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1. Introduction 

Long-term storage of sperm in liquid nitrogen is a valuable technique for genetic resources 

preservation (Kopeika et al. 2007). The research on fish sperm cryopreservation has achieved 

great advances since the first successful sperm cryopreservation in herring (Blaxter 1953). It 

provides many benefits such as ease of global germplasm shipping and supply (Tiersch et 

al. 2004), selective breeding and hybridization with desirable characteristics (Henderson-

Arzapalo et al. 1994), and conservation of genetic diversity (Van der Walt et al. 1993; Tiersch 

et al. 2000; Ohta et al. 2001). Furthermore, a frozen sperm bank could maintain the 

continuous and stable supply of gametes for hatchery seed production or laboratory 

experimentation. Because of the advantages of this technique, fish sperm of over 200 

freshwater and 40 marine species have been cryopreserved successfully (Gwo 2000). 

Most of fish sperm cryopreservation researches have focused on freshwater species such 

as cyprinids (Babiak et al. 1997; Lahnsteiner et al. 2000), salmonoids (Conget et al. 1996; 

Cabrita et al. 2001), catfishes (Christensen and Tiersch 1997; Viveiros et al. 2000) and loach 

(Kopeika 2003a, b; Dzuba & Kopeika 2002). In recent years, with the rapid development of 

marine fish aquaculture, some experiments on germplasm cryopreservation have also 

been conducted in marine fish species, especially the great commercial value ones such as 
red seabream (Liu, et al. 2006；Liu, et al. 2007a，b；Liu, et al. 2010 a，b) turbot (Dréanno 

et al. 1997; Chen et al. 2004), flounder (Richardson et al. 1999; Zhang et al. 2003), and 

halibut (Billard et al. 1993).  

Damage to sperm morphology and function usually occurs during the process of freezing 

and thawing. Cellular damage may greatly decrease motility, impair velocity, and reduce 

fertilizing capacity, even lead to DNA strand breakage or mutation (Dréanno et al, 1997; 

Lahnsteiner et al, 1996a; Warnecke & Pluta 2003; Kopeika et al, 2004). Although motility and 

fertilizing capacity are usually assessed in frozen-thawed sperm, these methods have 

limitations. Many factors affect the validity of these assessments, including subjectivity, 

microscope performance, the quality of eggs, and fertilization protocols. Some new 
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technologies have been used in fish sperm quality analysis, such as computer-assisted 

sperm analysis (CASA), being used to objectively evaluate sperm motility (Lahnsteiner et 

al., 1996b; Lahnsteiner et al., 1998; Kime et al., 1996) ; Electron microscopy, being used to 

detect cryodamage (ultrastructural changes) in frozen-thawed sperm (Zhang et al, 2003, He 

&Woods 2004); In addition, flow cytometry of fluorescent-stained sperm have been used in 

mammals (Graham et al, 1990; Gravance et al, 2001) and turkeys (Donoghue et al ,1995), 

providing rapid, precise information regarding the viability of thousands of individual 

sperm. In recent years, flow cytometry has also been successfully used to assess both fresh 

and cryopreserved fish sperm (Ogier de Baulny et al, 1999; Segovia et al, 2000). 

Red seabream is one of the most commercially important marine fish species for aquaculture 

in China. However, the decline of wild red seabream population has occurred due to over 

fishing and marine pollution in recent years. The use of cryopreserved sperm can provide an 

efficient method to increase its genetic population size and to help maintain genetic 

diversity. The aims of this study were to establish efficient methods for cryopreservation of 

red seabream sperm with 2-mL cryovials and to objectively measure the post-thaw sperm 

motility characteristics by means of CASA, to evaluate the post-thaw sperm fertilization 

capacity, and the cryodamage by electron microscopy and flow cytometry. 

2. Sperm cryopreservation and quality evaluation  

2.1 Materials and methods 

2.1.1 Gametes collection 

Naturally matured fishes were obtained from Qingdao hatchery during the spawning 

season (From the middle of March to the end of May). Twenty males and 10 females (3 kg to 

4 kg individually, 10 years old) were cultivated in a 20-m3 concrete rearing pond with flow-

through seawater and fed daily with cooked meat of bay mussel, Mytilus edulis. Prior to 

handling, males were firstly anesthetized in a 0.003% eugenol bath. Sperm was collected 

into petri dishes by gently hand-stripping the abdomen of the ripe males. Extreme care was 

taken to avoid the contamination of sperm with seawater, blood, urine and feces. The 

percentage of motile spermatozoa was checked with a Nikon-YS-100 light microscope 

(Nikon Corporation, Tokyo, Japan) at 250 × magnification. Sperm with motility > 85% was 

kept on crushed ice and transported to the laboratory for further use. Eggs were collected by 

abdominal pressure of the females at the time of ovulation. Good eggs were slightly 

yellowish, translucent and round-shaped. Eggs for fertilization trials were collected only 

from one female.  

2.1.2 General procedure for sperm freezing and thawing 

Sperm were diluted in Cortland extenders (Liu et al, 2006) containing DMSO with 

different concentrations (6–24% DMSO). After mixing thoroughly, 1.6 ml sperm was 

placed into 2-ml cryovials. The cryovials were transferred into a Kryo-360-1.7 

programmable freezer (Planer Plc. Middlesex, UK), equilibrated for five minutes at 0oC, 

and frozen from 0 to −150oC at a cooling rate of 20oC min-1, then plunged into liquid 

nitrogen for storage. The frozen sperm were thawed in 40oC water bath after being 

www.intechopen.com



 
Marine Fish Sperm Cryopreservation and Quality Evaluation in Sperm Structure and Function 241 

preserved in liquid nitrogen for one month. After that, the thawed sperm was evaluated 

for motility and fertilizing capacity.  

2.1.3 Sperm motion characteristics analysis by using CASA 

Sperm motion characteristics were assessed by using a computer-assisted sperm motion 

analysis system (CASAS-QH-Ш, Tsinghua Tongfang Inc., Beijing, China) at room 

temperature (18oC to 20oC). The method for computer-assisted sperm motion analysis was 

describied in Liu et al (2007b). The designation of the motility status was based on the level 

of the average path velocity (VAP). Sperm with average path velocity <5 μm s-1 were 

considered immotile, with average path velocity >20 μm s-1 were defined as motile, and 5–

20 μm s-1 as locally motile. Therefore, in the present study sperm motility includes the 

percentage of local motile sperm and motile sperm. Motility and velocity of fresh and post-

thaw sperm were quantitatively recorded by CASA immediately 10 s after activation, and 

changes of motility of post-thaw sperm frozen with 15% DMSO were observed every 30 s. 

2.1.4 Sperm fertilization and hatching experiments  

Fertilization capacity of post-thaw sperm frozen with DMSO (6–24% DMSO) was evaluated. 

The optimized sperm to egg ratio of 500:1 was selected for the following fertilization trials 

(Li et al., 2006). The artificial fertilization method was described in detail in Liu et al (2007b). 

Fertilization rates were evaluated within 6–8 h after insemination by counting the 

percentage of gastrula-stage embryos in relation to the total number of eggs used. Forty-

eight hours after fertilization, the number of hatched larvae was counted in each 

experiment. The hatching rates were calculated as the percentage of hatched larvae in 

relation to the total number of eggs used in each experiment. 

2.1.5 Ultrastructure 

Prior to scanning electron microscopy, sperm were fixed in 2.5% glutaraldehyde diluted in 

PBS (pH 7.6), dehydrated in a series of increasing concentrations of ethanol, critical-point 

dried, evaporated with gold, and examined with a scanning electron microscope (KYKY-

2800B; KYKY Technology Development Ltd., Beijing, China) For transmission electron 

microscopy, spermwas prefixed in 2.5% glutaraldehyde, post-fixed in 1% osmium tetroxide, 

and embedded in Epon 812. Ultrathin sections were prepared, counterstained with 

2%uranyl acetate followed by lead citrate, and examined with a transmission electron 

microscope (HITACHI H- 7000; Hitachi Ltd., Tokyo, Japan), and the number of sperm with 

various categories (normal, slightly damaged, and seriously damaged sperm) of 

cryodamage was determined. One-hundred sperm were randomly selected for observation 

each time; this was repeated three times on different sections (total of 300 frozen-thawed 

sperm for each male). 

2.1.6 Rhodamine 123, propidium iodide and flow cytometry 

The staining method used was described in (Liu et al. 2007a). An aliquot of mixed fresh or 

frozen-thawed sperm with 15%DMSO was incubated for 20 min (in the dark, temperature 4 
oC) with 5 mg/mL of Rhodamine 123 (Rh123, Sigma Chemical Co., St. Louis, MO, USA). 
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Thereafter, sperm were incubated for 45 min in 1.5 mL of Cortland extender. With this 

staining method, only cells with functional mitochondria were stained, due to the negative 

potential of the inner membrane of the mitochondria. Samples were diluted and 

counterstained with 5 mg/mL of propidium iodide (PI, Sigma Chemical Co.). After 10 min, 

sperm samples were analyzed with flow cytometry (FACSvantage SE flow cytometer; 

Becton Dickinson, Mountain View, CA, USA) as previously described for trout sperm (Ogier 

de Baulny, et al, 1997). Sperm populations were identified according to their relative red and 

green fluorescence (staining with PI and Rh123, respectively). Sperm with red (stained with 

PI) DNA were interpreted as having a damaged plasma membrane, whereas those that were 

green (stained with Rh123) were interpreted as having intact mitochondrial function. Sperm 

that were only red (damaged plasma membrane and lacking mitochondrial function), were 

localized in Region 1, whereas those that were only green (intact membrane and functional 

mitochondria), were localized in Region 3. Sperm with both red and green fluorescence 

(damaged plasma membrane and functional mitochondria) were localized in Region 4, and 

those with no staining (intact plasma membrane, but no mitochondrial activity) were 

localized in Region 2. 

2.1.7 Statistical analysis 

To determine the effects of cryopreservation on sperm motility, fertilization capacity, 

structure and function, a paired-sample t-test was used to compare fresh versus frozen-

thawed sperm. All statistical analyses were performed with SPSS Version 11.0 software 

(SPSS Inc. Chicago, IL, USA) and P < 0.05 was considered significant. All data were 

expressed as mean±S.D. 

2.2 Results 

2.2.1 Post-thaw sperm viability 

The influence of cryopreservation on sperm motility and velocity was shown in Table 1. 

Percentages of motile post-thaw sperm frozen with 12–21% DMSO were higher than those 

with 6% DMSO, 9% DMSO and 24% DMSO. However, the procedure of cryopreservation 

has no significant (P>0.05) influence on the motile sperm velocity 10 s after activation 

compared with fresh sperm. In addition, the post-thaw sperm frozen with 12-21% DMSO 

showed similar types of straight trajectories.  

Cryoprotectant (%) 
Motility parameters 

Locally motile (%) Motile (%) Velocity (μm s-1) 

Fresh sperm 22.0±7.7 64.7±14.2 c 113.1±10.6 a 

6% DMSO 16.6±4.6 26.8±11.4 a 89.1±15.0 a 
9% DMSO 21.3±7.2 40.3±9.1 ab 91.9±13.5 a 
12% DMSO 17.8±10.6 61.6±8.5 c 95.2±12.3 a 
15% DMSO 20.4±6.1 64.8±8.7 c 99.3±11.6 a 
18% DMSO 21.8±3.9 62.9±6.2 c 97.7±15.2 a 
21% DMSO 16.4±4.3 60.8±5.4 c 90.1±12.3 a 
24% DMSO 16.6±7.9 55.7±9.2 bc 95.7±8.9 a 

Table 1. The influence of cryopreservation on sperm motility and velocity in P. major 
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The motion characteristics of fresh and post-thaw sperm were evaluated by using computer-

assisted sperm analysis 10 s after activation. This table shows the percentages of locally 

motile (VAP range from 5 to 20μm s-1) and motile sperm (VAP > 20μm s-1) as well as their 

velocity (VAP) for fresh and post-thaw sperm. Values superscripted by the same letter are 

not significantly different (P>0.05, n=5). 

The effect of time after activations on post-thaw sperm motility was shown in Fig. 1. The 

percentages of total motile sperm of both fresh (87. 2 ± 6.1%) and post-thaw sperm (81.9 ± 

6.6%) frozen with 15% DMSO were not (P>0.05) different significantly 10 s after activation. 

However, 30 s after activation the percentage of total motile post-thaw sperm (72.3 ± 6.3%) 

was (P<0.05) lower than that of fresh sperm (82.7 ± 7.2%). Sixty seconds after activation, the 

percentage of post-thaw sperm motility drastically reduced to 38.7 ± 13.2%.  

 

Fig. 1. The influence of time after activation on the motility of fresh and post-thaw sperm in 
P. major. Ten seconds after activation, the total motilities of fresh and post-thaw sperm 
frozen with 15% DMSO were observed every 30 s using computer-assisted sperm analysis 

system. This figure describes the evolution of the total motilities of fresh ( ) and post-thaw 
sperm ( ) after activation respectively (n =5).   

2.2.2 Post-thaw sperm fertilizing capacity and hatchability 

Fertilization rates and hatching rates of fresh and post-thaw sperm were shown in Fig. 2. 

The fertilization rates and hatching rates were similar for fresh and post-thaw sperm frozen 
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with 12–21% DMSO. However, lower (P<0.05) fertilizing capacity of post-thaw sperm frozen 

with 6% DMSO, 9% DMSO and 24% DMSO were observed. In addition, the percentages of 

motile of post-thaw sperm and fertilization rates showed a high positive linear regression (r 

= 0.876). Similarly, the percentages of motile spermatozoa and hatching rates of post-thaw 

sperm showed a high positive linear regression (r = 0.878). 

 

 
 

Fig. 2. Fertilization rates and hatching rates of fresh and post-thaw sperm in P. major. 

Cryopreserved sperm was thawed and activated for the artificial fertilization with sperm to 

egg ratio 500:1. This figure describes the fertilization rates and hatching rates of post-thaw 

sperm frozen with 6-24% DMSO.  For fertilization rates of fresh and post-thaw sperm;  

For hatching rates of fresh and post-thaw sperm. Columns marked with the same letter are 

not significantly different (P>0.05, n=5). 

2.2.3 Sperm ultrastructure  

Ultrastructure of fresh and intact frozen-thawed red seabream sperm are shown in Fig. 1. 

These sperm had a head, midpiece, and tail. The head was ovoid and contained the nucleus 

and centriolar complex; the latter consisted of two centrioles. The midpiece was 

approximately cylindrical and contained mitochondria. The flagellum consisted of nine 

peripheral doublets and two central microtubules; the axoneme was a typical 9 + 2 structure 

(Fig. 3 A, B). The proportion of fresh sperm with normal morphology was 77.8 ± 5.6%, 

whereas after cryopreservation, 63.0 ± 7.2% of the sperm had normal morphology (Fig. 3 C), 

20.7 ± 3.1% were partly damaged (e.g. swelling or rupture of head, midpiece and tail region, 

as shown in Fig. 3 D, as well as damage to mitochondria). Furthermore, 16.4 ± 4.2% were 
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severely damaged; the plasma membranes was completely ruptured and only nuclei, 

mitochondria, or some fragments of cellular organelles were found (Fig.3 E). 

 

Fig. 3. The morphology and ultrastructure of fresh and normal post-thaw spermatozoa of 
red seabream. (A) Total view of fresh spermatozoa and the internal structure of head and 
mid-piece of fresh spermatozoa. (B) Flagellum of fresh spermatozoa. (C) Unchanged 
spermatozoa cryopreserved with 15% DMSO. (D) Partly damaged spermatozoa. (E) 
Completely damaged plasmalemma and nuclear envelop. (h, head; m , mid-piece; t, tail 
region. nu, nucleus; ne, nuclear envelope; bb, basal body; mi, mitochondrion; pm, 
plasmalemma; f, flagellum; v, vacuole). Scale bar = 0.5 μm. 

2.2.4 Fluorescent staining and flow cytometry 

Sperm populations were localized into four distinct regions according to their relative green 
and red fluorescence after staining with PI and Rh123 (Fig. 4). For fresh sperm, 83.9% had an 
intact membrane and functional mitochondria, 5.1% had nonfunctional mitochondria, 9.8% 
had nonfunctional mitochondria, and 1.2% had both a damaged membrane and 
nonfunctional mitochondria; whereas for frozen-thawed sperm, the percentages of sperm 
localized in four regions were 74.8%(Region 3), 12.7%(Region 4), 9.9% (Region 2), and 
2.6%(Region 1), respectively. 
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Fig. 4. Flow cytometric dot plots of spermatozoa of red seabream after cryopreservation. 
Region 1, sperm with a damaged plasma membrane but normal mitochondrial function. 
Region 2, sperm with an intact plasma membrane but lacking mitochondrial function. 
Region 3, sperm with an intact plasma membrane and functional mitochondria. Region 4, 
sperm with a damaged plasma membrane and functional mitochondria. 

2.3 Discussion 

Motility is an important characteristic for estimating the quality of fresh as well as 
cryopresrved sperm (Lahnsteiner et al., 1996a). In this study, the freezing-thawing process 
did not significantly change the main motility pattern and swimming velocity of motile 
sperm 10 s after activation, and the progressive linear motion was still the dominant pattern. 
Moreover, for the sperm cryopreserved with 12–21% DMSO, the freezing-thawing process 
also didn’t significantly influence their motility and motility pattern, although it 
significantly reduced their motility period. However, different results were obtained from 
the sperm cryopreservation of turbot (Dréanno et al., 1997), which the percentage of motile 
post-thaw sperm was significantly lower than that obtained from fresh sperm while the 
velocity and the duration of motion were not significantly modified.  

No significant difference in the fertilization rates and hatching rates were observed between 
sperm cryopreserved with 12–21% DMSO and fresh sperm. However, Lahnsteiner et al. 
(2003) reported that in cyprinids sperm, the post-thaw fertilization ratios obtained with 
sperm to egg ratios of 1.3–2.6×106:1 did not reach that of the fresh sperm. Similar results 
have also been reported in turbot (Chen et al., 2004; Suquet et al., 1998) and flounder (Zhang 
et al., 2003). These may be due to the species specific or un-ideal protocols used in sperm 
cryopreservation. In this study, for the post-thaw sperm a high positive correlation was 
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observed between the percentage of motile sperm and fertilizing capacity. This was 
consistent to the results that obtained from turbot (Dréanno et al., 1999), common carp 
(Linhart et al., 2000) and African Catfish (Rurangwa et al., 2001).  

In the present study, the data from ultrastructural investigation and flow cytometric 
analysis demonstrates that more that 60% of post- sperm were normal in morphology and 
mitochondrial function. These results further confirmed the high performance of the 
protocols established for red seabream. In addition, the high fertilization capacity of post-
thaw sperm implies that some of the slightly damaged spermatozoa can still fertilize eggs 
and develop into larvae. However, it remains to be determined whether the larvae from 
cryopreserved sperm develop into healthy adults. 

During the process of cooling, freezing and thawing, spermatozoa are subjected to a series 
of damages (Oehninger et al., 2000). In ultrastructural investigation, we found 20.7 ± 3.1% 
were slightly damaged in some way and 16.4 ± 4.2% were severely damaged. One of the 
causes may be the ice crystal formation during the freezing process and some researchers 
agree that intracellular ice formation is the major injury mechanism at rapid cooling rates 
(Toner et al.,1993; Chao & Liao 2001). Other causes of cryodamages include pH fluctuation, 
cold shock, osmometric effect, and cryoprotectant toxicity (Chao & Liao 2001). The swelling 
and rupture of the plasmalemma after thawing may be due to the damage to the unit 
membrane which is very sensitive to freezing and thawing (Lahnsteiner et al., 1992). Similar 
morphological changes were reported in post-thaw sperm of ocean pout (Yao et al., 2000), 
rainbow trout (Lahnsteiner et al., 1996c), and atlantic croaker (Gwo et al., 1991). For 
example, in grayling sperm (Lahnsteiner et al., 1992), a marked decrease in sperm quality 
was observed, about 40% to 50% of the spermatozoa were completely damaged, 30% to 40% 
changed and only 10–20% showed an intact morphology. In this study, flow cytometric 
analysis, based on membrane integrity and mitochondrial function, was used to assess post-
thaw sperm quality. After double staining with Rh123 and PI, we found 74.8% of post-thaw 
sperm showed membrane integrity and mitochondrial function. In rainbow trout (Ogier de 
Baulny et al., 1997), the plasma membrane and mitochondrial function were better protected 
with 10% DMSO.  

Plasma membrane integrity and mitochondrial function are the two most important 
attributes for fertilizing an egg. The damage to membrane integrity and mitochondrial 
function could destabilize the sperm membrane and affect mitochondrial energy 
metabolism, thereby affecting spermatozoa viability. However, what interested us most is 
that although about 30% of spermatozoa were damaged in some way or even totally 
ruptured, the fertilization capacity of post-thaw sperm were not affected significantly in the 
standardized artificial fertilization experiment (Oehninger et al., 2000). Three hypotheses 
can be considered. The first hypotheses is that the sperm that survived freezing-thawing 
with normal morphology and mitochondrial function as shown in Fig. 3 and Fig. 4 region 3 
should be similar to fresh sperm in fertilization capacity. The second is that the sperm 
cryopreserved with the established method could provide adequate numbers of motile 
spermatozoa with normal sperm parameters to fertilize the eggs in artificial fertilization 
experiment. The third is that the process of freezing-thawing may result in a population of 
partially damaged yet motile spermatozoa, which can fertilize eggs and develop into larva 
normally. Such a population usually exhibits a certain degree of plasma and mitochondrial 
membrane leakiness as shown in Fig. 3 and Fig. 4 region 2, 4.  
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3. Conclusion 

In conclusion, the fertilizing capacity and egg hatchability were not significantly reduced by 
the post-thaw sperm treated with 12-21%DMSO, although the post-thaw sperm quality was 
influenced during the freezing and thaw process in motility, ultrastructure and 
mitochondrial function. The cryopreservation protocol used for red seabream sperm should 
be of great value for the establishment of sperm banks and assessment of ultrastructure and 
flow cytometry facilitated identification of damaged sperm; However, the exact nature of 
cryodamage to fish sperm are not yet fully understood. Sperm motility, structure integrity 
and mitochondrion function were damaged with different extent, although the fertilization 
capacity of cryopreserved sperm was not changed. There are many questions need to 
answer, how does the cryodamage reduce the sperm motility duration? If the cryodamages 
influence the gene expression and the embryo and larvae development? how to improve the 
post-thaw sperm quality by optimize the cryopreservation method? 
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