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CFD and Thermography Techniques  
Applied in Cooling Systems Designs 

Samuel Santos Borges and Cassiano Antunes Cezario 
Research and Technological Innovation Department, WEG 

Brazil 

1. Introduction 

The focus of this work consists in optimizing the water flow inside a water cooled electric 
motor frame, aiming at the maximization of the power/frame size ratio, the minimization of 
pressure drop and the avoidance of hot spots. For the development of this work 
computational fluid dynamics (CFD) and thermography techniques were used.  
For many years water cooled electric motors have been used by industry, especially in 
specific applications that require features that can not be provided by conventional fan 
cooled motors. Among theses features are a better power/frame size relation, low noise 
levels, enclose applications, among others. 
Cooling by means of water circulation is frequently used in large motors, typically frame 
sizes above IEC 315. A justification for this practice not to be widely used in smaller motors 
is its higher cost compared to air cooling systems. However, provided that it presents some 
technical and/or economical viability, water cooling can also be used in smaller frame sizes. 
The technological progress have resulted in the development of new tools that facilitate the 
study of this motor type, such as the computational fluid dynamics and the thermography 
techniques, which consist, respectively, in the use of numeric models applied to fluid 
mechanics and the obtaining of the motor surface temperature distribution. 

2. Benefits and drawbacks 

The following advantages and disadvantages of this kind of motor can be mentioned, in 
comparison with air cooled motors. 

2.1 Advantages 

 Greater power/frame size ratio; 

 Lower noise level; 

 Higher efficiency; 

 The outside waste deposit on the frame does not damage the motor cooling; 

 No problems with waste deposit on the external fan blade; 

 It can be used in totally enclosure environment; 

 The heat removed from the motor is not directly dissipated into the environment; 

 Possibility of using the same cooling fluid of the load and/or machine where it is 
installed; 
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 Better resistance to local impact. 

2.2 Disadvantages 

 Higher manufacturing cost; 

 Auxiliary system to provide water; 

 Need to control the water chemical composition; 

 Risk of corrosion inside of the water circuit; 

 Risk of fouling in the water circuit; 

 Risk of leaks; 

 More precautions on maintenance. 

3. Fundamental concepts 

3.1 Cooling system 
The cooling systems are apparatus usually comprised of several components that interact to 
keep the temperature of machines and systems in general controlled in order not to exceed 
the limits imposed by quality, safety, performance and/or efficiency. For instance, systems 
such as internal combustion engines, turbines, compressors, bearings, electric machines, 
electronic structures, electrical conductors, chemical and welding processes, among many 
others, can be mentioned as some examples of systems comprising thermal restrictions. 
Consequently, the cooling systems are very important to industries and should therefore be 
designed to keep a good performance and reliability. 
The more commonly used coolants are gases and liquids. Among them, due to their wide 
occurrence, low cost and practicality, air and water are customarily employed. They can be 
used in many different ways: in direct or indirect contact with the systems, by means of one or 
more fluid combinations, separated or mixed. And they can be forcedly or naturally moved, 
by physical mechanisms respectively known as forced convection and natural convection. 

3.2 Heat transfer 
Heat transfer concerns the exchange of thermal energy from one region of higher 
temperature to another of lower temperature in one or more means. This exchange occurs 
by mechanisms as conduction, convection, radiation and phase-change. 

3.2.1 Conduction 
The conduction occurs due to interactions between the particles of fluids. Thermal 
insulation, tanks, plates and ducts walls, fins, and others are examples of devices that 
exchange heat by conduction. It is described by Fourier’s Law and the following equation: 

 k

T
q kA

n


 


 (1) 

Where, 
qk: Heat flux of conduction; 
K: Thermal conductivity; 
A: Heat transfer area; 

T : Temperature gradient; 

n: Direction. 
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3.2.2 Convection 
The convection is the heat transfer between a solid surface and a moving fluid. This 

phenomenon can be natural, induced by density difference (low fluid velocity), or forced, 

customarily supplied by fans or pumps (high fluid velocity).  

 ( )h sq hA T T   (2) 

Where, 
qh: Heat flux of convection; 
h: Convection coefficient; 
A: Heat transfer area; 
Ts: Surface temperature; 
T∞: Fluid temperature. 

3.2.3 Radiation 
The thermal radiation is provided by electromagnetic waves emission. The classic example 

of this phenomenon is the heat transfer between sun and earth. It is given by Stefan-

Boltzmann Law. 

 
4 4

1 2( )rq T T   (3) 

Where, 
qr: Heat flux of radiation; 
ε: Emissivity; 
σ: Stefan-Boltzmann constant; 
T1, T2: Surface temperatures. 

3.2.4 Phase – Change 
It is boiling, condensation, freezing and melting. These processes are given by following 

equations. 

 .Q m H   (4) 

Where, 
Q: Amount of heat; 
m: Mass; 
ΔH: Specific latent heat. 

3.2.5 Heat transfer in conduits 
In the heat transfer in the fluid flowing in a conduit, the temperature is neither uniform in 

the fluid flow direction nor in the heat flux direction. Therefore, the bulk temperature is 

assumed as reference temperature. The use of a temperature reference allows to execute the 

heat balance in steady state. In this case, the transferred heat per time unit is a direct 

measure of the bulk temperature difference between two conduit sections. That is, 

 . .p bq m c T   (5) 
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Where, 
q: Amount of heat per time unit; 

m : Mass flow rate; 

cp: Specific heat of fluid; 
ΔTb: Bulk temperature difference of fluid among two conduit sections. 

3.3 Fluid dynamics 
3.3.1 Mass flow rate 
The mass flow rate is given by the mass of fluid which passes through a surface per time 

unit and can be calculated from the following equation: 

 . .m v A  (6) 

Where, 

m : Mass flow rate; 

ρ: Fluid density; 
v: Mean velocity in the section; 
A: Area of conduit section. 

3.3.2 Pressure drop 
The pressure drop in pipes may be occasioned by means of: 

 Localized drops (valves, curves, and others); 

 Friction;  

 Difference of piping height. 
The pressure drop is obtained as a function of Reynolds number, which depends on the 

fluid velocity, given by: 

 
. .

Re
v D


  (7) 

Where, 

Re: Reynolds number; 
ρ: Fluid density; 
v: Mean velocity in the section; 
D: Diameter of pipe; 
μ: Viscosity. 
If the Reynolds number is smaller than 2300 the flow is laminar and friction factor is 

calculated by: 

 
64

Re
f   (8) 

Where, 

f: Friction factor; 
Re: Reynolds number. 
But, if the Reynolds number is greater than 2300 the flow is turbulent and friction factor is 

calculated by: 
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 1 2.51
2.log

3.7 Re.

e
D

f f

 
   
 
 

 (9) 

Where, 
f: Friction factor; 
Re: Reynolds number; 
e: Absolute roughness; 
D: Pipe diameter. 
And the pressure drop is determined by: 

 
2.

. .
2

L v
p f

D


   (10) 

Where, 
Δp: Pressure drop; 
f: Friction factor; 
L: Length of pipe; 
D: Pipe diameter; 
ρ: Fluid density; 
v: Mean velocity in the section. 
Therefore, to minimize the pressure drop and consequently reduce the energy loss of flow, it 
is desired low fluid velocity. 

3.4 Turbulence models 
Among several turbulence models known in the literature, will be discussed here only those 
ones involved in this work: κ - ε model, κ - ω model and Shear-Stress Transport (SST). 

3.4.1 The κ - ε model 
The simplest complete turbulence model has a wide range of applications in industrial and 
engineering problems. It can be applied to mass or heat transfer, combustion, multi-phase 
flows simulations, and others. The κ - ε model has been incorporated in most commercial 
CFD codes due to its stability and numerical robustness, good accuracy and low 
computational cost. 
This model should be avoided in complex flow applications, such as flows with boundary 
layer separation, sudden changes in the mean strain rate, rotating fluids, and over curved 
surfaces. 
The standard κ - ε model is based on model transport equations for the turbulence kinetic 
energy κ and its dissipation rate ε. Transport equations for the standard κ - ε model are 
given by: 

 
( ) ( )i t

k b M k
i j k j

k k k
P P Y S

t x x x

    


     
         

      
 (11) 

  
2

1 3 2

( ) ( )
.

i t
k b

i j j

C P C P C S
t x x x

   


     
  

     
        

      
 (12) 
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Where,  
μt: Turbulent viscosity; 
Pk: Generation of turbulence kinetic energy due to the mean velocity gradients; 
Pb: Generation of turbulence kinetic energy due to buoyancy; 
YM: Fluctuating dilatation in compressible turbulence; 
ρ: Density; 
μ: Viscosity; 
C1ε, C2ε, C3ε: Model constants; 

σk, σε: Turbulent Prandtl number for κ and ε; 
Sk, Sε: Source term. 

3.4.2 The κ - ω model 
The κ - ω model is widely used and is superior for boundary-layer flows both in the viscous 

near-wall region treatment and in the streamwise pressure gradients application. However, 

it is not appropriate outside the shear layer that is a free-stream boundary. The standard κ - 
ω model is an empirical model based on model transport equations for the turbulence 

kinetic energy κ and the specific dissipation rate ω, which is obtained by ε to κ ratio. Based 

on Wilcox, κ and ω are obtained from: 

 
( )( )

'
j t

k kb
j j k j

U kk k
P P

t x x x

    


     
       

      
 (13) 

 
2

( )( ) j t
k b

j j j

U
P P

t x x x




      
 

     
       

      
 (14) 

Pκb, Pωb: Turbulence buoyancy term; 
U: Velocity vector; 
σω: Turbulent Prandtl number for ω; 
┚’, ┚, ┙: Model constant. 

3.4.3 The shear-stress transport model (SST) 
The shear-stress transport κ - ω model was developed by Menter to effectively blend the robust 

and accurate formulation of the κ - ω model in the near-wall region with the free-stream 

independence of the κ - ε model in the far field. To achieve this, the κ - ε model is converted 

into a κ - ω formulation. The SST κ - ω model is similar to the standard κ - ω model, but the 

modeling constants are different in one and another and the SST model includes some changes 

in the standard one, such as the multiplication of both transformed κ - ε and κ - ω models by a 

blending function, which activates standard κ - ω model in the near-wall region and activates 

transformed κ - ε model away from the surface, the incorporation of a damped cross-diffusion 

derivative term in the ω equation, and a modification in the definition of the turbulent 

viscosity to account for the transport of the turbulent shear stress.  

These improvements provide more accuracy and reliability for a wide range of flow classes 

than the standard κ - ω model. For instance, adverse pressure gradient flows, airfoils, and 

transonic shock waves. 
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The base equations are: 

 ( ) ( )i
k k k k

i j j

k k k
G Y S

t x x x

       
      
     

  (15) 

 ( )( ) i

i j j

u
G Y D S

t x x x
    

    
       
     

 (16) 

 ;t
k

k




        t







    (17) 

Where,  

kG : Generation of turbulence kinetic energy due to the mean velocity gradients; 
Gω: Generation of ω; 
Yk, Yω: Dissipation of κ and ω due to turbulence; 
Гk, Гω: Effective diffusivity of κ and ω; 
Gω: Cross-diffusion term; 
σω: Turbulent Prandtl number for ω; 
Sω: Source term. 

3.4.4 Comparing SST and κ - ε model 
In the Figures 1 and 2 two simulations of temperature and velocity of the fluid are presented, 
with the same boundary conditions for SST and κ - ε model. Note that the results are similar 
for both models, however SST models capture more flow characteristics than κ - ε model. 
 

 

Fig. 1. Fluid temperature using SST and κ - ε model 
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Fig. 2. Fluid velocity using SST and κ - ε model 

3.5 Fouling 
Fouling is a term employed to represent undesired accumulation of solid material on the 

surfaces of heat exchangers. This accumulation results in thermal resistance increment 

reducing exchanger performance. Fouling reduces the flow area and increases surface 

roughness, causing a reduction in the flow rate as a consequence of the pressure drop 

increase. 

The fouling deposits may be loose particles or fix and hard layers, comprising sediments, 

polymers, inorganic salts, fuel or corrosion products, biological growth, and others. The 

maximum fouling layer can occur in few hours or may require many years to be formed. In 

any case, it should be avoided, because it increases capital costs, maintenance costs, 

production and energy losses, etc. 

The main fouling mechanisms are crystallization, precipitation, sedimentation, chemical 
reaction, corrosion, biological and freezing fouling. 
The amount of heat per time unit can be calculated by: 

 . .q U A T   (18) 

Where, 
q: Amount of heat per time unit; 
U: Overall heat transfer coefficient; 
A: Heat transfer area; 
ΔT: Bulk temperature difference between two conduit sections. 
And U is obtained by the following equation:  
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1

hec fou

U
R R




 (19) 

Where, 
U: Overall heat transfer coefficient; 
Rhec: Resistance of cleaned heat exchanger; 
Rfou: Resistance of fouled heat exchanger. 
If the heat exchanger is clean, then Rfou = 0. Table 1 presents typical values of fouling 
resistance. 
 
 

 
 

Table 1. Typical fouling resistance 

Some variables must be taken into account in the design and operation of cooling systems, 

in order to avoid fouling. The most important are: 

Flow velocity: for water, it should be kept above 2 m/s to suppress fouling and above 1 m/s 
to minimize fouling. 
Surface temperature: for cooling towers, the water temperature must be kept below 60 °C. 
Tube material: select materials to avoid corrosion, for instance. 

For liquid coolants, fouling inhibitors should be used, such as: corrosion inhibitors, anti-

dispersants, stabilizers, biocides, softeners, acids, and polyphosphates. However, if such 

fouling controls are not effective, the exchanger must be cleaned either on-line or off-line. 

3.6 Corrosion 
Corrosion is electrochemical destructive attack of the base material with its environment. 

Water in direct contact with a metal surface causes oxidation, which is a process where 
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metal dissolved in fluid; this phenomenon generates serious problems in the worldwide. 

Corrosion causes: 

 Efficiency reduction of machines and plants; 

 Increase costs of maintenance and overdesign; 

 Losses or contaminations of products; 

 Plants shutdowns; 

 And others. 
The many aspects of corrosion problems constrain it control, which is achieved by 
recognizing and understanding corrosion mechanisms. The control and prevention of 
corrosion damage can be obtained basically by following methods: 

 Employment of suitable materials; 

 Use of protective coatings; 

 Change to the environment; 

 Application of cathodic or anodic protection and etc. 

4. Water-cooled frame 

The objective of this work consists in optimizing the water flow inside a water cooled frame 
considering the boundary conditions intrinsic to both the manufacturing process and the 
electric motor itself. 
One of the challenges of this development is the frame manufacturing, which consists in a 
single cast iron piece free of welds or seals, making it difficult to obtain the water circuit. 
Due to the increasing demand for smaller water cooled motors, in this work an IEC 200 
frame size – 75 kW – IV Poles – 60 Hz motor was used. 

5. Thermal circuit and equations 

The first step of the design is the definition of the motor simplified thermal circuit as 
represented in Figure 3. It can be observed that the produced heat, L, is transferred through 
the equivalent resistance, Req, and the convection resistance, Rh, thus causing an increase in 
the average temperatures of the coil, Tw, the frame, Tframe and the fluid, Tfluid. 
The next step is calculating the water flow that is needed to remove the heat produced by 
the motor. This can be obtained by means of (20) and (5), where L is the heat amount to be 

removed in W, m  is the mass flow in kg/s, cp is the specific heat of water in J/(kg . K), To is 

the outlet water temperature and Ti is the inlet water temperature both in K. 

  . .p o iL m c T T   (20) 

Using (20) and the values shown in Table 2, it is obtained a mass flow of 0.239 kg/s. 
 

Variable Value 

L 5.000 (W) 

cp a 20 °C 4 184.3 (J / kg / K) 
To - Ti 5 (K) 

 

Table 2. Value and units for variables 
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Fig. 3. Simplified thermal circuit of the motor 

The value of L was considered as the total losses of the motor, that is, it is considered that all 

heat generated by the motor will be removed by water, which in practice does not happen, 

once that a portion of generated heat will be dissipated to environment through the 

endshields, the shaft and the terminal box. However, the heat portion removed by water is 

greater than by other means, so that it can be considered conservative, thereby simplifying 

the problem. 

The next step consists in checking the circuit thermal saturation in relation to the water flow 

that is, quantifying how much an increase in the flow causes the coil temperature to reduce. 

Therefore, it is necessary to verify the behavior of the coil average temperature fluctuation, 

ΔTw, with the water flow. For this verification equations obtained by heat transfer laws will 

be used, as described next. 

The equations (21) and (22) relate L in W with Tw, Tframe and Tfluid in K and with Req and Rh in 
K/W. 

 
 w frame

eq

T T
L

R


  (21) 

 
 frame fluid

h

T T
L

R


  (22) 

And to obtain Rh it is used (23), where the convection coefficient, h, is in W / (m2 . K) and 
the thermal exchange surface between the frame and the fluid, A, is in m2. 

 
1

.
hR

h A
  (23) 
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Fig. 4. Mass flow saturation 

Knowing that h is a variable dependent on the fluid properties, the channel geometry and 

the flow, then the fluctuation temperature, ΔTw, can be related to the mass flow m , 

according to (21), (22), (23), the fluid properties and the channel geometry, obtaining the 
curve presented in Figure 4. It can be observed that the motor operation point, Po, is located 
on the curve saturation region, what means that when increasing the water flow, the coil 
temperature reduction can be despised, because it is necessary a great increase the flow for 
the temperature to be slightly reduced. Therefore, this flow is correct for the design. 
For the obtainment of this curve the following considerations were made: 
a. Req is constant and, due to the difficulty to theoretically calculate its value, it was 

obtained through (21) and (22) using experimental data of preliminary tests; 
b. Fluid properties are constant; 
c. Dimensions of channel: 0.400 x 0.015 m; 
d. Average diameter of the channel: 0,350 m. 

6. Numerical analyses 

Once analytically defined the flow value to be used in the design, the numerical analyses are 
initiated to check the water flow behavior inside the frame. For better use of the 
computational capacity, some considerations and simplifications were made concerning 
both the physical phenomenon and the geometry. 

6.1 Heat transfer 
The possible hot spots inside the water circuit can be generated basically by three causes, 
local heat generation, cooling fluid shortage in determined regions, and/or fluid 
recirculation. For simulation purposes local heat generation is neglected, because the heat 
flow from the stator to the frame is uniformly distributed throughout the surface. As for 
fluid shortage, it can be considered that the water circuit will be totally filled and therefore 
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there will be no shortage. So the possible hot spots will be generated only by water flow 
recirculation, thus allowing the elimination of the heat transfer calculation on the numerical 
simulations, making possible to identify the hot spots by means of association with the 
recirculation. It is emphasized that with this consideration the hot spots can be only 
identified, but not thermally quantified. 

6.2 Geometry 
The water circuit geometry has as basic shape a cylinder with an inlet and an outlet of water 
as presented in Figure 5, where the difference between the external radius, re, and the 
internal radius, ri, is 0.015 m and the length, l, is 0.400 m. These values are limited by both 
the manufacturing process and the motor geometry. Flow directional guides will be inserted 
if needed, after analyzing the simulation results. 
 

 

Fig. 5. Basic geometry of water circuit 

To make easy the study of the flow inside the frame, the cylinder was transformed into a 

planned shape with a separation guide between inlet and outlet (configuration I) as 

presented in Figures 6 and 7. In Figure 6 it can be observed the flow inside the cylinder and 

in Figure 7 the flow inside configuration I. It is possible to observe the similar behavior of 

the flow in both of them, allowing for the use of configuration I as the base for the circuit 

optimization. This similarity happened because the gravitational force is considered null 

and, as the channel average speed is approximately 0.04 m/s, the centrifugal force caused by 

the cylinder curvature can be despised. 

6.3 Inlet and outlet channels 
The frame inlet and outlet channels are the main responsible for the pressure drop; 

therefore, an optimization in these regions can significantly reduce the total pressure drop. 

In the analysis of the inlet and outlet channels it was used the planned cylinder technique 
and nine simulations were made. The three more significant ones from these simulations 
will be presented. 
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Fig. 6. Original cylinder  

 
 
 

 

 

Fig. 7. Configuration I 

The first simulation presented in Figure 8(a) consists in an inlet channel with circular pipe 
format located in the left side of the water main circuit. In this case, a water flow 
concentration is making tangent to the circuit walls occasioning a low flow in the middle of 
the circuit, which would cause an heterogeneous heat exchange. 
In the second case, presented in Figure 8(b), the flow was improved if compared with the 
first case. In this case a diffuser on the inlet, instead of a pipe, was used. The flow further 
improved when the inlet diffuser was moved to the middle of the main circuit that can be 
seen in the Figure 8(c). 
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Fig. 8(a). Inlet and outlet channel 

 

 

Fig. 8(b). Inlet and outlet channel 

 

 

Fig. 8(c). Inlet and outlet channel 
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Due to the similarities observed during the work between the flow behavior in the inlet and 
in the outlet channels, the improvement of the inlet channel also could be applied to the 
outlet channel. 

6.4 Water circuit 
When the source of heat generation is constant in a surface, the cooling system needs to 
keep a constant fluid speed, keeping the heat transfer coefficient also constant in order to 
avoid undesired speed variation. Then, according to (24), where Q is the volumetric flow in 
m3/s, V the average speed in m/s and S the area of the transversal section of the flow in m2, 
in order to keep the speed constant, the ratio Q / S must be kept constant. In this case, as the 
flow is constant the area can also be kept constant throughout the circuit. Thus the whole 
design of the cooling circuit will be based on this premise. 

 .Q V S  (24) 

In accordance with the Figure 7 the configuration I presented a good flow, but without 
guides inside the circuit. The absence of these guides could compromise the frame stiffness; 
therefore, other configurations with guides inside the circuit were simulated. Among the 16 
simulated configurations, it was initially expected that the configuration II would present a 
good result, what did not happen, because such configuration caused low speeds in the back 
of the guides, as shown in Figure 9. 
Due to the result obtained with the configuration II, the configuration III, presented in 
Figure 10, is proposed. In this configuration it was obtained the double water speed of the 
initial configuration I, besides presenting a good flow and low pressure drop. 
 

 

Fig. 9. Configuration II – intercalated opposite guides  

 

 

Fig. 10. Configuration III – central guide with curved guide 
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6.5 Simulation data 
The simulation meshes were made with the software ICEM CFD 11.0.1. The used elements 
were prisms on the walls and tetras inside the mesh, always respecting the quality criterion 
Smooth Elements Globally – Quality with value above 0.2. 
The simulations were made with the software CFX 11.0, using the following simulation 
parameters: 

 Heat transfer: None; 

 Buoyance: Non buoyancy; 

 Turbulence: Shear Stress Transport; 

 Convergence criteria: 10-5 (RMS). 

7. Experiments and thermography 

As yet only one motor with water circuit similar to the configuration I was tested. Due to the 
manufacturing process the dividing guide had been interrupted, therefore, the water inlet 
and outlet were not separated. This fact was confirmed using thermography techniques. 

7.1 Thermal visualization techniques 
To check the guide arrangement inside the channel the following procedure was 
accomplished: the motor was turned on and kept running for 30 minutes without water 
circulation. The water inlet valve was then opened, while keeping the motor working. The 
phenomenon of water filling in the frame channel was recorded by the thermographic 
camera. The sequence captured on the video can be visualized in Figure 11. In this case, the 
outlet is located on the top and not on the lateral of the frame, thus assuring the removal of 
air from the frame inside, as presented in Figures 11(d) and 11(e). 
 
 
 
 

 
 
 
 

Fig. 11(a). Water filling frame channel - Closed valve 
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Fig. 11(b). Water filling frame channel - time: 10 s 

 

 

Fig. 11(c). Water filling frame channel - time: 1 min and 10 s 

 

 

Fig. 11(d). Water filling frame channel - time: 3 min and 10 s 
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Fig. 11(e). Water filling frame channel - time: 10 min 

Through this test it can be observed that two dark bands appear between the inlet and the 
outlet, allowing to affirm that two openings exist on the dividing guide. Theses bands can be 

visualized in Figures. 11(d) and 11(e). Therefore, when the outlet is located on the frame 
lateral, as proposed in the configuration I, the flow passes directly from the inlet to the outlet. 

7.2 Results 
Although the dividing guide between inlet and outlet to have been interrupted, thus 
causing recirculation, this motor presented a temperature rise of 73 °C on the windings, 

below the higher limit of its thermal class (80 °C). 

7.3 Final considerations 
The next steps of this work consist in testing motors of higher power rates in the same frame 
size using the configuration III previously presented. 
When increasing the power in these frames, the bearing temperature can be a limiting factor 
for the motor integrity. Therefore, it is also intended to design motors with water cooled 
bearings. 
Note that in this design step the fouling and corrosion were not considered, however, due to 
its meaning should be contemplated before product execution. 

8. Conclusions 

With the support of the CFD technique it was possible to foresee the water flow behavior 
inside the frame channel without visualizing directly the water flow. Through the use of the 
CFD it was also possible to double the water speed inside the frame channel, thus reducing 
the pressure drop in 18 % when compared with the initial design. 
Another advantages provided by CFD were the reduction obtained both in the development 
time and in the number of prototypes. These advantages have been proven in this work: in 
spite of the 22 frame configurations that have been initially proposed, after the simulation 
results were obtained only the three best prototypes have been actually manufactured. 
The use of thermography techniques in the field of electric motors helps to improve not only 
the development of products, but also the quality control and the maintenance of operating 
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machines in the field. In this case, specifically, it was possible to visualize the guides 
configuration and the water flow inside the frame channel preventing the need to destroy it. 
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