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1. Introduction 

Nondestructive testing (NDT) provides safe operation to engineering components – it 
eliminates the risk of damage during operation, and does not require specific sample 
preparation. It has been widely used to detect and evaluate defects, or measure properties of 
different types of materials and engineering structures. Examples of NDT techniques include 
ultrasonic, radiography, infrared thermography, electromagnetic techniques and visible 
optical methods. The imaging principles and imaging facilities used by these techniques can be 
very different, but almost all the techniques listed above require image processing to some 
extent. In this chapter, instead of extensively exploring all the NDT techniques and 
corresponding image processing methods, we will focus on optical measurement technique 
and related image processing methods, and use porous materials as specimens.  

Optical microscopy and digital camera imaging are two examples of optical measurement 
technique, where optical microscopy is the conventional one. Based on how the light 
transfers from the sample to the objective, it can be categorized to two different modes – 
transparent mode and reflected mode. Digital camera imaging appeared with the 
development of semiconductor industry. Digital images bring convenience for image 
storage, image transferring, and subsequent image processing. Actually, digital image 
acquisition facilities, e.g. Complementary Metal Oxide Semiconductors (CMOS) and Charge 
Coupled Device (CCD), can be combined with the traditional microscope to form digital 
microscopes. As a convenient way of measurement, optical microscope and digital camera 
imaging system has been extensively used in the area of microelectronics, nanophysics, 
biotechnology, pharmaceutical research, mineralogy, and material science.  

Typical image processing procedures include image acquisition, image alignment/stitching, 
image contrast enhancement, grey scale thresholding, and/or image subtraction. The 
characteristic of the specimens determines which image processing techniques to be used. 
For example, for the images with background noise, image subtraction can be applied when 
the background can be evaluated; otherwise thresholding might be applied to eliminate the 
background influence. 
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In this chapter, the image processing techniques will be reviewed. Their applications in 
characterizing porous materials will be explored. 

2. Overview of image processing techniques  

2.1 Image acquisition 

Image acquisition is the first step of optical characterization techniques. It is also the first 
place where noise can be introduced. The characteristic of the noise introduced in the image 
acquisition process dominates the following image processing techniques. In order to 
understand the cause of noise, the principles of image acquisition devices will be discussed 
first.  

For digital image acquisition, CMOS and CCD are the most commonly used devices. The 
first solid-state imager presented in the 1960’s. The CMOS image sensors appeared in 1967 
[1], and the first CCD sensor appeared in 1970 [1]. In early 1970’s MOS diodes were used as 
light sensitive elements [2]. However, at that time, CMOS image sensors had poor 
performance and large pixel size, compared to CCD. CCD has been the major imaging 
device owing to their superior dynamic range, lower fixed-pattern noise, higher fill factor, 
and higher sensitivity to light [3]. However, during the last decade, CMOS sensor 
implementing buffer per pixel has been developed, which is known as active pixel sensors 
(APS). APS provides high speed readout, which makes it suitable for high speed imaging 
[4]. Table 1 is the comparison of CCD and CMOS image sensors. 

 
Features CCD CMOS 

Sensitivity Higher, especially for still 
images 

Lower  

Noise level Lower Higher  

Dark current Lower  Magnitudes higher than the 
CCD [5] 

High speed performance - Good 

Power consumption Higher Lower  

Compatibility - Higher integration 
capability with chip circuits 

Table 1. Comparison of CCD and CMOS 

Right now, CMOS is being used in the area of security surveillance, automotive, imaging 
phones, etc., owing to the properties of lower power consumption, lower operation voltage, 
high compatibility and high speed readout rate. CCD has application in the area of medical 
imaging, astronomy, professional cameras, etc., because of its high performance and image 
quality [6].  

In the material characterization area, CCD is the dominating digital imager. CCD device 
consists of arrays of capacitors, which accumulate electric charge proportional to the light 
intensity at the location. In an ideal case, every photon striking the CCD sensor will be 
converted to one electron. Then the intensity of the incoming light can be quantified by 

www.intechopen.com



 
Applications of Image Processing Technique in Porous Material Characterization 

 

111 

counting the corresponding electrons. Unfortunately, noise always exists in this process. 
Noise in CCD images appears in multiple ways, including dark background areas, faint 
horizontal or vertical lines, blotchy gradients, and low contrast images. A brief overview of 
noise sources in CCD is listed below. 

Dark current 

All CCD sensors generate a dark signal to some degree. CCD builds up dark current 
whether the CCD is being exposed to light or not. Dark current arises from thermal energy 
within the silicon lattice in the CCD [7]. Electrons dependent of the incoming light are 
collected over time by the CCD potential wells and counted as signal electrons. This signal 
also carries a statistical fluctuation known as dark current noise. The rate of dark current 
accumulation depends on the temperature of the CCD, but will eventually fill every pixel in 
a CCD. The pixels in the CCD will be cleared and reset before imaging. However, dark 
current accumulates again when exposure starts. In the case of long integration time usage 
of CCD systems, e.g. in astrophotography and spectroscopy, more input signal is collected, 
as well as more dark current noise. Ideally, the dark current noise should be reduced to a 
point where its contribution is negligible over a typical exposure time. The rate of dark 
current can be reduced by a factor of 100 or more by cooling the CCD [7]. CCDs can be 
cooled either with thermoelectric coolers (TECs) or liquid nitrogen. The amount of dark 
current noise highly depends on the temperature, with half value of dark current for every 
5oC ~ 9oC cooling down of the system [8]. Therefore, cooling system is integrated to high 
sensitivity CCDs, e.g. the CCD used in spectroscopy area, to increase the signal-to-noise 
ratio. However, running the CCD cooler than necessary can also lead to extra noise, which 
appears as a ‘ghost’ image.  

Besides eliminating the dark noise in the hardware level, methodological ways are also 
necessary. In intensity-oriented measurements, in order to further eliminate the effect of 
dark signals, sub-exposure of dark frames is usually applied for calibration of the image 
acquisition system. When acquiring the dark frames, all the other conditions are kept the 
same. The acquired dark frame is the background of the measurement, which will be 
subtracted from the measurement images in the following process. 

Pixel non-uniformity 

CCD pixels are made to be uniform. Unfortunately, in really practice, they are slightly 
different to each other. The sensitivity to light of the pixels is typically within 1% to 2% 
fluctuation of the average. This non-uniform sensitivity brings error to the image. Pixel non-
uniformity can be reduced by calibration with a flat-field image [9].  

One way to take account the dark current noise and pixel non-uniformity is to normalize 
them using the following equation (Eqn. 2.1) [10]. 

 o dark
n

flat dark

I I
I

I I





 (2.1) 

where oI  is the acquired image; darkI  is the dark current frame; flatI  is the flat-field image; 

nI  is the normalized image. 
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Shot noise 

The random arrival of photons to the CCD surface introduces shot noise. The probability of 
the photon arrival follows Poisson distribution. Shot noise becomes obvious when collecting 
a small amount of photons. Shot noise can be eliminated by collecting more photons, either 
with a longer exposure time or by combining multiple frames [9]. 

2.2 Image alignment/stitching 

Image alignment discovers correspondence among images with a certain degree of overlap. 
It is essential for image stabilization in computer vision. In material characterization area, it 
is required when comparing images of the same place of interest, but taken with different 
shoots. It is the former step of image subtraction. Image alignment techniques include pixel-
based alignment [11], feature-based alignment [12-14], Fourier-based alignment [15, 16] and 
incremental refinement [17, 18].  

Image stitching combines multiple images of different areas with overlapping to create a 
panorama. It is useful for obtaining high resolution overview of an object from multiple 
microscopic images. Image stitching techniques include key point detection [19, 20], feature 
matching [21], geometric registration [22, 23] and global registration [24, 25]. In material 
characterization area, feature matching is the commonly applied technique. Detailed 
description of image alignment algorithms and image stitching methods can be found in the 
technical report written by R. Szeliski [26]. 

2.3 Image contrast enhancement 

Electronically acquired images often have grey scale distortion and require contrast 
enhancement to restore their quality. Image contrast enhancement makes it easier for object 
detection, edge detection, and image segmentation. However, this technique is only applied 
when image intensity is not related to the parameter to be measured. The enhancement 
algorithm is highly affected by the properties of material to be measured. The contrast 
enhancement algorithms can be classified as histogram-based [27-29] or frequency domain-
based [30-32]. Among these algorithms, histogram equalization is the basis of many 
derivatives. It includes block-based histogram equalization methods such as contrast limited 
adaptive histogram equalization [27-30, 32-34]. Traditional histogram equalization modifies 
the histogram of the entire image to obtain a contrast-enhanced image with a more uniform 
histogram. Although it enhances the contrast to a large extent to produce a better 
visualization effect, it still cannot discriminate details in homogeneous regions in the image. 
Chang et al proposed a block-based histogram equalization method, called collaborative 
learning method for image enhancement, which works well for images with homogeneous 
regions [35].   

2.4 Thresholding 

Thresholding is one of the traditional image processing methods. It is also the simplest 
method of image segmentation. In the thresholding process, individual pixels are treated as 
object pixels if their values are greater or smaller than a threshold value. Thresholding a 
grey image results in a binary image, which can be used to perform measurement of 
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interest, e.g. area fraction, and spatial distribution. Choosing threshold value is essential in 
image processing. In fraction measurement or porosity detection, slightly different threshold 
values can lead to dramatic difference in the final results. In practice, the threshold value is 
affected by measuring conditions also, e.g. illuminatiing intensity.  

The thresholding algorithm can be categorized to four groups – histogram shape-based 
methods [36, 37], entropy-based methods [38], locally adaptive methods [39, 40] and spatial 
methods[41]. In the histogram shape-based methods, the aim is to find an optimal threshold 
value that separates two major peaks in the histogram. This is performed by applying 
smoothing filters to the histogram, followed by applying a difference filter or fitting the 
histogram. The drawback of the histogram shape-based method is the lack of spatial 
information of images. The entropy-based methods use the entropy of the image as a 
constraint for selecting thresholds. There are two ways to conduct this process – maximizing 
the entropy of the thresholded image or minimizing the cross entropy between input image 
and the output image [42]. The disadvantage of this method is the complexity and low 
image quality. Locally adaptive thresholding method calculates threshold at every pixel. 
The threshold value is determined by local parameters, e.g. mean, variance, surface fitting 
parameters or their combinations. Due to the algorithm of this method, the calculation of 
threshold is usually time-consuming. Spatial methods use higher-order probability 
distribution and/or correlation between pixels for thresholding.  

Recently, wavelet transformation fuzzy set theory [43], and Parzen window estimate [44] 
technique are applied to create multi-level thresholing methods. More details on image 
thresholding methods can be found in the article written by Sezgin and Sankur [45]. 

2.5 Subtraction 

Image subtraction is the process in which one reference/background image is ‘subtracted’ 
from measurement images, to record changes in luminosity or to remove the effect of the 
background. In the case of subtracting reference image, the images were focused on the 
same measurement place, but taken at different time slots. The change in luminosity may be 
from object movement or property change of the area to be measured. It is applicable in the 
area of particle image velocimetry, star movement detection in astronomy, angiography of 
blood vessels and porosity detection of porous materials. The key point of reference image 
subtraction technique is to create localized luminosity change of particles or areas to be 
measured, while keeping the luminosity of the other areas with minimum change. The 
methods to illuminate the particles or areas include visible light illumination, laser (UV, 
visible, IR) illumination, and fluorescence effect. In the case of star movement detection, no 
artificial illumination needed. However, the objects to be measured usually do not possess 
such optical properties. Therefore, assistant illumination additives are applied to reveal the 
properties of interest. In particle image velocimetry, seeding particles are added to the fluid 
and illuminated with external light source; in angiography of blood vessels, fluorescence 
effect is applied to reveal the blood flow; in porosity detection of porous materials, purified 
water is used to reveal the location of penetrating pores by reflecting visible light. The 
reference images are taken at the same conditions but before the property (e.g. position, 
velocity) changes. In order to keep the conditions unchanged during taking reference and 
measurement images, vibration control, temperature control, and shooting parameter 
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control are necessary. To further maintain consistency between different images, calibration 
of dark noise, image alignment, image thresholding techniques would also be useful. 

2.6 3-D reconstitution 

3-D reconstitution of images usually requires several image processing steps. It includes 
image reconstruction, image enhancement, image classification, and structure clustering. 
The techniques involved here are similar to the ones we discussed previously, but with 
focus on 3-D image processing.  

3-D images are obtained by stacking sequence of 2-D slice images, which are tomographic 
reconstructions from projection images. The commonly used algorithm for image 
reconstruction is filtered back-projection algorithm [46, 47]. This algorithm filters the images 
and then back-projects them to the 3-D image volume [10]. 

In the image enhancement process, smoothing filters, e.g. Box filters and Gauss filters [47, 
48], are usually applied to images to eliminate the influence of noise. Median filters are also 
used when there are outliers in the images. All the filters listed above have low-pass 
characteristics and are spatially invariant [10]. The smoothing filters have negative effect on 
the sharp edges in the image. Research has been carried out to find a low-pass filter which 
suppresses the noise without sacrificing the edge sharpness. The solutions involve 
numerically solving partial differential equations (PDEs). They are the non-liner diffusion 
filter [49, 50], the shock filter [51] and the inverse scale space filter [52]. More details on 
different type of filters can be found in the book written by Aubert and Kornprobst [53]. 
These filters were designed for 2-D image processing. Since 3-D reconstruction is based on 
sequence of 2-D images, the filters described above can be applied to 3-D image processing. 

Compared to the image enhancement method, the image classification method is more 
material characteristic-oriented. It highly depends on the images to be processed, or saying 
in another way, the property of the material to be investigated. There is no ideal method 
working for every case. The generally applied classification methods include histogram-
based thresholding [36, 37], region growing [54, 55], iterative class property minimization 
[56, 57] and segmentation [58]. 

Structure clustering is the process to perform interested measurement, e.g. the grain size 
distribution, and area fraction, etc. one example of segmentation algorithm is the watershed 
algorithm, which is based on the principle of a landscape flooded by water [59]. 

3. Application of image processing in porous material characterization 

As a non-destructive test method, image processing-based method can perform repeated 
tests of the same sample. The properties of the sample can be monitored both spatially and 
temporally. Furthermore, with proper imaging techniques, image processing-based method 
can provide 3-D scanning of the sample, to obtain an in-depth view of material. This is very 
useful in the area of porous materials, where the 3-D structure plays an important role to the 
functioning. The major image processing techniques involved in characterizing porous 
materials include noise reduction, image enhancement, image subtraction, pixel 
classification and pixel clustering.  
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3.1 Porous material 

Porous material is a material with irregular pores (or voids) and solid skeletons. One 
simple example is the sponge. Many materials are considered as porous materials, such as 
rocks, soil, wood, paper, catalysts, biological tissues (bone), cements, and some ceramics. 
Some important properties of these materials can only be rationalized when they are 
treated as porous media. The application area of porous materials is so wide that it 
includes from rock mechanics, petroleum engineering, to filtration, acoustics, biology and 
material science. The featured properties of porous materials include density, porosity, 
pore size, permeability and mechanical strength. The structure of porous materials has 
been modeled in three different ways – networks of capillaries, arrays of solid particles 
and trimodal. 

The complicated structures of porous materials bring significant challenge to 
characterization techniques. Owing to the aspect of non-destructive and deep investigating 
capability, image processing-based techniques have been applied to characterize porous 
materials in many different ways. The properties can be detected include the 2-D properties 
of porosity [60], pore diameter [60, 61] and 3-D structure [62-64], as well as flow behavior 
inside the porous media [10]. 

3.2 Surface porosity and pore diameter 

Surface porosity and pore diameter are the fundamental properties of porous materials. The 
detection of these two properties starts with imaging techniques to differentiate the pores 
from the frame of the porous materials. One way to do that is filling the pores with resins. 
After that the sample will be cut and polished for subsequent imaging [65]. The spatial 
resolution of this technique not only depends on the imaging hardware, but also the image 
processing algorithm. Due to the limitation of image segmentation and mathematic 
morphology filters, the pores can only be detected when they span more than five pixels. 
Prado et al obtained a resolution of 50 m  using this method [65]. 

Wang et al. investigated the surface porosity of a sintered porous material using a different 
imaging technique [60]. The penetrating pores were indicated by water coming out from the 
bottom through them. Images of the top surface were taken before and after the water 
reaching the top surface but not flowing out. In this process, all the test conditions remained 
the same except for the water flow. In these two images, the brightness of the pixels at the 
place where the penetrating pores locate was different, because the penetrating pores reflect 
more light when filled by water. Image subtraction was applied to these images 
subsequently, resulting in an image with the information of the penetrating pores. The 
porosity and pore diameter can be measured by analyzing the subtracted image, using 
thresholding, edge detection, etc. The typical images are shown in Fig. 1. The usage of water 
flooding and visible light illumination make the detection of penetrating pores safe and 
convenient. The image subtraction method applied here eliminated the influence of 
hardware noise, e.g. dark current noise and pixel non-uniformity noise. The optical 
measurement and image processing showed their property of non-destructive here. 
However, limited by the imaging technique, this measurement only applies to specimens 
with a flat surface. 
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(a)                                               (b)                                               (c) 

Fig. 1. (a) Digital camera image of the porous surface; open pores fully filled with water but 
not to overflowing. (b) Water level has receded from the penetrating pores. (c) Binary image 
containing information of the penetrating pores; white pixels indicate pores [60]. 

3.3 3-D structure 

3-D structures of porous materials and fluid flow inside them have attracted more and more 
interest recently. For example, in the porous materials used for transpiration cooling, the 
distribution of the penetrating pores and how the coolant flows through them significantly 
affect the cooling efficiency of this material. The protocol to obtain 3-D geometric 
information of porous material is based on stacking 2-D image slices. There are several 
imaging techniques available to obtain these 2-D images and scan in the third dimension. 
One major imaging technique is computed tomography (CT). Based on the facility used, it 
can be further categorized to X-ray-based and neutron-based method [10]. These two 
methods are based on observing the scattered intensity of X-ray and neutron, which 
represents the difference in density, polarization, or scattered angle of the sample. The 
resolution of the X-ray microtomography can be as low as 0.1 m . Another imaging 
technique is Magnetic Resonance Imaging (MRI) [66], which has the resolution of tens of 
nanometers. For even higher resolution, a dual-beam Focused Ion Beam (FIB) imaging 
method has been proposed to investigate the 3-D geometry of porous materials [67]. The 
voxel resolution of this method is 15 nm . 

The examples of 3-D geometric investigation of porous materials range from soil to 
biological tissues. A. Kaestner et al. measured the hydraulic properties of soil aggregate 
packing using both neutron radiography and X-ray tomography [10]. The neutron 
radiography has the ability to show water distribution within a sample, while X-ray 
tomography shows the structures at higher resolution. L. Pothuaud et al. investigated the 
microarchitecture of trabecular bone using MRI [66]. In the image processing part, they 
interpreted the graphs in terms of vertices and branches. A six-connection algorithm was 
applied to form 3-D structure. Fig. 2 shows the procedure of 3-D reconstruction of an Al 
foam using 2-D images [68]. The Al foam was sectioned physically, and then images of each 
slice were taken consequently. However, the image processing technique remained the same 
as that for other 3-D imaging methods, e.g. MRI. 

More research work on 3-D reconstitution of porous media from image processing can be 
found in the area of soil [69-74], ceramics [75, 76], polyethylene [77], bone [78], metal [79, 80] 
and general porous media [81, 82]. 
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Fig. 2. Schematic diagram accounting for the image processing to obtain the 3D model of the 
Al-foam [68]. 

3.4 Fluid behavior 

As discussed before, fluid behavior inside the porous material has significant effect on its 
performance. Not only for the sintered porous media used for transpiration cooling, but also 
for the porous material used as catalyst carrier, the fluid flow and diffusion inside the pore 
network is doomed to be important. Simulation work of fluid flow in a porous medium has 
been conducted for decades, which usually involves solving transportation equations for an 
unsteady state. Speaking of the experimental work, during the last two decades, the nuclear 
magnetic resonance (NMR) technique has been proven to be a successful imaging technique 
[83]. This technique measures the Fourier transform of self-diffusion propagator of the 
inside fluid [84]. Fig. 3 shows multiphase fluid core saturation through sodium NMR signal 
measurement [85]. In the mixture of water and oil, sodium only present in the water phase. 
Therefore, those two fluid can be distinguished by imaging the sodium component. This 
research has application in the area of rock content analysis and petroleum industry. 

 
Fig. 3. 2D axial images of a Bentheimer core (a) fully saturated with 100 kppm brine (b) fully 
saturated with Isopar L [85]. 

Research work on fluid behavior in porous material has also been performed to the material 
of polyethylene [77], rocks [86-88] and general porous materials [87, 89]. 
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4. Conclusion 

In conclusion, image processing-based measurement techniques have the advantages of 
being non-destructive, easy operation, in-depth 3-D view capability and considerably high 
resolution. It has wide applications in material characterization area, especially the area of 
porous materials. The application area can be further extended with proper imaging 
technique. The image processing techniques involved include image alignment, image 
stitching, contrast enhancement, thresholding, image substraction, and 3-D reconstruction 
etc. Corresponding image processing techniques to be applied are highly affected by the 
properties of materials to be measured. The image processing methods can be migrated to 
other areas with similar image characteristics. For achieving accurate results, the image 
processing-based measurement should be improved from the image acquisition hardware, 
experimental setup and image processing algorithms aspects of view. 
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