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Sickle Cell Disease and Renal Disease 

Mathias Abiodun Emokpae and Patrick Ojiefo Uadia 
University of Benin, Benin City 

Nigeria 

1. Introdution 

The kidney of patients with sickle cell disease (SCD) is affected by both haemodynamic 
changes of chronic anaemia and by the consequences of vaso-occlusion which are especially 
marked within the renal medulla. There are many abnormalities in renal structure and 
function as a result of these changes. Functional changes occur with increasing age in 
subjects with sickle cell disease.  Proteinuria, severe anaemia and haematuria are reliable 
markers and predictors of chronic renal disease in patients with sickle cell disease (Emokpae 
et al., 2010a). Sickle cell disease is characterized by chronic haemolytic anaemia due to 
adverse effects of oxygen transport by the red blood cells. This often leads to a decrease in 
oxygen supply to peripheral tissues. 
The substitution of valine for glutamic acid at the sixth position of the ┚-globin polypeptide 
chain made haemoglobin S (HbS) different from normal adult haemoglobin A (HbA) (Reid 
et al., 1984).The inheritance of HbS gene in the heterozygous state results in sickle cell trait 
while inheritance in the homozygous state results in sickle cell disease (SCD). The 
prevalence of Hb S gene in various parts of Africa varies between 20-40% (Arabs, 1970), 
while in Nigeria the prevalence is put at 20-25percent (Lindner et al., 1974; Ukoli et al., 1988). 
Sickling phenomenon occurs secondary to intra erythrocytic HbS polymerization because of 
low oxygen tension which becomes reversible with adequate re-oxygenation of the 
haemoglobin. But with repeated sickling and resultant deformation, the red cell membranes 
become fragile and haemolyse. Sickle cell disease often results in a severe disease, with 
profound anaemia and multiple organ involvement including cerebrovascular events, acute 
vaso-occlusive episodes, retinopathy, acute chest syndrome and renal damage (Guash et 
al.,2006).Haemoglobin S may coexist with other mutant beta globin chains (┚c or ┚D) in a 
mixed heterozygous state leading to haemoglobin SC or SD disease. Haemoglobin SC 
disease is the most common mixed heterozygous form of sickle haemoglobinopathies 
occurring in one per 800 births in the African Americans (Guash et al., 2006). Sickle cell 
anaemia (SCA) affects the kidney, causing defects in tubulomedullary function (Allon, 
1990); and also causes proteinuria, progressive renal insufficiency and end stage renal 
disease (Pham et al., 2000). The glomerulopathy is the cause of the proteinuria and 
progressive renal insufficiency (Guash et al., 1996). 

2. Origin of sickle cell disease 

The origin of sickle cell disease is not known but a substantial evidence that the sickle cell 

mutation  occurred as several independent events was reported (Serjeant, 1992).Two 
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theories of evolution were postulated, namely- single mutation theory and multiple 

mutation theory. A single mutation occurring in Neolithic times in the then fertile Arabian 

Peninsula was favoured by Lehmann (1954), who postulated that the changing climatic 

conditions and conversion of this area to a desert caused a migration of peoples that could 

have carried the gene to India, Eastern Saudi Arabia and to Africa. Lehmann and Hunstan 

(1974) supported this hypothesis by citing the distribution of certain agricultural practices 

and anthropological evidence as well as the geographical distribution of the gene within 

Africa which manifested a decline in gene frequency from East to West Africa together with 

higher levels on the north compared to the south bank of the Zambesi River. This is 

compatible with the fact that the river acted as a barrier to a southern migration (Serjeant, 

1992). This theory was also supported by Gelpi (1973), who considered that the evidence 

from blood groups and other genetic markers was more compatible with an origin in 

Equatorial Africa and subsequent diffusion of the gene to India, Arabia and the 

Mediterranean by the East Africa slave trade (Kamel and Awny, 1965). 

The multiple mutation theory recently received support from the studies of DNA 

polymorphism. The use of restriction endonucleases to recognize and cut DNA at specific 

sequence has identified variations in DNA structure (polymorphism) that are inherited and 

may be used as genetic markers (Serjeant, 1992). The first of such polymorphism to be 

reported was a variation in the recognition site of the restriction endonuclease HPa 1 to the 

3’ side of the ┚-globin gene (Kan and Dozy, 1978). In most normal human DNA digested 

with HPa 1, the ┚-globin gene occurred on a DNA fragment 7.6 kd long. Polymorphism at 

this site in West African population resulted in ┚–gene occurring on the fragments 7.0 and 

13.0 kd long. Subsequently the 13.0kd fragment was found to be relatively lightly linked to 

the ┚-gene, the frequency of the 13.0 kd fragment in the AS genotype being 0.31 and in the 

SS genotype 0.87(Kan and Dozy,1978). The immediate application of this observation was in 

antenatal diagnosis (Kan and Dozy, 1978), but it was also of potential value as a genetic 

marker in anthropological studies. The 13.0 kb fragment was found to be linked to the ┚c 

gene (Feldenzer et al., 1979). 

3. Study of the kidney 

The study of nephrology as a major discipline in medicine dates back to about five decades 

ago. The discipline has its origin in the writing of pioneers who used their observational 

skills to establish its basic framework. From their observations and analyses came the 

realization of the vital role of the kidney in the maintenance of health, particularly in 

relation to homeostasis of body fluids and electrolytes (Travis et al., 1984). These pioneers 

recorded the profound changes in health that occurred with any of a variety of kidney 

disorders. While imaginative postulates about the physiology of the kidney in health and 

disease were beginning to evolve, detailed construct of the precise mechanisms by which 

various renal events took place were not easily obtainable. Opportunities to explore in detail 

the postulates were limited primarily by the primitive technology which was available then. 

Only recently when technological advances were made and applied that the theoretical 

bases and principles of renal physiology and molecular biology established and an 

understanding reached of the alterations that occurred in the disease state (Travis et al., 

1984). With technological advancement, there has been a deeper insight into the 

pathophysiologic mechanisms that interact to create renal disease. 
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The kidneys are essential for life. Normally more water and ions are ingested than the body 
requires. This excess intake is excreted in urine. The kidneys therefore regulate both the 
volume and the composition of the body fluids. As well as the surplus water and 
electrolytes, the urine contains metabolic waste products, foreign substances and their 
metabolic derivatives (Bray et al., 1999).The kidneys also produce a variety of humoral 
agents, including erythropoietin, active metabolites of vitamin D, renin and prostaglandins. 
Each human kidney has about one million functional units- the nephrons; arranged in 
parellel (Risdon, 1985). The renal regulation of the volume and composition of the body 
fluids involves each of these nephrons in three processes:  filtration at the glomerulus, 
tubular reabsorption and tubular secretion. 

4. Renal manifestations in sickle cell disease 

The kidney in SCD is affected by both the haemodynamic changes of a chronic anaemia and 
by the consequences of vaso-occlusion which are especially marked within the renal 
medulla. As a result, there are many abnormalities in renal structure and function (sergeant, 
1992). Renal size in SCD varies with age of the patients and the method of examination. 
Renal weight at autopsy was normal in young children (Alleyne et al., 1975), increased in 
older children and young adults and decreased in patients over 40years (Morgan et al., 
1987). In children, bilateral renal enlargement was common in intravenous urography 
(Minkin et al., 1997; Odita et al., 1983) and in adults; renal length exceeded 15cm in at least 
one kidney in about 10% Jamaicans (McCall et al., 1987) and Nigerians (Odita et al., 1983). In 
the Nigerian study, the mean kidney length in patients with SCD was significantly greater 
than in normal controls. Renal structure on imaging in SCD revealed that intravenous 
urography in 189 Jamaican adults showed mild cortical scarring, the frequency increasing 
from 8% in the 16-25years old, to 45% in those over 35years (McCall et al.,1987). Calyceal 
abnormalities included calyceal cysts, blunting and clubbing, which also increased with age. 
Radiological evidence of renal papillary necrosis occurred in 44 (26%) of adults patients in 
the Jamaican study. This high prevalence was also noted in Nigerians (Odita et al., 1983). 
Functional changes occur with increasing age in patients with SCD. In children and young 
adults there are increases in effective renal blood flow (ERBF), effective renal plasma flow 
(ERPF) and glomerular filtration rate (GFR), although the filtration fraction is decreased 
(Hatch et al., 1970). With age, there is a progressive decline in ERBF, ERPF and GFR and in 
patients over the age 40years; GFR and ERPF tend to decline (Morgan and sergeant, 1981). 
But normal or above normal values may persist in some patients (Alleyne et al., 1975). 
Progressive renal failure at older ages is a major cause of illness and death (Morgan et al., 
1987).     Glomerular disease is common (15 – 30 percent) in homozygotes for sickle cell 
disease. Glomerular hyperfiltration and hypertrophy occur within the first 5years of life. 
Approximately 15 – 30 % of patients develop proteinuria in the first three decades, and 5% 
develop ESRD. The glomerular pathology is usually focal segmental glomerulosclerosis, 
probably due to sustained glomerular capillary hypertension or membrane proliferative 
glomerulonephritis (MPGN). Predictors of chronic renal failure are worsening anaemia, 
proteinuria, nephrotic syndrome and hypertension (Powars et al., 2005). 

5. Sickle cell disease and glomerulopathy. 

Patients with sickle cell anaemia (SCA) may develop glomerulopathy with proteinuria and 
progressive renal insufficiency leading to End Stage Renal Disease(ESRD) (Gausch et al., 
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2006). These authors observed that the patients with sickle cell haemoglobin (Hb SS) have a 
more severe disease than individuals with other sickling haemoglobinopathies using 
clinical, haematologic and biochemical parameters in a group of patients with sickle cell 
haemoglobinopathies. It was reported that increased albumin excretion rate (AER) occurs in 
68% of the patients; macroalbuminuria was present in 26% and microalbuminuria in 42% 
while only 32% of adults with ‘SS’ disease had normoalbuminuria. There was no gender 
differences reported in the prevalence of albuminuria. In a study of proteinuria among SCA 
patients in Nigeria, male predominance of sickle cell nephropathy was reported (Abdu et 
al., 2011). The concentration of 24hours urine protein in the SCA male subjects with 
proteinuria was significantly higher (0.25g/day;p<0.001) compared with the SCA female 
patients with proteinuria (0.09g/day)(Emokpae et al.,2010a). The sex differences in the 
mechanisms underlying renal injury suggest that androgens may permit or accelerate renal 
damage while estrogen may provide renoprotection (Ji et al., 2005; Standberg, 2008). The 
female sex hormone (estradiol) is thought to have antioxidant properties. Estradiol is 
capable of increasing superoxide dismutase and glutathione peroxidase expression as well 
as decreases NADPH oxidase enzyme activity and superoxide production (Lopez-Ruiz et 
al., 2008). The graded albuminuria according to age hence duration of disease showed that, 
in ‘SS’ disease the prevalence of abnormal AER increased from 61% in patients aged 18 to 30 
years to as high as 79% in patients older than 40 years. Albumin excretion rate was reported 
to have increased as creatinine clearance decreased, but there was a large variability and a 
significant number of patients had increased AER despite a preserved creatinine clearance. 
In a four decade observational study of 1056 patients with sickle cell disease, Powars et al.,( 
2005) reported that 73% of the patients had one or more clinically recognized forms of 
irreversible organ damage. By the fifth decade, nearly one-half of the surviving patients 
(48%) had documented irreversible organ damage. ESRD (glomerulosclerosis), chronic 
pulmonary disease with pulmonary hypertension, retinopathy and cerebral micro 
infarctions were manifestations of arterial and capillary microcirculation obstructive 
vasculopathy. In an earlier report on chronic renal failure in sickle cell disease : risk factors, 
clinical course and mortality indicated that histologic studies showed characteristic lesion of 
glomerular “drop out” and glomerulosclerosis, in thirty six patients with sickle cell disease 
who developed sickle cell renal failure (Powards et al., 1991; Powards et al., 2002). Table 1 
shows changes in biochemical parameters in sickle cell disease patients with or without 
proteinuria in northern Nigeria.   
Renal insufficiency in SCA was defined as a creatinine clearance <90ml/min using 
Crockcroft- Gault, (1976) equation. It was reported that 21% of patients with SCA had renal 
insufficiency while 27% of patients with other sickling disorders also had renal insufficiency 
but the percentage of patients with renal insufficiency and advanced kidney failure (chronic 
kidney disease stage 3 or higher) was higher in SS disease  than other sickling disorders 
(Guasch et al., 2006). Guasch et al.(1997) previously showed renal insufficiency in SCA 
results from a glomerulopathy, which can be detected by the presence of albumin and other 
large molecular weight proteins in urine. Recently it was observed that glomerular 
involvement is extremely common in Nigerian sickle cell haemoglobinopathies (Abdu et 
al.2011). Increased AER occurs in approximately 70% of adults with haemoglobin SS disease 
and about 40% in adults with other sickling disorders. There was an indication of sickle cell 
glomerulopathy in a majority of older adults with SS disease and its prevalence was much 
higher than previously reported on the basis of a positive urinary dipstick for protein (Falk 
et al., 1992).   
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Males with 

no 

proteinuria 

Males with 

proteinuria 
p-value 

Females 

with no 

proteinuria 

Females 

with 

proteinuria 

p-value 

No of 
subjects 

68 32  76 24  

Age 
(Years) 

22.2 ± 3.8 26.4 ± 7.3 P < 0.005 21 ± 3.0 20.4 ± 7.6 NS 

Weight 
(Kg) 

45 ± 12.3 50 ± 7.2 P < 0.001 42 ± 7.6 47.4 ± 5.3 P < 0.001 

Na+ 
mmol/l 

134.7 ± 3.4 140 ± 3.8 P < 0.001 136 ± 5.4 141 ± 5.3 P < 0.001 

K + mmol/l 4.2 ± 0.5 3.9 ± 0.5 P < 0.05 4.05 ± 0.35 3.9 ± 0.13 NS 

Cl- mmo/l 97.4 ± 2.3 103 ± 4.1 P < 0.001 98.2 ± 5.3 101 ± 3.9 NS 

Hco3- 
mmo/l 

97.4 ± 2.3 103 ± 4.1 NS 22.3 ± 1.55 20.2 ± 3.0 p < 0.05 

Urea 
mmol/l 

2.46 ± 0.88 8.07 ± 2.2 P < 0.001 2.79 ± 1.77 2.46 ± 1.22 NS 

CR μmol/l 59.2 ± 10.2 280 ± 22.3 P < 0.001 61.2 ± 12.4 67 ± 23.7 NS 

eGFR 
ml/min 

104 ± 22.8 70 ± 6.9 P < 0.001 97 ± 3.5 101 ± 2.5 NS 

CR = creatinine, eGFR = estimated glomerular filtration rate, NS = not significant, Adapted from Abdu 
et al.,2011. 

Table 1. Urea, electrolytes, creatinine and estimated glomerular filtration rates in sickle cell 
anaemia patients with proteinuria and those with no proteinuria. 

The pathogenesis of glomerular damage in SCA is not well understood. Children with 

sickle cell anaemia have renal haemodynamic alterations characterized by renal 

hyperperfusion and glomerular hyperfiltration. These probably resulted from renal vaso-

dilation associated with chronic anaemia. In some patients, these changes are followed by 

the development of glomerular proteinuria and progressive renal disease. Histologically, 

patients with SCA may develop glomerular hypertrophy and focal segmented 

glomerulosclerosis, features that are suggestive of haemodynamically mediated injury 

(Falk et al., 1992). The causes of the haemodynamic injury to the glomerulus in SCA are 

unclear, but anaemia could cause glomerular damage by increasing blood flow. Other 

factors that are related to the rheology or stickness of sickle erythrocyte could cause 

glomerular damage independently or in conjunction with the haemodynamic changes that 

are associated with anaemia (Guasch et al., 1999). In the analysis of significance of 

abnormal albuminuria in SCA, several authors demonstrated by physiologic and 

pathologic studies that macroalbuminuria is the clinical manifestation of an underlying 

glomerulopathy (Falk et al., 1992; Guasch et al., 1999; Emokpae et al., 2010a;Abdu et 
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al.,2011). Twenty eight percent of patients with SCD patients were observed to have 

significant proteinuria in Nigerian SCD patients (Abdu et al.,2011), confirming the fact 

that proteinuria is a more sensitive marker than elevated serum creatinine values in 

detecting glomerular injury and early manifestation of sickle cell nephropathy. From that 

study, 50% of SCA male patients with proteinuria had CKD. However, it was observed 

that the high prevalence of CKD reported may be due to the fact that the study was 

conducted in a tertiary health care referral centre where there is likelihood of having 

patients population with more severe disease (Abdu et al., 2011). Table 2 shows 

haematological changes in SCD patients with or without proteinuria and those with 

chronic kidney disease in northern Nigeria. 

 

 Control 
HbSS 

Macroalbu
minuria 
HbSS 

P-value CKD P-value 

No. of subjects 144 40 - 16 - 

Age (years) 21.6±3.2 20.8±4.2 - 32.6 P<0.001 

Haematocrit (%) 20.1±5.9 19.1±3.9 NS 18.7±1.19 NS 

Haemoglobin (g/dl) 7.0±2.1 6.25±0.9 P<0.001 6.1±0.2 P<0.001 

Total leukocyte 
Count (x109/L) 

11.7±4.05 11.8±3.2 NS 11.9±1.04 NS 

Red blood cells 
Count (x1012/L) 

2.43±0.6 2.19±1.0 NS 2.07±0.2 P<0.001 

Platelet count 
(x109/L) 

373±135 348±92 NS 428±221 P<0.001 

Mean cell 
Hemoglobin (pg) 

29.6±2.6 35.7±3.3 NS 36.6±1.5 NS 

Mean cell volume(fl) 82.2±6.9 84.9±4.2 NS 87±0.9 P<0.001 

Mean cell 
hemoglobin 
Conc. (g/dl) 

36.4±2.1 35.7±3.3 NS 36.6±1.5 NS 

Absolute lymphocyte 
Count (x109/L) 

4.0±1.3 3.2±0.6 P<0.001 2.8±0.4 P<0.001 

Absolute neutrophil 
Count (x109/L) 

5.2±1.7 6.0±0.8 P<0.001 6.4±0.6 P<0.001 

Absolute Monocyte 
Count (x109/L) 

0.5±0.2 0.4±0.03 P<0.001 0.4±0.04 P<0.001 

Absolute eosinophil 
Count (x109/L) 

0.2±0.1 0.2±0.02 NS 0.2±0.1 NS 

Adapted from Emokpae et al., 2010a 

Table 2. Haematological indices in SCD patients with macroalbuminuria, CKD and controls 

In patients with macroalbuminuria but preserved GFR, the glomerular ultrafiltration 
coefficient was reduced versus normalbuminuric sickle cell control subjects; indicating that 
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macroalbuminuria irrespective of the level of GFR reflects an underlying glomerular 
pathology (Guasch et al., 2006). It was reported that in children the development of 
microalbuminuria follows an age dependent manner. In a study by Dhranidharka et 
al.(1998) in a group of sicklers, It was observed that microalbuminuria was not present in 
children who were younger than 7years but reached 43 percent in the second decade of life. 
In another similar study, Wigfall et al.(2000) observed an age-dependent occurrence of 
dipstick proteinuria: proteinuria was not present in children who were less than 6years, but 
occurs in 7% of children aged 7-10years and 10% of children who were aged 13 to 17years. It 
was therefore speculated that sickle cell glomerulopathy could evolve in five clinical stages. 

 A normoalbuminuric stage of variable duration followed by a stage of  

 Microalbuminuria which could lead to 

 Macroalbuminunnia but with preserved GFR and to 

 Macroalbuminuna and progressive renal insufficiency and  

 ESRD.  
However, evidence of progression from micro to macroalbuminuria is lacking and such 
classification may remains a hypothesis (Guasch et al , 2006). It was concluded that the 
prevalence of glomerular damage in SCA is much higher than previously thought; a 
majority of patients with SS disease are at risk for the development of progressive renal 
insufficiency and late renal failure especially because the life expectancy in patients with SS 
disease has improved with better medical care. Secondly, in contrast to most glomerular 
disease, the glomerulopathy in SS disease is not accompanied by the development of 
significant systemic hypertension. Lastly, the haemodynamic changes that are associated 
with chronic anaemia per se are not solely responsible for the development of sickle cell 
glomerulopathy and indicate that other mechanisms are involved in the pathogenesis of the 
glomerular damage in this population. 
There is a large variability in the severity of the clinical manifestation of sickle cell anaemia 
(SCA), including renal involvement. Some patients develop multiorgan failure while others 
have relatively few end-organ complications (Guasch et al., 1999). Epigenetic and 
environmental factors have been implicated to explain these differences in clinical severity. 
In children, lower haemoglobin levels and a relatively high degree of haemolysis are 
associated with a poorer clinical outcome while the persistence of high levels of foetal 
haemoglobin (HbF) is associated with less aggressive clinical manifestation (Platt et al., 
1994). Epidemiologic studies in African and Asian countries have suggested that differences 
in the degree of clinical severity are related to the geographical origin of the sickle cell 
mutation (Adedeji, 1988). The ┚-globin gene cluster is located on chromosome 11 and 
consists of a long segment of DNA (approximately 60,000 bp) that contains the ┚-globin 
gene and other globin genes. Distinct polymorphism in this gene cluster can be identified by 
restriction endonucleases that cleave the DNA at specific sites. When the restriction sites 
patterns are arranged by alleles, they form a haplotype. In the African, specific haplotypes 
are associated with different groups from different geographic area and define an 
individual’s origin from Benin, Central African Republic, Senegal, Saudi Arabia or 
Cameroun (Nagel et al., 1985). Since substitution of valine for glutamic acid at position six 
arose on different haplotypes, it must have arisen in different ethnic groups (Guasch et al., 
1999). Some studies have suggested that the severity of SCA varied with haplotype, with the 
Central African Republic (CAR) haplotype associated with a higher incidence of stroke, leg 
ulcer, acute chest syndrome, bone infarcts and kidney failure compared with non-CAR 
haplotypes (Powars et al., 1990; Powars et al., 1991). Guasch et al., (1996) have emphasized 
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the development of proteinuria and progressive renal insufficiency, leading to end-stage 
renal disease in a subset of SCA patients. It was observed that glomerulopathy is the cause 
of the progressive renal insufficiency and can be detected as increased excretion of albumin 
in the urine.              
The prevalence of renal insufficiency in patients with SCA has been reported to be low 
(<5%), based on the serum creatinine (Powars et al., 1991). However, Guasch et al (1996) 
found that serum creatinine is a very insensitive marker of renal insufficiency in SCA, 
becoming abnormal only after GFR is reduced to <30 to 40mL/min per 1.73m2 

6. Renal matrix alterations in glomerulosclerosis 

Progressive renal disease of many etiologies is characterized by increased accumulation of 
acellular material within the glomerular mesangium. Initially, this process is characterized 
by focal areas of glomerular hyalinosis, acellular material that stains with eosin but not with 
periodic acid Schiff, together with capillary collapse and adhesions of the glomerular tuft to 
Bowman’s capsule. With time, the mesangial compartment is occupied by material that 
stains positively with both periodic acid Schiff and silver. Ultimately, the capillary tuft is 
replaced by this sclerotic material and ceases filtration (Rennke and Klein, 1989).Other 
features of progressive glomerulosclerosis are more variable. The mesangial compartment is 
in some cases occupied by an increased number of cells both mesangial cells and resident 
macrophages. In the case of diabetic nephropathy, there is an associated thickening and 
wrinkling of the glomerular basement membrane which contributes to compromised 
capillary lumens. In addition to an expanded mesangial compartment, some patients with 
diabetic nephropathy also exhibit a characteristic nodular glomerulosclerosis (Kimmelstiel-
Wilson lesion)(Rennke and Klein, 1989).    
The mesangial components that are expressed as a consequence of inflammation or the 
sclerotic process belong to two classes. First, normal mesangial matrix molecules accumulate 
in excess quantities. These include laminin, type IV collagen, heparin sulphate proteoglycan 
and fibronectin. Second, the sclerotic mesangium contains matrix molecules that are not 
usually present in this location. These include interstitial collagens, particularly type III 
collagen and the small proteoglycan decorion. These matrix consistuents are typical 
products of fibroblasts and related cell types. In a sense, the reappearance of these 
interstitial matrix products represents a return to biosynthethic activity of the embryonic 
renal interstitial mesenchyme (Yoshioka et al., 1989).    
Studies of matrix protein distribution in various primary renal diseases suggest that the 
proteins expressed and the regional pattern of expression differ considerably between 
different renal diseases (Oomura et al., 1989; Yoshioka et al., 1989).  In all, with progressive 
glomerulosclerosis particularly with a mesangial proliferative component, the mesangial 
contains increased amounts of fibronectin, laminin, heparin sulphate proteoglycan and type 
III and IV collagen. Despite the widespread use in experimental animals of the nephron 
ablation model of progressive glomerulosclerosis, relatively little is known about the nature 
of or the mechanisms responsible for the accumulated glomerular matrix components.      
Alterations in the renal expression of chondroitin sulphate proteoglycans are another 
component of the sclerosing process. The normal glomerulus expresses the small 
proteoglycan biglycan. In experimental glomerulonephritis induced by antibodies to the 
Thy-1-antigen, there is increased synthesis of biglycan as well as of another related 
proteoglycan, decorin by isolated glomeruli (Okuda et al., 1990). Activated mesangial cells 
are a possible source for these proteoglycans. 
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Diabetes mellitus in humans and experimental animals is associated with evidence of 
deregulation of renal extracellular matrix proteins expression. More is known about the 
matrix alterations in this disorder than other forms of glomerulosclerosis, perhaps in part 
due to the availability of animal models. Biochemical investigation has shown increased 
accumulation of basement membrane components in diabetes glomeruli from experimental 
animals. Thus glomeruli from streptozotocin-diabetic rats contain more type IV collagen 
compared with glomeruli from normal rats (Hasslacher et al., 1986). On the other hand, the 
data for glomerular content of heparin sulphate proteoglycan are conflicting, with an 
increase reported in streptozocin-diabetic rats and a decrease reported in diabetic human 
patients (Klein et al., 1986; Shimonura and Spiro, 1987). The discrepancy underscores the 
need for caution in extrapolating from studies of diabetic rodents to mechanisms of human 
disease.      
Immunohistochemical investigation of the sclerotic regions of human diabetic glomeruli 
show evidence of an increase in laminin, fibronectin and types IV and V collagen (Karttunen 
et al., 1986). 
While our understanding of the protein constituents of the sclerotic process has improved, 
the molecular mechanisms responsible for their accumulation are just being understood. It is 
likely that many factors including capillary physical forces, dietary constituents, metabolic 
injury and the effects of local growth factors and products of inflammation converge on a 
common pathway that generates matrix components within the glomerulus and 
mesangium. The process whereby matrix accumulates in response to injury, likely parallel 
the process of scarring and wound healing critical for the survival of other tissue types. In 
the kidney, however the generation of matrix may sufficiently disrupt the normal nephron 
architecture to render it useless. It may be possible in the future to modify the normal 
healing process in the glomerulus so that a loss of functioning nephrons does not hold the 
remaining glomeruli at increased risk for sclerosis.   

7. Mechanisms whereby proteinuria cause progressive renal disease 

The possibility that proteinuria may accelerate kidney disease progression  to end stage 
renal failure has received support from the results of increasing numbers of experimental 
and clinical studies (Abbate et al., 2006). Researches in nephrology in recent times have 
yielded substantial information on the mechanisms by which persisting dysfunction of an 
individual component cell in the glomerulus is generated and signaled to other glomerular 
cells and to the tubule. Spreading of disease is central to processes by which nephropathies 
of different types progress to end stage renal disease (ESRD). Independent of the underlying 
causes, chronic proteinuric glomerulopathies have in common a sustained or permanent 
loss of selectivity of the glomerular barrier to protein filtration. Glomerular sclerosis is the 
progressive lesion beginning at the glomerular capillary wall, the site of abnormal filtration 
of plasma proteins. Injury is transmitted to the intestitium favouring the self destruction of 
nephrons and eventually of the kidney (Abbate et al., 2006). Baseline proteinuria was an 
independent predictor of renal outcome in patients with diabetes, non-diabetes as well as 
sickle cell nephropathies (Peterson et al., 1995; Breyer et al., 1996; Abdu et al.,2011). Clinical 
trials consistently showed renoprotective effects of proteinuric reduction and led to the 
recognition that, the antiproteinuric treatment is instrumental to maximize renoprotection 
(Peterson et al., 1995; Wapstra et al., 1996). Findings that the rate of GFR decline correlated 
negatively with proteinuria reduction and positively with residual proteinuria provided 
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further evidence for a pathogenic role of proteinuria (Ruggenenti et al., 2003). It was 
documented that whenever proteinuria is decreased by treatments, progression to ESRD is 
reduced (Brenner et al., 2001).     

7.1 Glomerular proteinuria as signal for interstitial inflammation         

In vitro studies using proximal tubular cells as a model to assess effects of apical exposure to 
plasma proteins proved highly valuable to approaching direct casual relationships. In 
monolayers of proximal tubular cells, the load with plasma proteins (albumin, IgG and 
transferrin) induced the synthesis of the vasoconstrictor peptide endothelin-1 (ET-1), a 
mediator of progressive renal injury by virtue of ability to stimulate renal cell proliferation 
and extracellular matrix production and to attract monocytes (Zoja et al., 1995). Other 
investigators confirmed and extended the stimulatory effects of a diversity of plasma 
proteins on the expression of proinflammatory and profibrotic mediators in renal tubular 
cells (Yard et al., 2001; Tang et al., 2003). Among molecules attracted are 
monocytes/macrophages and T-lymphocytes, monocyte chemoattractant protein-1 (MCP-1) 
and RANTES which were over-expressed in proximal tubular cells that were challenged 
with plasma proteins (Wang et al., 1997; Zoja et al., 1998). Albumin upregulated tubular gene 
expression and production of interleukin 8(IL-8), a potent chemotatic agent for lymphocytes 
and neutrophils (Tang et al., 1999).The releases of ET-1 and chemokines in response to proteins 
was polarized mainly toward the basolateral compartment of the cell as to mirror a directional 
secretion that favoured the interstitial inflammatory reaction that was observed in-vivo. 
Protein overloading of human proximal tubular cells induced the synthesis of fractalkine, 
which in its membrane-anchored form promotes mononuclear cell adhesion via CX3CR1 
receptor (Danadelli et al., 2003). Fractalkine mRNA was overexpressed in kidneys of mice with 
protein overload proteinuria, and the gene product was detected in tubular epithelial cells 
mainly in the basal region. Treatment of mice with an antibody against CX3CR1 limited the 
interstitial accumulation of monocytes /macrophages (Danadelli et al., 2003). 
Investigation of the molecular mechanisms underlying chemokine upregulation in proximal 
tubular cells or protein challenge had initial focus on the activation of transcriptional NF-┚ 
(Zoja et al., 1998). Other studies confirmed the pathway and revealed reactive oxygen as a 
secondary messenger (Drumm et al., 2003). Protein overload elicited rapid generation of 
hydrogen peroxide in human proximal tubular cells, an effect that together with NF-┚ 
activation was prevented by antioxidants (Morigi et al., 2002). Specific inhibitors of proteins 
kinase C (PKC) prevented hydrogen peroxide generation, NF-┚ activation and MCP-1 and 
IL-8 genes up regulation that was induced by protein overload (Tang et al., 2003), suggesting 
a cascade of signals from PKC- dependent oxygen radical generation to nuclear 
translocation of  NF-┚ and consequent gene up regulation. A link also has been made 
between induction of NF-┚ activity by protein and mitogen-activated protein kinases, 
including p38 and extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) that are 
involved in chemokine synthesis (Dixon et al., 2000; Danadelli et al, 2003). In support of the 
hypothesis of protein overload as a key activator of signaling in proximal tubule is the 
finding that albumin activated the signal transducer and activator of transcription (STAT) 
proteins in cultured proximal tubular cells. Because the STAT pathway is the principal 
mechanism that converts the signal from a wide array of cytokines and growth factors into 
gene expression programs that regulate cell proliferation, differentiation, survival and 
apoptosis, it was suggested that albumin may stimulate proximal tubular cells in the 
manner of a cytokine (Rawlings et al., 2004; Brunskill et al., 2004).                 
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Despite evidence that albumin overload elicits several responses by tubular cells in-vitro, it 

has been argued that albumin per se may not be toxic to the proximal tubular epithelium. 

Compounds that are bound to albumin, such as free fatty acids (FFA), instead have been 

implicated to be causative in pro inflammatory activation or injury of cultured proximal 

tubular cells (Schreiner, 1995). It was also observed that among various fatty acids, oleic acid 

and linoleic acids exert the most toxic and profibrogenic effects in human proximal tubular 

cells in culture. These studies collectively indicate that the ability of albumin to act as a 

carrier enhances the pro inflammatory activation of proximal tubular cells. In addition, in-

vivo gene expression profile analysis of proximal tubules from mice with protein overload 

proteinuria identified 2000 genes that were differentially regulated by excess proteins. More 

than half of them were upregulated (Nakajima et al., 2002). They included thymic shared 

antigen -1, the fibroblast-associated gene GS188 and glia maturation factor-B, a protein that 

originally was purified as a neurotrophic factor (Kaimori et al., 2003). The expression of glia 

maturation factor-┚ was induced in renal proximal tubular cells of mice with protein 

overload proteinuria (Kaimori et al., 2003). Proximal tubular cells that over expressed glia 

maturation factor-┚ acquired more susceptibility to death by sustained oxidative stress 

through p38 pathway activation.  

There was a controversial issue relating to the concentration of albumin that was used in 

various in-vitro studies. Burton et al. (1999) discovered that the apical exposure of human 

proximal tubular cells to 1mg/ml albumin or transferrin did not increase MCP-1 or PDGF-

AB release, an effect that  was observed after exposure to a human serum fraction (40 to 100 

KD) in the molecular weight range similar to albumin and transferrin. Studies that reported 

the effects of protein overload on NF-┚ activation showed responses from 0.5mg/mL in 

some experiments and usually >2.5 - >5mg/mL (Zoja et al., 1995; Wang et al., 1997). The 

latter concentration seems too far exceed the concentration reached in the proteinuric 

ultrafiltrate in-vivo (Gekle, 2005).   
The proximal tubule bears other receptors for ultrafiltered proteins such as 
immunoglobulins and complement molecules (Braun et al., 2004). The functional role of such 
receptors has not been established. It is likely that filtered proteins other than or in addition 
to albumin induces tubular dysfunction and injury in conditions of non selective 
proteinuria, in which large molecular weight proteins are a significant component. In 
contrast, relatively selective albuminuria induces delayed mononuclear cells infiltration and 
usually is associated with or mild chronic tubulo-interstitial injury. In this respect, the case 
of minimal-change disease has been considered sometimes an exception to the rule that 
interstitial infiltrates develop with time in proteinuric glomerulopathies. In addition, in 
minimal-change disease, a substantial percentage of patients respond to steroid and the 
regression of proteinuria prevents inflammation and renal function deterioration (Remuzzi 
and Giachelli, 1995).  

7.2 Key role for the intra-renal activation of complement    

Complement activation is a powerful mechanism underlying tubular and interstitial injury 
via cytotoxic, proinflammatory and fibrogenic effects. Abnormal complement, C3 and C5b-9 
staining in proximal tubular cells and along the brush border is a long known feature both 
in human chronic proteinuric diseases and experimental models. Glomerular permeability 
dysfunction of proteinuric nephropathies allows complement factors to be ultrafiltered 
abnormally across the altered glomerular barrier into the Bowman’s space and tubular 
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lumen. Plasma- derived C3 (molecular weight 180kd) is likely to reflect more loss of 
glomerular permselectivity and to enhance cell dysfunction in the presence of abnormally 
filtered plasma proteins. Renal tubular cells also synthesize C3 and other complement 
factors in ways that may have critical importance in disease, as found in experimental renal 
transplant rejection and post ischemic acute renal failure (Pratt et al.,2002; Farrar et al., 2006). 
Therefore both excess ultrafiltration and proximal tubular cell synthesis of complement 
could underlie complement – mediated injury in chronic proteinuric renal disease. Recent 
findings of C3 mRNA upregulation and C3 accumulation in proximal tubular cells in 
kidneys of mice with protein overload proteinuria are in support of a role for the local 
synthesis of complement (Abbate et al., 2004). Complement is an important effector of 
interstitial mononuclear cell infiltration and fibrogenesis in this model as shown by 
significant attenuation of injury in C3 deficient mice (Abbate et al., 2004). A direct role for 
protein overload as a stimulus was indicated by findings that the exposure of cultured 
proximal tubular cells to total serum proteins at the apical surface upregulated C3 mRNA 
expression and protein biosynthesis (Tang et al., 1999). 

7.3 Profibrogenic signal from proximal tubular cells in response to protein overload 

Local recruitment of macrophages by tubular cells that are loaded with ultrafiltered plasma 

proteins may contribute to interstitial fibrosis by engaging matrix producing interstitial 

myofibroblasts. Macrophages also regulate matrix accumulation via release of growth 

factors such as TGF-┚ and PDGF, ET-1 and PAI-1, TGF-┚ stimulates the transformation of 

interstitial cells into myofibroblasts. In addition, proximal tubular epithelial cells 

communicate with interstitial fibroblasts to promote fibrogenesis via paracrine release of 

TGF-┚. (Abbate et al.,2006).  

8. Pathogenesis of lipoprotein abnormalities in chronic kidney disease 

Regardless of the aetiology of renal disease, patients with CKD develop complex qualitative 

and quantitative abnormalities in lipid and lipoprotein metabolism. These damages and the 

underlying molecular mechanism has been the subject of some reviews (Vaziri, 2006; Chan 

et al., 2006). Classical uraemic dyslipidaemia is characterized by raised triglyceride, low high 

density lipoprotein (HDL) and normal total cholesterol. These qualitative defects become 

more pronounced with advancing renal failure and modified by renal replacement therapy, 

renal transplantation, co-morbid conditions such as diabetes mellitus and concurrent 

medication (for example steroids, cyclosporine) (Vaziri,200) Lipoprotein metabolism is a 

dynamic system that can be disturbed owing to alterations in apolipoprotein receptors. 

When GFR falls below 60ml/min, there is a fall in the ratio of apolipoprotein AI (apo A) to 

apolipoprotein C – III (apo C – III) in spite of normal cholesterol and triglyceride 

concentrations (Batsta et al., 2004). As renal function deteriorates in non- nephrotic patients 

with CKD, triglyceride concentrations increase while HDL concentrations decline 

(Farbekhsh and Kasiske, 2005) and there is accumulation of the more atherogenic small 

dense low-density lipoprotein (LDL) particles. 

In advanced CKD, there is decreased concentration of apoA-containing lipoproteins, 
increased concentrations of triglyceride-rich apo B containing lipoproteins and serum 
lipoprotein(a). Reduced catabolism and clearance of triglyceride-rich apo B containing 
lipoproteins is a consequence of : (a) decreased activity of lipolytic enzymes, such as 
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lipoprotein lipase (LPL)and hepatic lipase (HL), (b) reduced receptor- mediated uptake via 
hepatic LDL- receptor related protein(LRP) and VLDL receptors (c) accumulation of certain 
inhibitors of LPL such as pre -  ┚ HDL (Chan et al., 2006). Impaired clearance of triglyceride-
rich lipoproteins is further compounded by reductions in apolipoprotein C-11 (apo C- II) 
and apolipoprotein E (apo E). Impaired divalent ion metabolism arising from parathyroid 
gland hyperplasia in CKD (stage 3–4) may also adversely affect lipoprotein metabolism by 
suppressing LPL and hepatic lipase activities (Nishizawa et al., 1997). Post prandial 
lipoprotein metabolism is also impaired in CKD, resulting in accumulation of chylomicron 
particles and their remnants. Reduction in the expression of HL and down regulation of LRP 
in uremia may also account for the accumulation of remnant lipoprotein (Kim and Vaziri, 
2005). Maturation of HDL is impaired due to decreased plasma lecithin: cholesterol 
acyltransferase (LCAT) activity and gene expression. Plasma HDL concentration also falls in 
uremia due to decreased expression of both apo AI and AII. (Vaziri et al., 2001). These 
abnormalities can lead to impaired HDL mediated cholesterol uptake from the vascular 
tissue and contribute to the cardiovascular disease. In addition, LCAT deficiency can in part, 
account for elevated serum free cholesterol, reduced HDL/total cholesterol and elevated  
pre – ┚ HDL in CRF. The latter can in turn depress lipolytic activity and hinder triglyceride- 
rich lipoprotein clearance in CRF (Vaziri et al., 2001; Emokpae et al.,2010a). Statistically 
significant decrease in LCAT and lipoprotein lipase (LPL) activities were observed in SCA 
subjects in steady state compared with HbAS and HbAA controls in both males and 
females. The activities of LCAT and LPL were lower in subjects with SCA than sickle cell 
trait and normal haemoglobin. It was concluded that this may contribute to the changes 
observed in lipid metabolism in SCA(Emokpae et al.,2010b) Although Dyslipidaemia is 
present in patients with SCD and patients with renal insufficiency irrespective of the 
haemoglobin genotype, it was reported that the lipoprotein levels observed in Nigerian 
adults with SCA patients were more lower compared with the lipid levels observed in both 
African Americans and Saudi Arabian patients with SCD. The potential effects of lipids on 
cardiovascular disease risk as measured by three predictor ratios were higher in SCA 
compared to HbAS and HbAA patients with kidney disease (Emokpae et al.,2010c).Plasma 
total cholesterol is frequently low to normal and only occasionally elevated in CRF patients. 
In addition 3-hydroxyl-3- methyl-glutaryl- coA (HMG COA) reductase, the rate-limiting 
step in cholesterol biosynthesis and cholesterol 7 ┙-hydrolase, the rate limiting step in 
cholesterol catabolism, are unaffected by CRF (Liang and Vaziri., 1997). Moreover, LDL 
receptor and scavenger receptor B1, the primary pathways of hepatic cholesterol uptake are 
normal in CRF (Vaziri et al., 1999). 
The dyslipidaemia of CKD has similar feature to the metabolic syndrome. The metabolic 
syndrome, including type 2 diabetes, is known to predispose to CKD (Kurella et al., 2005), 
which in turn aggravates insulin resistance and promotes dyslipidaemia. Insulin 
resistance increases free fatty acid (FFA) supply from adipocytes to increase hepatic 
lipogenesis and this stimulates hepatic secretion of apo B-100 containing lipoprotein 
specifically large triglyceride rich VLDL particles (Prinsen et al., 2004). Impaired insulin 
signaling in skeletal muscles and adipose tissue also slows the catabolism of all 
triglycerides–rich containing lipoproteins. Expansion in the VLDL particle pool size 
impacts on the remodeling of LDL and HDL in an atherogenic direction (Chang et al., 
2006). Table 3 indicates changes in lipoproteins, lecithin: cholesterol acyltransferase and 
lipoprotein lipase in subjects with sickle cell anaemia, sickle cell trait and normal 
haemoglobin in northern Nigeria.  
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HbSS 
males 

HbAS 
males 

p-value HbAA males p-value 

No of subjects 68 25 - 25 - 

Age in years 22.2±3.8 28.7±7 - 28.8±7 - 

Triglyceride (mmol/L) 1.10±0.4 1.19±0.18 NS 1.4±0.12 P<0.001 

T. Cholesterol (mmol/L) 3.06±0.5 4.05±0.06 P<0.001 4.3±0.12 P<0.001 

HDL Cholesterol (mmol/L) 0.72±0.17 1.18±0.03 P<0.001 1.2±0.06 P<0.001 

LDL Cholesterol (mmol/L) 1.92±0.54 2.15±0.14 NS 2.52±0.16 P<0.001 

VLDL Cholesterol (mmol/L) 0.48±0.06 0.42±0.07 NS 0.41±0.08 NS 

LPL (umolglycerol 
liberated/hr/l Plasma) 

4.12±1.2 5.12±0.4 P<0.001 5.56±0.23 P<0.001 

LCAT (umolcholesterol 
liberated/hr/l Plasma) 

66.8±2.8 69.2±3.0 P<0.001 70.2±2.96 P<0.001 

Adapted from  
Emokpae et al.,2010b 

     

Table 3. Lipid, lipoproteins, LCAT and LPL in male sickle cell disease subjects compared 
with HbAS and HbAA controls. 

9. Effect of oxidative stress 

Reactive oxygen species or free radicals are highly reactive entity and very short-lived 

molecules which are constantly produced in a wide variety of normal physiological 

functions, they are however toxic when generated in excess (Parke and Sapota, 1996). The 

most important characteristic of toxic free radicals either in vivo or in vitro is peroxidation 

of lipid resulting in tissue damage and death of affected cells (Bandyopadhyay et al., 1999). 

There are profound evidence implicating free radicals  in induced lipid peroxidation in the 

pathogenesis of several pathological conditions including chronic inflammation 

(Vijayakumar et al., 2006), renal disease (Dakshinamurty et al., 2006; Suryawanshi et al., 

2006),sickle cell renal disease (Emokpae et al.,2010d) and cardiovascular disease (Kaysen et 

al., 2004). Table 4 indicates changes in oxidative stress and lipid peroxide parameters in 

control SCD, proteinuria and chronic kidney disease while table 5 shows inflammatory 

markers in subjects with SCD in northern Nigeria. 

The harmful effect of reactive oxygen species is neutralized by a broad species of 
protective agents termed antioxidants which prevent oxidative damage by reacting with 
free radicals before any other molecules can become a target.   The non enzymatic 
antioxidants are vitamins E, C and reduced glutathione while the antioxidant enzymes 
include superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). 
They all play important roles in the protection of cells and tissues against free radical 
mediated tissue damage (Yu et al., 1994; Airede and Ibrahim, 1999; Ray and Hussain, 
2002).There was a significant reduction in the activity levels of antioxidant enzymes in the 
serum of SCD patients compared with control sickle cell trait and normal haemoglobin 
(Emokpae et al.,2010d). This is an indication that SCA patients produce greater quantities 
of reactive oxygen species than controls. In SCD, the production of reactive oxygen 
species can be grossly amplified in response to variety of pathophysiological conditions 
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such as inflammation immunologic disorders, hypoxia, metabolism of drugs or alcohol 
and deficiency in antioxidant enzymes. Sickle cell anaemia patients showed low activity 
levels of antioxidant enzymes which may be due to the consumption of these substances 
by pro-oxidants in SCA. This therefore place SCA patients at increased risk of oxidative 
stress and injury. The oxidative stress may contribute to sickling process with the 
formation of dense cells, the development of vaso-occlussive and shortened red blood cell 
survival. We also demonstrated increased serum levels of some acute phase proteins in 
SCA, which may be as a result of sub-clinical vaso-occlusion which in turn can lead to a 
hidden inflammatory response (Emokpae et al.,2010d). Based on the results of the study, 
increased level of malondialdehyde compared significantly with lower activities level of 
antioxidant enzymes and increased acute phase proteins. In SCD patients with CKD, it 
was observed that there were increases in stress and inflammatory markers. C-reactive 
protein and fibrinogen were increased in subjects with renal insufficiency and were 
associated with increased urea and creatinine levels. Proteinuria as observed in SCA 
patients with renal insufficiency may act in synergy with oxidative stress and 
inflammation to initiate and accelerate the progression of renal disease. Chronic exposure 
of renal tubular epithelium to high levels of filtered plasma proteins may cause tissue 
injury (Emokpae et al.,2010a).   
In certain diseases such as renal disease and sickle cell disease, the toxic material produced 
by activated phagocytes during reaction can cause maximal damage to the membrane 
because they are active in the lipid phase. The damaging effects of elevated toxic radical are 
due to an increase in the formation of superoxide radicals within the cells which cause 
inactivation of superoxide dismutase enzyme (Suryawanshi et al., 2006).  Oxidative stress 
occurs when there is an imbalance between production and scavenging. Increase in lipid 
peroxidation in sickle renal disease is due to excess formation of free radicals. Glycosylated 
protein, auto-oxidation, reduced superoxide dismutase enzyme and ascorbic acid and lack 
of reduced glutathione are other causes for oxidative stress.   
 

Oxidative stress 
Markers 

Controls 
HbSS 

Macroalbumi
nuria 
HbSS 

P-value 
CKD 
HbSS 

P-value 
 

No of subjects 144 40  
16 

 
 

Age (years) 21.6±3.2 20.8±4.2 NS 32.6±3.0 P<0.001 

Malondialdehyde (mmol/l) 2.5±0.4 3.82±1.0 P<0.01 5.8±0.4 P<0.001 

Glutathione Peroxidase 
(mU/ml) 

9.6±0.9 8.3±3.0 P<0.001 2.81±0.24 P<0.001 

Superoxide Dismutase 
(ng/ml) 
 

32.5±4.2 25.4±4.6 P<0.001 18.3±2.8 P<0.001 

Catalase (μmol/min/ml) 156±5.9 152±1.9 P<0.001 148±1.06 P<0.001 

Adapted from Emokpae et al., 2010a 

Table 4. Oxidative stress markers in serum of SCD patients with macroalbuminuria, CKD 
and controls (mean ± SD)	
www.intechopen.com
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Inflammatory 
Markers 

Controls 
HbSS 

Macroalbumin
uria 

HbSS 
P-value 

CKD 
HbSS 

P-value 

No of subjects 144 40  16  

C-reactive protein 
(μg/ml) 

1.120±0.02 1.23±0.1 P<0.001 1.81±0.05 P<0.001 

Fibrinogen (mg/dl) 299±9.1 307±6.0 P<0.001 317±4.1 P<0.001 

Urea (mmol/l) 2.6±0.25 3.4±0.2 NS 14.0±2.8 P<0.001 

Creatinine 
(μmol/l) 

59.2±10.2 63±27 NS 496±78 P<0.001 

eGFR (ml/min) 103±22 101±2.5 NS 14.5±2.0 P<0.001 

Adapted from Emokpae et al., 2010a 

Table 5. Serum levels of inflammatory markers, urea, creatinine and eGFR in SCD patients 
with macroalbuminuria, CKD and controls (mean ± SD) 

 

Oxidative stress 
Markers 

Controls 
HbSS 

Control 
Hb AA 

CKD 
HbSS 

CKD 
HbAA 

No. of subjects 144 20 16 20 

Age (years) 21.6±3.2 22.0±2.6 32.6±3.0* 48.6±15.2* 

Malondialdehyde (mmol/l) 2.5±0.4 2.4±0.2 5.8±0.4* 5.03±0.8* 

Glutathione Peroxidase (mU/ml) 9.6±0.9 10.3±2.7 2.81±0.24* 4.35±1.8* 

Superoxide Dismutase (ng/ml) 32.5±4.2 34.5±1.6** 18.3±2.8* 17.2±12.0* 

Catalase (μmol/min/ml) 156±5.9 163±5.8* 148±1.06* 153±3.0* 

*P<0.001     

Adapted from Emokpae et al., 2010a 

Table 6. Oxidative stress markers in controls HbSS, HbAA, CKD HbSS and CKD HbAA 

Sickle cell anaemia patients in both steady state and renal impairments undergo constant 

inflammatory process which may in turn leads to inflammatory response (Bourantas et 

al.,1998; Emokpae et al., 2010d). Haemoglobin S containing red blood cells auto-oxidize 

faster thereby generating more superoxide, hydrogen peroxide, hydroxyl radicals and lipid 

peroxides than HbAA. Reactive oxygen species can cause damage to biological 

macromolecules and membrane lipids readily react and undergo peroxidation. Studies have 

shown that there were increases in stress and inflammatory markers in SCD patients with 

renal insufficiency.  

The mechanisms by which inflammation may lead to decline in renal function is not clear 

but cytokine could act directly on the endothelium and mesangium of the glomerulus (Fried 

et al.,2004). Studies in animal model have shown that kidney in SCD is susceptible to 

hypoxia because of occlusion of blood flow in the vasa recta which may lead to medullary 

and papillary necrosis and fibrosis (Emokpae et al.,2010a). There are evidence to suggest 

that prolonged glomerular hyperfiltration due to any cause especially in SCD could lead to 

glomerular damage resulting to glomerular sclerosis, proteinuria and progressive renal 

disease. It was suggested that filtered plasma proteins taken up by tubular epithelium 
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stimulate inflammatory genes, release inflammatory and vaso-active substances into the 

renal interstitium that induce scarring and sclerosis (Remuzzi and Bertani,1998).We also 

showed a solid association of chronic inflammation with CKD in SCA and this observation 

supported the hypothesis that inflammatory and oxidative stress markers contribute to the 

pathophysiology of glomerulopathy in SCD. Other contributing factors to the 

pathophysiology of glomerulopathy in SCD are possible iatrogenic acceleration by analgesic 

medication. There are indication that morphine induces mesangial cell proliferation and 

glomerulopathy via kappa-opioid receptors as well as the effect of nonsteroidal anti-

inflammatory drug-induced damage (Allon et al.,1998;Weber et al.,2005).  

Lipid metabolism in SCA patients appears to be different from sickle cell trait and normal 
haemoglobin in both steady state and renal disease. Alterations in lipid metabolism are 
often observed in all three Hb genotypes with CKD but marked differences in pattern and 
severity of lipid disorder differ and thus appear to be more severe in SCD subjects with 
CKD. Since proteinuria is observed in the early stages of SCD nephropathy, it is the 
hallmark of future deterioration of renal failure. It is therefore important to detect this early 
so that intervention at this early stage may prevent or delay renal damage in SCD patients 
more so as this group of subjects do not do well with renal replacement therapies. 
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