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1. Introduction

It was around the years 2003 to 2005 that a dramatic change seized the semiconductor
industry and the manufactures of processors. The increasing of computing performance in
processors, based on simply screwing up the clock frequency, could not longer be holded. All
the years before the clock frequency could be steadily increased by improvements achieved
both on technology and on architectural side. Scaling of the technology processes, leading
to smaller channel lengths and shorter switching times in the devices, and measures like
instruction-level-parallelism and out-of-order processing, leading to high fill rates in the
processor pipelines, were the guarantors to meet Moore’s law.

However, below the 90 nm scale, the static power dissipation from leakage current surpasses
dynamic power dissipation from circuit switching. From now on, the power density had to
be limited, and as a consequence the increase of clock frequency came nearly to stagnation.
At the same time architecture improvements by extracting parallelism out of serial instruction
streams was completely exhausted. Hit rates of more than 99% in branch prediction could not
be improved further on without reasonable effort for additional logic circuitry and chip area
in the control unit of the processor.

The answer of the industry to that development, in order to still meet Moore’s law, was the
shifting to real parallelism by doubling the number of processors on one chip die. This was
the birth of the multi-core area (Blake et al., 2009). The benefits of multi-core computing, to
meet Moore’s law and to limit the power density at the same time, at least at the moment this
statement holds, are also the reason that parallel computing based on multi-core processors is
underway to capture more and more also the world of embedded processing.

2. Task parallelism vs. data parallelism

If we speak about parallelism applied in multi-cores, we have to distinguish very carefully
which kind of parallelism we refer to. According to a classical work on design patterns for
parallel programming (Mattson et al., 2004), we can define on the algorithmic level two kinds
of a decomposition strategy for a serial program in a parallel version, namely task parallelism
and data parallelism. The result of such a decomposition is a number of sub-problems we
will call tasks in the following. If these tasks carry out different work among each other,
we call this task parallelism. In task parallelism tasks are usually ordered according to their
data dependencies. If tasks are independent of each other these tasks can be carried out
concurrently, e.g. on the cores of a multi-core processor. If one task produces an output which
is an input for another task, these tasks have to be scheduled in a time serial manner.
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This situation is different in the case of a given problem which can be decomposed according
to geometric principles. That means, we have given a 2D or 3D problem space which is
divided in sub regions. In each sub region the same function is carried out. Each sub region is
further subdivided in grid points and also on each grid point the same function is applied to.
Often this function requires also input from grid points located in the nearest neighbourhood
of the grid point. A common parallelization strategy for such problems is to process the grid
points of one sub region in a serial manner and to process all sub regions simultaneously,
e.g. on different cores. Also this function can be denoted as a task. As mentioned, all these
tasks are identical and are applied to different data, whereas the tasks in task parallelism carry
out different tasks usually. Furthermore, data parallel tasks can be processed in a complete
synchronous way. That means, there are only geometric dependencies between these tasks
and no casual time dependencies among the tasks, what is once again contrary to the case of
task parallelism. If there are time dependencies then they hold for all tasks. That is why they
are synchronous in the sense that all grid points are updated in a time serial loop.

Task parallelism we find e.g. in applications of Computational Science. In molecular biology
the positions of molecules are computed depending on electrical and chemical forces. These
forces can be calculated independent from each other. An example of a data parallelism
problem is the solution of partial differential equations.

2.1 Task parallelism in embedded applications

Where do we find these task parallelism in embedded systems? A good example are
automotive applications. The integration of more and more different functionality in a car,
e.g. for infotainment, driver assistance, different electronic control units for valves, fuel
injection etc. lead to a very complex diversity that offers a lot of potential for parallelization,
naturally requiring diverse tasks. The desire why automotive goes to multi-core is based
on two reasons. One time there are lot of real-time tasks to fulfill for which a multi-core
technology offers in principle the necessary computing power. A further reason is the
following one. Today nearly every control unit contains its own single core micro controller
or micro processor. Multi-core technology in combination with a broadband efficient network
system offers the possibility to save components, too, by migrating functionality that is now
distributed among a quite large number of compute devices to fewer cores. Automotive is
just one example for an embedded system domain in which task parallelism is the dominant
potential for parallelization. Similar scenarios can be found for robotics and automation
engineering.

2.2 Data parallelism in embedded applications

As consequence one can state that the main parallelization strategy for embedded applications
is task parallelism. However, there is a smaller but not less important application field in
which data parallelism occurs. Evaluating and analyzing of data streams in optical, X-ray
or ultra sonic 3D metrology requires data parallelism in order to realize fast response times.
Mostly image processing tasks, e.g. fast execution of correlations, have to be fulfilled in the
mentioned application scenarios. To integrate such a functionality in smart cameras, or even
in in the electronics of measuring or drill heads, is a challenge for future embedded system
design. In this chapter, we lay a focus in particular to convenient pipeline and data structures
for applying data parallelism in embedded systems (see Chapter 4).

4 Embedded Systems – High Performance Systems, Applications and Projects
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3. Principles of embedded multi-core processors

3.1 Multi-core processors in embedded systems

In this subsection, we show briefly a kind of evolutionary development comprising a
stepwise integration of processor principles, known from standard processors, into embedded
processors. The last step of this development process is the introduction of multi-core
technology in embedded processors. Representative for different embedded processors,
we select in this chapter the development of the ARM processor family as it is described
in (Stallings, 2006). Maybe the most characteristic highlights of ARM processors are their
small chip die sizes and their low power requirements. Both features are of course of high
importance for applications in embedded environments. ARM is a product of ARM Inc.,
Cambridge, England. ARM works as a fabless company, that means they don’t manufacture
chips, moreover they design microprocessors and microcontrollers and sell these designs
under license to other companies. Embedded ARM architectures can be found in many
handheld and consumer products, like e.g. in Apple’s iPod and iPhone devices. Therefore,
ARM processors are probably not only one of the most widely used processors in embedded
designs but one of the most world wide used processors at all.

The first ARM processor, denoted as ARM1, was a 32-bit RISC (Reduced Instruction Set
Computer) processor. It arose in 1985 as product of the company Acorn, which designed
the first commercial RISC processor, the Acorn RISC Machine (ARM), as a coprocessor for a
computer used at British Broadcasting Corporation (BBC). The ARM1 was expanded towards
an integrated memory management unit, a graphics and I/O processor unit and an enhanced
instruction set like multiply and swap instructions and released as ARM2 in the same year.
Four years later, in 1989, the processor was equipped with a unified data and instruction level
one (L1) cache as ARM3. It followed the support of 32-bit addresses and the integration of
a floating-point unit in the ARM6, the integration of further components as System-on-Chip
(SoC) in the ARM6, and static branch prediction units, deeper pipeline stages and enhanced
DSP (Digital Signal Processing) facilities. The design of the ARM6 was also the first product
of a new company, formed by Acorn, VLSI and Apple Computer.

In 2009 ARM released with the Cortex-A5 MPCore processor their first multi-core processor
intended for usage in mobile devices. The intention was to provide one of the smallest and
most power-efficient multi-core processor to achieve both the performance, that is needed in
smartphones, and to offer low costs for cheap chip manufacturing. Exactly like the ARM11
MP Core, another multi-core processor from ARM, it can be configured as a device containing
up to 4 cores on one processor die.

3.2 Brief overview of selected embedded multi-core architectures

The ARM Cortex A9 processor (ARM, 2007) signifies the second generation of ARM’s
multi-core processor technology. It was also intended for processing general-purpose
computing tasks in computing devices, starting from mobile devices and ending up in
netbooks. Each single core of an ARM Cortex A9 processor works as a superscalar
out-of-order processor (see Figure 1). That means, the processor consists of multiple parallel
operable pipelines. Instructions fetched in these pipelines can outpace each other so that they
can be completed contrary to the order they are issued. The cores have a two-level cache
system. Each L1 cache can be configured from 16 to 64 KB that is quite large for an embedded
processor. Using such a large cache supports the design for a high clock frequency of 2 GHz in
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order to speed-up the execution of a single thread. In order to maintain the coherency between
the cache contents and the memory, a broadcast interconnect system is used. Since the number
of cores is still small, the risk is low that the system is running in bottlenecks. Two of such
ARM Cortex A9 processors are integrated with a C64x DSP (Digital Signal Processor) core
and further controller cores in a heterogeneous multi-core system-on-chip solution called TI
OMAP 4430 (Tex, 2009). This system is intended also as general-purpose processor for smart
phones and mobile Internet devices (MIDs). Typical data parallel applications do not approve
as very efficient for such processors. In this sense, the ARM Cortex A9 and the TI OMAP 4430
processors are more suited for task parallel embedded applications.
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Fig. 1. Block diagram of the ARM Cortex-A9 MP, redrawn from (Blake et al., 2009)

Contrary to those processors, the ECA (Elemental Computing Array) (Ele, 2008) processor
family targets to very low power processing of embedded data parallel tasks, e.g. in High
Definition Video Processing or Software Defined Signal Conditioning. The architecture
concept realized in this solution is very different from the schemes we find in the above
described multi-core solutions. Maybe, it points in a direction also HPC systems will
pursue in the future (see Chapter 5). The heart of that architecture is an array of fine-grain
heterogeneous specialized and programmable processor cores (see Figure 2). The embedded
processor ECA-64 consists of four clusters of such cores and each cluster aggregates one
processor core operating to RISC principles and further simpler 15 ALUs which are tailored
to fulfill specialized tasks. The programming of that ALUs happens similarly as it is done in
Field-Programmable-Gate-Arrays (FPGAs).

An important constraint for the low power characteristics of the processors is the data-driven
operation mode of the ALUs, i.e. the ALUs are only switched on if data is present at
their inputs. Also the memory subsystem is designed to support low power. All processor
cores in one cluster share a local memory of 32 kB. The access to the local memory has to
be performed completely by software, which avoids to integrate sophisticated and power
consuming hardware control resources. This shifts the complexity of coordinating concurrent
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Fig. 2. Element CXI ECA-64 block diagram, redrawn from (Blake et al., 2009)

memory accesses to the software. The interconnect is hierarchical. Following the hierarchical
architecture organization of the processor cores also the interconnect system has to be
structured hierarchically. Four processor cores are tightly coupled via a crossbar. In one
cluster four of these crossbar connected cores are linked in a point-to-point fashion using a
queue system. On the highest hierarchical level the four clusters are coupled via a bus and a
bus manager arbitrating the accesses of the clusters on the bus.

Hierarchically and heterogeneously organized processor, memory and interconnect systems,
as we find it in the ECA processor, are pioneering in our view for future embedded multi-core
architectures to achieve both high computing performance and low power processing.
However, particular data parallelism applications require additional sophisticated data access
patterns that consider the 2D or 3D nature of data streams given in such applications.
Furthermore, they must be well-tailored to a hierarchical memory system to exploit the
benefits such an organization offers. These are time overlapping of data processing and
of data transfer to hide latency and to increase bandwidth by data buffering in pipelined
architectures. To achieve that, we developed special data access templates, we will explain in
detail in the next section.

4. Memory-management for data parallel applications in embedded systems

The efficient realization of applications with multi-core or many-core processors in an
embedded system is a great challenge. With application-specific architectures it is possible
to save energy, reduce latency or increase throughput according to the realized operations, in

7Parallel Embedded Computing Architectures
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contrast to the usage of standard CPUs. Besides the optimization of the processor architecture,
also the integration of the cores in the embedded environment plays an important role. This
means, the number of applied cores1 and their coupling to memories or bus systems has to be
chosen carefully, in order to avoid bottlenecks in the processing chain.

The most basic constraints are defined by the application itself. First of all, the amount of data
to be processed in a specific time slot is essential. For processor-intensive applications the
key task is to find an efficient processing scheme for the cores in combination with integrated
hardware accelerators. The main problem in data-intensive applications is the timing of data
provision. Commonly, the external memory or bus bandwidth is the main bottleneck in these
applications. A load balancing between data memory access and data processing is required.
Otherwise, there will be idle processor cores or available data segments cannot be fetched in
time for processing.

Image processing is a class of applications which is mainly data-intensive and a clear example
of a data parallel application in an embedded system. In the following, we will take a closer
look at this special type of application. We assume a SoC with a multi-core processor and a fast
but small internal memory (e.g. caches) and a large but slow external memory or alternatively
a coupled bus system.

4.1 Embedded image processing

Image processing operations are basically distinguished in pre-processing operations and
post-processing operations also known as image recognition (Bräunl, 2001). Image
pre-processing operations, like filter operations for noise reduction, require only a local view
on the image data. Commonly, an image pixel and its neighbours in a limited environment2

are required for processing. Image recognition, on the other hand, requires a global view on
the image and, therefore, a random access to the image pixels.

Image processing operations with only a local view on the image data allow a much better
way of parallelization then post-processing operations, which are less or not parallelizable.
Hence, local operations should be prefered, if possible, to ensure an efficient realization on a
multi-core architecture in an embedded image processing system. Therefore, we have shown
how some global image operations can be solved with only local operators. This concept is
called Marching Pixels and was first introduced in (Fey & Schmidt, 2005). It allows for example
the centroid detection of multiple objects in an image which is required in industrial image
processing (Fey et al., 2010). The disadvantage of this approach is that the processing has to
be realized iteratively.

To parallelize local image processing operations, there exist several approaches. One
possibility is the partitioning of the image and the parallel processing of the partitions which
will be part of Section 4.2. A further approach is a streaming of image data together with an
adapted parallelization which is the subject-matter of Section 4.3. Also a combination of both
approaches is possible. Which type of parallelization should be established depends strongly
on the application, the used multi-core architecture and the available on-chip memory.

1 degree of parallelization
2 which is called mask, sliding window or also stencil

8 Embedded Systems – High Performance Systems, Applications and Projects

www.intechopen.com



Parallel Embedded Computing Architectures 7

4.2 Partitioning

A partitioning of an image can be used, if the internal memory of an embedded multi-core
system is not large enough to store the complete image. A problem occurs, if an image is
partitioned for calculation. For the processing of an image pixel, a specific number of adjacent
neighbours, in dependence of the stencil size, is required. For the processing of a partition
boundary, additional pixels have to be loaded in the internal memory. The additional required
area of these pixels is called ghostzone and is illustrated with waved lines in Figure 3. There
are two ways for a parallel processing of partitions (Figures 3(a) and 3(b) ).

 !  "

 #  $
(a) Parallel processing of one partition

 !  "

 #  $
(b) Independent parallel processing of several
sub-partitions

Fig. 3. Image partitioning approaches

A partition could be loaded in the internal memory, shared for the different cores of a
multi-core architecture, and this partition is processed in parallel by several cores as illustrated
in Figure 3(a). The disadvantage is, that adjacent cores require image pixels from each
other. This can be solved with a shared memory or a communication over a common bus
system. In the second approach shown in Figure 3(b), every core gets a sub-partition with
its own ghostzone area. Hence, no communication or data sharing is required but the
overhead for storing ghostzone pixels is greater and more internal memory is required. If the
communication overhead between the processor cores is smaller than the loading overhead
for additional ghostzone pixels, then the first approach should be preferred. This is the case
in closely coupled cores like fine-granular processor arrays for example.

The partitioning should be realized in squared regions. They are optimal with regard
to the relationship between the partition area and the overhead for the ghostzone area.
In (Reichenbach et al., 2011), we presented the partitioning schemes in more detail and
developed an analytical model. The goal was to find an optimal set of system parameters
depending on application constraints, to achieve a load balancing between a multi-core
processor and an external memory or bus system. We presented a so called Adapted Roofline
Model for embedded application-specific multi-core systems which was closely modeled on

9Parallel Embedded Computing Architectures

www.intechopen.com



8 Will-be-set-by-IN-TECH

the Roofline Model (Williams et al., 2009) for standard multi-core processors. Our adapted
model is illustrated in Figure 4.
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Fig. 4. Adapted roofline model

It shows the relationship between the processor performance and the external memory
bandwidth. The horizontal axis reflects the operational intensity oi which is the number of
operations applied to a loaded byte and is given by the image processing operation. The
vertical axis reflects the achievable performance in frames per second. The horizontal curves
with parameter par represent the multi-core processor performance for a specific degree
of parallelization and the diagonal curve represents the limitation by the external memory
bandwidth. Algorithms with a low operational intensity are commonly memory bandwidth
limited. Only a few operations per loaded byte have to be performed per time slot and so the
processor cores are often idle until new data is available. On the other hand, algorithms with
a high operational intensity are limited by the peak performance of the processor. This means,
there is enough data available per time step but the processor cores are working to capacity.
In these cases, the achievable performance depends on the number of cores, i.e. the degree
of parallelization. The points of intersection between the diagonal curve and the horizontal
curves are optimal because there is an equal load balancing between processor performance
and external memory bandwidth.

In a standard multi-core system, the degree of parallelization is fixed and the performance
can be only improved with specific architecture features, like SIMD units or by exploitation of
cache effects for example. In an application-specific multi-core system this is not necessarily
the case. It is possible that the degree of parallelization can be chosen, for example if
Soft-IP processors are used for FPGAs or for the development of ASICs. Hence, the degree
of parallelization can be chosen optimally, depending on the available external memory
bandwidth. In (Reichenbach et al., 2011) we have also shown how the operational intensity of
an image processing algorithm can be influenced. As already mentioned, the Marching Pixel
algorithms are iterative approaches. There exist also iterative image pre-processing operations
like the skeletonization for example. All these iterative mask algorithms are known as iterative
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stencil loops (ISL). By increasing the ghostzone width for these algorithms, it is possible to
process several iterations for one loaded partition. This means, the operations per loaded byte
can be increased. A higher operational intensity leads to a better utilization of the external
memory bandwidth. Hence, the degree of parallelization can be increased until an equal load
balancing is achieved which leads to an increased performance.

Such analytical models, like our Adapted Roofline Model, are not only capable for the
optimized development of new application-specific architectures. They can also be used to
analyze existing systems to find bottlenecks in the processing chain. In previous work, we
developed an multi-core SoC for solving ISL algorithms which is called ParCA (Reichenbach et
al., 2010). With the Adapted Roofline Model, we identified a bottleneck in the processing
chain of this architecture, because the ghostzone width was not taken into account during the
development of the architecture. By using an analytical model based on the constraints of
the application, the system parameters like the degree of parallelization can be determined
optimally, before an application-specific architecture is developed.

In conclusion, the partitioning can be used, if an image cannot be stored completely in the
internal memory of a multi-core architecture. Because of the ghostzone, a data sharing is
required if an image is partitioned for processing. If the cores of a processor are closely
coupled, a partition should be processed in parallel by several cores. Otherwise, several
sub-partitions with additional ghostzone pixels should be distributed to the processor cores.
The partition size has to be chosen by means of the available internal memory and the
used partition approach. If an application-specific multi-core system is developed, an
analytical model based on the application constraints should be used to determine optimal
system parameters like the degree of parallelization in relationship to the external memory
bandwidth.

4.3 Streaming

Whenever possible, a streaming of the image data for the processing of local image processing
operations should be preferred. The reason is, that a streaming approach is optimal relating
to the required external memory accesses. The concept is presented in Figure 5.

Fig. 5. Streaming approach

The image is processed from the upper left to the lower right corner for example. The internal
memory is arranged as a large shift register to store several image lines. A processor core has
access to the required pixels of the mask. The size of the shift register depends on the image

11Parallel Embedded Computing Architectures
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size and the stencil size. For a 3×3 mask, two complete image lines and three pixels have to
be buffered internally. The image pixels are loaded from the external memory and stored in
the shift register. If the shift register is filled, then in every clock cycle a pixel can be processed
by the stencil operation from a processor core, all pixels are shifted to the next position and
the next image pixel is stored in the shift register. Hence, every pixel of the image has to be
loaded only once during processing. This concept is also know as Full Buffering.

Strictly speaking, the streaming approach is also a kind of partitioning in image lines. But
this approach requires a specially arranged internal memory which does not allow a random
access to the memory as to the cache of a standard multi-core processor. Furthermore, a strict
synchronization between the processor cores is required. Therefore, the streaming is presented
separately. Nevertheless, this concept can be emulated with standard multi-core processors
by consistent exploitation of cache blocking strategies as used in (Nguyen et al., 2010) for
example.

In (Schmidt et al., 2011) we have shown that the Full Buffering can be used efficiently for
a parallel processing with a multi-core architecture. We developed a generic VHDL model
for the realization of this concept on a FPGA or an application-specific SoC. The architecture
is illustrated for a FPGA solution with different degrees of parallelization in Figure 6. The
processor cores are designated as PE. They have access to all relevant pixel registers required
for the stencil operation. The shift registers are realized with internal dual-port Block RAM
modules to save common resources of the FPGA. For a parallel processing of the image data
stream, the number of shifted pixels per time step depends on the degree of parallelization.
It can be adapted depending on the available external memory bandwidth to achieve a load
balancing. Besides the degree of parallelization as parameter for the template, the image size,
the bits per image pixel and also the pipeline depth can be chosen. The Full Buffering concept
allows a pipelining of several Full Buffering stages and can be used for iterative approaches or
for the consecutively processing of several image pre-processing operations. The pipelining is
illustrated in Figure 7. The result pixels of a stage are not stored back in the external memory,
but are fetched by the next stage. This is only possible, because there are no redundant
memory accesses to image pixels when Full Buffering is used.

Depending on the stencil size, the required internal memory for a Full Buffering approach
can be too large. But instead of using a partitioning, as presented before, a combination of
both approaches is also possible. This means, the image is partitioned and a Full Buffering
is applied for all partitions consecutively. For this approach, a partitioning of the image in
stripes is the most promising. As already mentioned before, the used approach depends on the
application constraints, the used multi-core architecture and the available on-chip memory.
We currently expand the analytical model from (Reichenbach et al., 2011) in order that all
cases are covered. Then it will be possible to predict the optimal processing scheme, for a
given set of system parameters.

4.4 Image processing pipeline

In order to realize a complete image processing pipeline, it is possible to combine a streaming
approach with an multi-core architecture for image recognition operations. Because the
Marching Pixel approaches are highly iterative, we developed an ASIC architecture with a
processor array fitted to the requirements of this special class of algorithms. The experiences
from the ParCA architecture (Reichenbach et al., 2010) has gone into the development process

12 Embedded Systems – High Performance Systems, Applications and Projects
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(a) Degree of parallelization p=2

(b) Degree of parallelization p=4

Fig. 6. Generic Full Buffering template for streaming applications

to improve the architecture concept and a new ASIC was developed (Loos et al., 2011).
Because an image has to be enhanced, e.g. with a noise reduction, before the Marching Pixel
algorithms can be performed efficiently, it is sensible to combine the ASIC with a streaming
architecture for image pre-processing operations. An appropriate pipeline architecture was
presented in (Schmidt et al., 2011). Instead of a application-specific multi-core architecture for
image recognition operations, also a standard multi-core processor like ARM-Cortex A9-MP
or the ECE-64 (see Chapter 3) can be used.

In this subchapter we pursued the question which data access patterns can be efficiently used
in embedded multi-core processors for memory bound data parallel applications. Since many
HPC applications are memory bound, too, the presented schemes can also be profitably used
in HPC applications. This leads us to the general question of convergence between embedded
computing and HPC which we want to discuss conclusively.

5. Convergence of parallel embedded computing and high performance

computing

Currently a lot of people are talking of Green IT. Even if some think this is nothing else like
another buzzword, we are convinced that all computer architects have the responsibility for
future generations to think of energy-aware processor architectures intensively. In the past

13Parallel Embedded Computing Architectures
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Fig. 7. Pipelining of Full Buffering stages

this was not valid in particular for the HPC community for which achieving the highest
performance was the primary goal first of all. However, increasing energy costs, which
cannot be ignored anymore, initiated a process of rethinking which could be the beginning
of a convergence between methods used in HPC and in embedded computing design.

Therefore, one of the driving forces why such a convergence will probably take place is that
the HPC community can learn from the embedded community how to design energy-saving
architectures. But this is not only an one-sided process. Vice versa the embedded community
can learn from the HPC community how to use efficiently methods and tools for parallel
processing since the embedded community requires, besides power efficient solutions, more
and more increasing performance. As we have shown above, this leaded to the introduction
of multi-core technology in embedded processors. In this section, we want to point out
arguments that speak for an adaptation of embedded computing methods in HPC(5.1) and
vice versa (5.2). Finally we will take a brief look to the further development in this context
(5.3).

5.1 Adaptation of embedded computing methods in HPC

If we consider a simple comparison of the achievable flop per expended watt, we see a clear
advantage on the side of embedded processors (see Table 1). Shalf concludes in this context
far-reaching consequences (Shalf, 2007). He says considering metrics like performance per
power, not multi-core but many-core is even the answer. A moderate switching from single
core and serial programs to modestly parallel computing will make programming much more
difficult without receiving a corresponding award of a better performance-power ratio for this
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• Power5 (server)
– 389 mm2

– 120W@1900MHz
• Intel Core2 sc (laptop)

– 130 mm2

– 15W@1000MHz
• ARM Cortex A8 (automobiles)

– 5 mm2

– 0.8W@800MHz
• Tensilica DP (cell phones / printers)

– 0.8 mm2

– 0.09W@600MHz
• Tensilica Xtensa (Cisco router)

– 0.32 mm2

– 0.05W@600MHz

Table 1. Sizes and power dissipation of different CPU cores (Shalf, 2007)

effort. Instead he propagates the transition to many-core solutions based on simpler cores
running at modestly lower clock frequencies. A loss of computational efficiency one suffers
by moving from a more complex core to a much simpler core is manifoldly compensated by
the enormous benefits one saves in power consumption and chip area. Borkar (Borkar, 2007)
supports this statement and supplements that a mid- or maybe long-term shift to many-core
can also be justified by an inverse application of Pollack’s rule (Pollack, n.d.). This says that
cutting a larger processor in halves of smaller processor cores means a decrease in computing
performance of 70% in one core compared to the larger processor. However, since we have
two cores now, we achieve a performance increase of 40% compared to the larger single core
processor.

However, one has to note that shifting to many-core processors will not ease programmer’s
life in general. Particularly task parallel applications will sometimes not profit from 100s of
cores at all due to limited parallelism in their inherent algorithm structure. Amdahl’s law
(Amdahl, 1967) will limit the speed-up to the serial fraction in the algorithm. The situation
is different for data parallel tasks. Applying template and pipeline processing for memory
bound applications in embedded computing, as we have shown it in Section 4, supports
both ease of programming and exploiting the compute power given in many simpler cores.
Doubtless, the embedded community has the most experience concerning power efficient
design concepts which are now adapted from the HPC community and it is to expect that
this trend will increase further. Examples that prove this statement can be seen already in
practice. E.g. we will find processor cores in the design of the BlueGene (Gara et al., 2005) and
SiCortex (Goodhue, 2009) supercomputers that are typically for embedded environments.

5.2 Adaptation of HPC methods in embedded computing

In the past the primary goal of the embedded computing industry was to improve the battery
life, to reduce design costs and to bring the embedded product as soon as possible to market.
It was easier to achieve these goals by designing simpler lower-frequency cores. Nevertheless,
in the past the embedded community took over processor technologies like super scalar
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units and out-of-order processing in their designs. This trend goes on. Massively parallel
concepts which are typically for HPC applications are introduced in mainstream embedded
applications. Shalf mentions in this context the Metro chip, which is the heart of Cisco’s
CRS-1 router. This router contains 188 general-purpose Tensilica cores (Ten, 2009). These
programmable devices replaced Application Specific Integrated Circuits (ASICs) which were
in that router in use before (Eatherton, 2005).

5.3 How the convergence will proceed?

Some experts expect that more and more the CPUs in future HPC systems will consist of
embedded-like programmable cores combined with custom circuits, e.g. memory controllers,
floating point units, and DSP cores for acceleration of specific tasks. Four years ago, Shalf
predicted already that we will realize 2000 cores on one chip in 2011, a number closely to
the number of transistors in the first Intel CPU 4004. We know now that this not happened.
Possibly the time scaling for that predicted progress is longer than it was expected in the
euphoria that came up in the first years when the multi-core/many-core era started. It is still
possible that design processes change dramatically in the sense that Tensilica’s CTO Chris
Rowen is right when he says, "The processor is the new transistor". Definitely the two worlds,
embedded parallel computing and HPC, which had been separated in the past, converged
and it is exciting to see in the future where the journey will exactly end.

6. Conclusion

In this chapter we emphasized the importance of multi-core processing in embedded
computing systems. We distinguished parallel applications between task vs. data parallel
applications. Even if more task parallel applications can be found in embedded systems,
data parallelism is a quite valuable application field as well if we think of image processing
tasks. We pointed out by the development of the embedded ARM processor families and
the ECA-64 architecture, which is in particular appropriate for data-parallel applications,
that hierarchical and heterogeneous processors are pioneering for future parallel embedded
processors. Heterogeneous processors will rule the future since they combine well-tailored
performance cores for specific application with energy-aware computing.

However, it is a challenge to support data parallel applications for embedded systems by
an efficient memory management. On the one side, standard multi-core architectures can be
used. But they are not necessarily optimal in relationship to the available external memory
bandwidth and, therefore, to the achievable throughput. By using application-specific
architectures, an embedded multi-core system can be optimized, e.g. for throughput. The
drawback of this is the increased development time for the system. As shown for image
processing as field of application, a lot of constraints must be considered. The system
parameters have to be chosen carefully, in order to avoid bottlenecks in the processing chain.
A model for a specific class of applications, like presented in (Reichenbach et al., 2011), can
help to optimize the set of parameters for the embedded system.

In addition the presented memory management system can also be exploited for memory
bound data parallel applications in HPC. Anyway there is to observe that both worlds have
learned from each other and we expect that this trend will continue. To strengthen this
statement we pointed out different examples.
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