has more degrees of freedom. However, this problem can be
solved as argued by Idier (Champagnat and Idier, 2004) and Rivera (Rivera and Marroquin,
2003) by implementing more sophisticated algorithms. The robustness in both cases is
assured. Moreover, the advantages presented by those estimators could overcome the
disadvantages, by experimenting largely with them, and establishing the aim to implement
more sophisticated algorithms with the compromise to reduce computation time and better
quality in restoration as recently exposed by Ruimin Pan (Pan and Reeves, 2006).

On the other hand, the performance and improvement of the MAPEE estimators for
non-Gaussian noise filtering, could be classified in terms of simplicity and in terms of filtering
quality. The obtained results for the three proposed estimators are favorable in general in the
sense of robustness, and the fastest convergence is obtained for the MAPEE1 and MAPEE3
estimators (in the case of the MAPEE2 estimator q = 40, and for MAPEE3, k = 2, d = 1, and
Vd = 0.7071. The value of q was changed alternatively in the range of 30 ≤ q ≤ 90, and some
performance improvement has been noticed). A general scheme for MAPEE estimators has
been introduced and it works in real frameworks, where the nonlinearity conditions of some
systems could be present. For future works it exists the interest to implement procedures of
Bayesian estimation into high level programming that will be characterized into algorithms
to be used in DSP cards, and tasks such as image reconstruction and segmentation. Also, one
can probe to use MAPEE to processing real signals issued from real instrumentation or signal
processing problems. The final objective of this work has been to contribute with a series of
software tools for image analysis, focused for instance, in optical instrumentation tasks such as
those treated in the works (Villa et al., 2005)–(Villa et al., 2010b) and (Rivera and Marroquin,
2004; Rivera, 2005) obtaining competitive results in filtering and reconstruction.
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