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1. Introduction 

Squamous cell carcinoma of the oral cavity is one of the most prevalent tumors of the head 
and neck region. Despite an ever-expanding fund of knowledge regarding the etiology and 
pathophysiology of malignant neoplasms, oral squamous cell carcinoma (OSCC) continues 
to be a disfiguring and deadly disease. For patients with squamous cell carcinoma of the oral 
cavity or oropharynx, the 5-year survival is a dismal 56%, which has remained relatively 
unchanged in recent years (Davis et al., 2010). This poor prognosis reflects the fact that most 
patients present with advanced-stage disease, often making a complete cure a seemingly 
unattainable goal. In fact, just 46% of oral cavity and 16% of oropharyngeal cancers are 
diagnosed when there is only local disease (Davis et al., 2010). Despite recent improvements 
in therapeutic approaches, treatment failure takes the form of local and regional recurrences, 
but as disease control in these areas improves OSCC treatment failures more commonly 
occur as distant metastasis. Metastatic behavior is critical to survival, since patients with oral 
carcinomas that have distant disease have a five-year survival rate that is three times less 
than that of patients with spread to lymph nodes (Singh and Shah, 2003).  

OSCC displays a wide range of metastatic behavior that cannot be predicted by tumor size, 
standard histology, or even individual gene or protein expression/activity (Singh and Shah, 
2003). Despite the clinically obvious heterogeneity of OSCC, there are currently no means of 
predicting individual tumor behavior (Myers, 2010). Even small primary tumors of the oral 
cavity have a propensity to metastasize to cervical nodes, mandating that the majority of 
patients, even those with no clinical or radiographic evidence of nodal metastases, undergo 
some form of neck treatment either for staging or therapeutic purposes. Accurate prediction 
of metastasis in OSCC would have an immediate clinical impact through avoidance of 
unnecessary treatment of patients at low risk with appropriate direction of resources toward 
aggressive treatment of patients at high risk of having metastatic disease. Additionally, 
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elucidation of key pathways and molecular mechanisms in tumor metastasis may direct 
therapeutic investigation and intervention. 

Loss of epithelial morphology and acquisition of mesenchymal characteristics, termed the 
epithelial-to-mesenchymal transition (EMT), are typical for carcinoma cells during tumor 
progression and correlate with the local invasiveness and metastatic potential of the tumor 
(Birchmeier et al., 1996; Hollier et al., 2009). Cancer metastasis follows a sequential series of 
events, and many of the critical steps are distinctly similar to EMT-like transformations that 
occur during normal embryonic development. Recently, it was proposed that carcinoma 
cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting 
transition (MErT) in order to adapt the microenvironments (Baum et al., 2008). This chapter 
explores the current status of investigations into the EMT/MErT transformations during the 
OSCC progression and the potential of these studies to positively impact the clinical 
management of OSCC in the future. The promise of using biomarker-based treatment 
decisions has yet to be fully realized given our limited understanding of the biology of 
metastatic spread in OSCC. 

EMT describes a process in which epithelial cells undergo alterations in cellular architecture 

(lose of their characteristic epithelial polarity), adhesion (disassemble of cell-cell junctions), 

morphology (assuming a fibroblastoid mesenchymal morphology) and acquisition of 

migratory and invasive capabilities (Iwatsuki et al., 2010; Maeda et al., 2005; Thiery, 2002; 

Wells et al., 2008). EMT has been postulated as a versatile mechanism which facilitates 

cellular repositioning and redeployment during embryonic development, tissue 

reconstruction after injury, carcinogenesis, and tumor metastasis (Boyer et al., 2000; Roussos 

et al., 2010). In this context, EMT, a process first appreciated by developmental biologists, is 

attracting increasing attention from oncologists. Tumors are often viewed as corrupt forms 

of normal developmental processes (Thiery et al., 2009). Indeed, genes that are important in 

embryonic development are frequently found to be culprits in cancer. Conversely, genes 

discovered for their oncogenic role are often found to be key players in embryogenesis 

(Yang et al., 2008). This trend applies to the steps that initiate tumor formation. It also 

applies to the cross-talk with the inflammation (Lopez-Novoa and Nieto, 2009; Yadav et al., 

2011) as well as to the steps that mediate tumor progression, including local invasion, 

intravasation into circulation and, most devastatingly, metastatic development through the 

establishment of secondary growths at sites distant from the primary tumor (Iwatsuki et al., 

2010; Kalluri and Weinberg, 2009). There is good evidence that EMT gives rise to the 

dissemination of single carcinoma cells from the sites of the primary tumors (Wellner et al., 

2009; Wu and Yang, 2011). More generally, it has been postulated that EMT might be 

involved in the dedifferentiation program that leads to malignant carcinoma. Some authors 

highlight the concept of altered differentiation program leading to the loss of type-specific 

epithelial differentiation markers and/or expression of typical mesenchymal-type proteins 

(Thiery, 2002). The typical example is a dedifferentiated epithelial cancer showing loss of 

cytokeratins and acquisition of mesenchymal markers such as Snail1, vimentin and/or 

fibronectin. Among many others, commonly used molecular markers for EMT include 

increased expression of N-cadherin and vimentin, nuclear localization of ┚-catenin, and 

increased production of the transcription factors such as Snail1 (Snail), Snail2 (Slug), Twist, 

EF1/ZEB1, SIP1/ZEB2, and/or E47 that inhibit E-cadherin production. Phenotypic markers 

for an EMT include an increased capacity for migration and three-dimensional invasion, as 
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well as resistance to anoikis/apoptosis. Recent research conducted in embryonic model 

system and in normal and transformed cell lines has identified several signal-transduction 

pathways for EMT, and has examined the roles of a number of growth factors in inducing 

EMT (Said and Williams, 2011). Recent studies have focused on better understanding the 

role of cancer stem cells in EMT as it relates to tumor progression in general (Alison et al., 

2010; Fuxe et al., 2010; Martin and Cano, 2010; Raimondi et al., 2011; Takahashi et al., 2010) 

and to oral, head and neck cancer in particular (Chen et al., 2011; Davis et al., 2010; Lo et al., 

2011). In this review, only few of the most important EMT players are discussed with 

respect to other critical mediators and within most common pathways that promote the 

phenotypic transformation. It is important to note that individual players do not work in 

isolation – there is extensive crosstalk between pathways, and the effect of a given inducer 

on EMT seems to be contextual. 

Deregulation of several other pathways has been implicated in EMT (Boyer et al., 2000). To 
name only few, transforming growth factor-┚ (TGF-┚), epidermal growth factor (EGF) 
family members, fibroblast growth factors (FGF), hepatocyte growth factor (HGF), and 
insulin-like growth factor (IGF) have all been shown to induce EMT in an autocrine or 
paracrine manner (Baum et al., 2008). TGF-┚ was the first EMT inducer described in normal 
mammary epithelial cells by signaling through its receptor serine-threonine kinase complex 
(Fuxe et al., 2010). It remains the main and the best-characterized inducer of EMT phenotype 
in a variety of biological and patho-physiological conditions. TGF-┚ has an important tumor 
suppressor function at the early stage of tumorigenesis by inducing apoptosis and cell cycle 
arrest. However, it acts as a positive modulator of tumor progression in the late phase of 
tumorigenesis. This tumor promotional function of TGF-┚, which is consistent with its EMT-
induction activity, plays an important role in tumor progression including invasion and 
metastasis (Fuxe et al., 2010). Recent evidence indicates that the underlying mechanism of 
the prognostic value of Smad (2 and 6) for overall survival in OSCC patients is the aberrant 
TGF-┚ signaling (Mangone et al., 2010). Disruption in TGF-┚ induced Smad signaling occur 
during induced hamster buccal-pouch squamous cell carcinogenesis (Chen et al., 2011). 
Furthermore, the inhibition of TGF-┚ pathway in normal human oral keratinocytes leads to 
suppression of Bmi1-mediated cell senescence (Kim et al., 2010). TGF-┚ also seems to play 
an important role in the bone invasion by OSCC cells (Goda et al., 2010) as well as in the 
metastatic dissemination of salivary adenoid cystic carcinoma (Dong et al., 2011). Being a 
major inducer of EMT, TGF-┚ is able to regulate the activation of other signaling pathways 
besides establishing a hierarchical gene network. TGF-┚-mediated signaling during EMT 
involves both gene expression-dependent and -independent pathways (Said and Williams, 
2011). TGF-┚ cooperates with Wnt, Hedgehog, Notch and Ras signaling pathways to induce 
complete EMT. EMT signaling pathways have many common endpoints and E-cadherin is a 
central target (Thiery and Sleeman, 2006). 

Loss of E-cadherin: E-cadherin is emerging as one of the caretakers of the epithelial phenotype 
with critical roles in adherens junctions and desmosomes (Garrod et al., 1996; Papagerakis et 

al., 2009). Our groups have devoted a large number of studies on the cadherin/catenin 
mediated adhesion in oral carcinogenesis (Lo Muzio et al., 2005; Lo Muzio et al., 2004; Lo 

Muzio et al., 2002; Lo Muzio et al., 1999; Pannone et al., 1998; Papagerakis et al., 2011; 
Papagerakis et al., 2004; Papagerakis et al., 2009) Among the mechanisms largely associated 

with the metastatic conversion of epithelial cells and the EMT, the loss of E-cadherin-
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mediated cell adhesion is prominent; overall there is a trend towards a loss of E-cadherin 
during carcinoma progression including the OSCC (Huber et al., 2011). E-cadherin 

production is maintain in most differentiated tumors including carcinomas of the head and 
neck, but there seems to be an inverse correlation between E-cadherin levels and patient 

survival (Hirohashi, 1998; Kaur et al., 2009; Nguyen et al., 2011). In most cases, down-
regulation of E-cadherin during OSCC carcinoma progression occurs by epigenetic 

mechanisms, including transcriptional repression and promoter hypermethylation (Kudo et 
al., 2004). Occasionally, the E-cadherin gene is mutated leading to the absence or to the 

expression of a non-functional protein (Berx et al., 1995; Yoshimura et al., 1996), however no 
mutations have been reported in OSCC. In vitro, there is a direct correlation between the 

lack of E-cadherin production and loss of epithelial phenotype (Behrens et al., 1989). 
Acquisition of the mesenchymal phenotype has been also associated with invasive behavior 

in vitro in three-dimensional collagen gels and hearts explants (Chen and Obrink, 1991) and 
the partial or complete reversal of the invasive mesenchymal phenotype was observed if E-

cadherin is constitutively produced (Behrens et al., 1991; Kim et al., 2000; Vleminckx et al., 
1991). Recently, it was proposed that carcinoma cells, especially in metastatic sites, could 

acquire the mesenchymal-to-epithelial reverting transition (MErT) in order to adapt the 
microenvironments and re-expression of E-cadherin be a critical indicator of MErT (Baum et 

al., 2008; Wells et al., 2008). Among E-cadherin repressors counts Snail, considered a “master 
gene” in the conversion from the epithelial to fibroblastic state, and a closely related 

member of the same family, Slug, both detected at sites of EMT in vertebrates (Nieto et al., 
1994). Carcinoma cell lines that lack E-cadherin produce significant amounts of Snail, and 

the transfection of E-cadherin-positive lines with Snail results in the induction of EMT and 
the expression of mesenchymal markers (Batlle et al., 2000; Cano et al., 2000). There seems to 

be a causal link between the production of these transcriptional repressors and the down-
regulation of E-cadherin during tumor progression. Snail expression was inversely 

correlated with E-cadherin expression in a number of cancers including OSCC (Batlle et al., 
2000; Cano et al., 2000; Takkunen et al., 2006; Yokoyama et al., 2001). Transcriptional 

repressors of the E-cadherin gene are activated downstream in these pathways, leading to 
the loss of the epithelial phenotype. Given that in most advanced human tumors including 

OSCC, the loss of E-cadherin might be incomplete, with foci of E-cadherin-positive 
carcinoma cells mingling with negative areas, along with E-cadherin detection in metastatic 

tumors, it may suggest that rather than a single-gene control it could be more likely a 
general mechanism that is associated with the dedifferentiation program in which E-

cadherin is lost. It is important to note that the immunohistological detection of E-cadherin 

within the positive tumoral foci is not necessarily indicative of a normal function of the 
protein; additional investigations are required to asses its functionality even in the presence 

of an apparent normal cellular distribution. In vivo evidence of EMT in tumors can be 
difficult to obtain due to the transient nature of the EMT process and may require combined 

immunohistochemical staining for several EMT markers. The loss of E-cadherin in normal 
epithelial cells and more importantly in carcinoma cells might deregulate cell growth, 

suggesting that in addition to contributing to the maintenance of the differentiation 
program, E-cadherin might also regulate cell proliferation, via activation of the Fos 

oncogene (Eger et al., 2000; Reichmann et al., 1992) or by altering the ß-catenin 
transcriptional activity through the Wnt signaling pathway (Gottardi et al., 2001; Stockinger 

et al., 2001). 
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Cadherin switching: Aberrant N-cadherin expression and E-cadherin/N-cadherin switching 
(EN-Switch) have been involved in EMT. They represent an independent prognostic marker 
in cancer progression; this concept has been well documented in gastric, prostate and oral 
carcinomas (Gravdal et al., 2007; Kim et al., 2009; Liu et al., 2010). Furthermore, some studies 
demonstrate that cadherin switching is necessary for increased motility but it is not required 
for the morphological changes that accompany EMT (Maeda et al., 2005) therefore, 
immunohistochemical detection should be performed in order to detect EN-Switch and the 
consequent EMT in oral cancer. 

Wnt signaling: Our groups have a particular interest in WNT/ ß-catenin pathway (Lo Muzio 

et al., 2002; Pannone et al., 2010; Papagerakis et al., 2011). Dysregulation of the Wnt pathway 

via ß-catenin is a frequent event in EMT involved in the pathogenesis of several human 

cancers. In OSCC its roles still remain unclear. Although it is evident that constitutive 

activation of the Wnt / ß-catenin is frequently observed in oral cancer progression, only 

infrequent mutations have been found in genes encoding various components of this 

pathway that are commonly mutated in other cancers (adenomatous polyposis coli APC, 

(Kok et al., 2002); Axin, (Iwai et al., 2005; Rui et al., 2007); no ß-catenin mutations have been 

reported in OSCC, (Lo Muzio et al., 2005). This suggests activation of this pathway by 

multiple mechanisms. Furthermore, the interaction between epithelial tumor cells and the 

different components of the surrounding microenvironment can locally affect the 

intracellular level of Wnt/ß-catenin signaling components and differentially trigger tumor 

cell stemness, EMT, invasive behavior, and metastasis (Myers, 2010). 

β-catenin: has a dual role in the EMT; it enhances cell–cell adhesion when bound to cadherin 
complexes in adherens junctions and also functions as a transcriptional co-activator upon 
entry into the nucleus. When the WNT pathway is in resting state, cytoplasmic ß-catenin is 
phosphorylated by glycogen synthase kinase (GSK)3-ß and actively degraded by a 
multiprotein destruction complex that also includes casein kinase 1, APC and Axin. Thus, 
the levels of free ß-catenin are kept bellow the threshold where aberrant transcriptional 
activity will occur. In response to Wnt ligand binding to its specific receptor, the destruction 
complex is inactivated by inhibiting the activity of GSK3-ß which results in 
dephosphorylation and stabilization of ß-catenin, enabling it to accumulate within the 
nucleus, where it interacts with T-cell factor 4 /lymphocyte enhancer factor (TCF4/LEF) 
transcription factors to activate the transcription of Wnt target genes (Behrens et al., 1996; 
van de Wetering et al., 1997). It has been demonstrated that a number of genes targeted by 
nuclear ß-catenin LEF/TCF pathway plays a significant role in EMT (Table 1). Repression of 
E-cadherin by Snail, Twist, or other repressors leads indirectly to expression of vimentin and 
other mesenchymal gene products, partly because of ┚-catenin/TCF–Lef1 activation. TGF-┚ 
is known to activate this canonical Wnt pathway; TGF-┚ and Wnt pathway can 
independently or cooperatively regulate LEF/TCF target genes (Huber et al., 2005). TGF-┚ 
also directly activates the TCF–Lef1 transcription complex through tyrosine 
phosphorylation of SMAD-2. It has been reported that Smad-2/4 repressed E-cadherin 
transcription through TCF–Lef1 (Masszi et al., 2004; Nawshad et al., 2005). Loss of 
membranous ß-catenin and E-cadherin associated with EMT have been shown to correlate 
with metastatic formation and poor prognosis in multiple solid tumors and is a common 
feature of OSCC (Kudo et al., 2004; Odajima et al., 2005; Tanaka et al., 2003; Wang and Ma, 
2007; Williams et al., 1998). Several studies have demonstrated that cytoplasmic and nuclear 
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localization of ┚-catenin is correlated with tumor progression, invasion and metastatic 
potential of OSCC (Ishida et al., 2007; Lo Muzio et al., 1999; Odajima et al., 2005; Yu et al., 
2005). Cytoplasmic/nuclear ┚-catenin expression has also been found to significantly 
correlate with EGFR expression in OSCC (Odajima et al., 2005). In addition to the change in 
subcellular localization, phosphorylation of ┚-catenin may also be associated with OSCC 
progression and EMT (Tamura et al., 2003). It has been shown that tyrosine phosphorylation 
of ┚-catenin by EGFR is associated with the perturbation of E-cadherin - mediated cell 
adhesion and EMT acquisition and leads to increased cell motility that are requisite for 
metastatic dissemination (Hirohashi, 1998; Thiery, 2003). Furthermore, some authors have 
uncovered a new EMT pathway via p68 to nuclear ß-catenin (Yang et al., 2006). Given that 
EGF and TGF-┚ also induce p68 tyrosine phosphorylation, the nuclear ß-catenin is not 
simply a consequence of E-cadherin down-regulation during EMT, because phosphorylated 
p68 promotes ß-catenin nuclear localization regardless of whether E-cadherin is depleted or 
expressed. P68/ß-catenin axis may represent a common output for several signaling 
pathways. These pathways offer additional routes to nuclear ß-catenin signaling that are 
parallel to the Wnt pathway, which does not involve p68. The ability of ┚-catenin to enhance 
cadherin-dependent adhesion depends on ┚-catenin binding to ┙-catenin and on ┙-catenin 
binding to the cadherin (Chu et al., 2004). Phosphorylation of ┚-catenin residue Y142 
prevents ┙-catenin interaction and enhances the binding of ┚-catenin to BCL9-2, which is the 
vertebrate homologue of the Drosophila melanogaster legless gene (Brembeck et al., 2006; 
Brembeck et al., 2004). Interaction of ┚-catenin with BCL9-2 enhances nuclear accumulation 
of both proteins simultaneously decreasing cadherin-mediated adhesion and activating 
catenin target gene transcription. Ectopic BCL9-2 expression is sufficient to induce EMT in 
cultured cells, and siRNA-mediated BCL9-2 inactivation drives the reverse mesenchymal–
epithelial transition. Birchmeier reported that Y142 can be phosphorylated by the Met 
tyrosine kinase, indicating the existence of an EMT activation pathway where Met induces 
┚-catenin nuclear translocation by enhancing BCL9-2 interaction (Heuberger and 
Birchmeier, 2010). This pathway satisfactorily links these two well known EMT regulators. 

Akt pathway: Recently, activation of the Akt axis is emerging as a central feature of EMT. The 
Akt family of kinases is a downstream effector of phosphatidylinositol 3-kinase (PI3K) and 
is frequently activated in human epithelial cancers, including OSCC (Nakayama et al., 2001; 
Testa and Bellacosa, 2001). Akt activation in OSCC was linked to aggressive clinical 
behavior and the loss of histological features of epithelial differentiation (Lim et al., 2005). 
Akt-induced EMT involves down-regulation of E-cadherin, which appears to result from 
up-regulation of the transcription repressor Snail. Accordingly, inhibition of Akt activity 
induced down-regulation of EMT-related transcription factor Snail. Akt activity is induced 
by ligand stimulation of growth factor receptors such as the insulin-like growth factor-I 
receptor (IGF-IR) and the EGFRs (Hong et al., 2009; Hynes and Lane, 2005). It has been 
demonstrated that OSCC cells engineered to express constitutively active Akt underwent 
EMT, characterized by down-regulation of epithelial markers (desmoplakin, E-cadherin, ┚-
catenin) and up-regulation of the mesenchymal marker vimentin, and exhibited enhanced 
tumor invasion (Grille et al., 2003). In contrast, the inhibition of Akt activity was able to 
restore epithelial characteristics, deplete mesenchymal features and reduce the migratory 
ability. This indicates that the inhibition of Akt activity could induce the MErT in OSCC cells 
and that the gain of epithelial characteristic might be an earlier or more prominent event in 
the MErT of the OSCC than the loss of mesenchymal one (Hong et al., 2009). 
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Name  Function  References  

TNF-alpha  proinflammatory cytokine  
Cawthorn WP et al  

Cell Death Differ. 2007  

Osteopontin  extracellular matrix protein  Phlilip S et al J Biol Chem. 2005  

Cyclin-D1 CCND1  
Oncogene involved in cell 

proliferation  

Cao J et al  

World J Gastroenterol 2006  

c-myc  
proto-oncogene involved in 

cellular proliferation  

Cao J et al  

World J Gastroenterol 2006  

Splicing Factor-1    

(SF-1)  

regulates beta-cat gene 

transactivation and 

premessenger RNA splicing 

activities  

Shitashige M et al 

Gastroentetology 2007  

Notch1  

transmembrane receptor that 

determines cell fate after its 

translocation to the nucleus 

where it activates gene 

transcription  

Balint K et al  

J Clin Invest. 2005  

Brn2  cell lineage-restricted genes  
Larue L, Delmas V  

Front Biosci. 2006  

Mitf-M  

melanocyte-specific gene, with 

critical role in cell survival, 

proliferation and differentiation  

Larue L, Delmas V  

Front Biosci. 2006  

Dct  

melanocyte-specific gene 

involved in melanoma 

proliferation  

Larue L, Delmas V  

Front Biosci. 2006  

MCP-1/CCL2  

CC-chemokine implicated in 

tumour progression events such 

as angiogenesis or tumour 

associated macrophage (TAM) 

infiltration  

Mestdagt M et al  

Int J Cancer, 2006  

MYCBP  (myc binding protein)  Jung HC, Kim K Life Sci. 2005  

MMP-7  
Matrix Metalloproteinase 

Metastasis  

Monaghan H.et al.  

Histopathology. 2007  

CX43 (Connexin 43),  gap junctional protein  
Husoy T et al.  

Carcinogenesis. 2003  

PPAR-delta  
peroxisome proliferator-

activated receptor  

Gupta RA et al  

Proc Natl Acad Sci U S A. 2000  

ITF2 initiation 

transcription factor 2  
transcription factor  Zhai Y et al. Am J Pathol. 2002  

Survivin  Inhibition of apoptosis  Kim PJ et al. Lancet 2003  

VEGF  
Vascular endothelial growth 

factor  

Calviello G et al  

Carcinogenesis. 2006  

MT1-MMP  
Membrane Type1-Matrix 

Metalloproteinase  

Calviello G et al  

Carcinogenesis. 2006  

Table 1. 
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C-met and tyrosine kinase receptors: The c-Met pathway has been implicated in the EMT 
during oral carcinogenesis; activating mutations have been found in metastatic head and 
neck carcinomas, but not in the corresponding primary tumors (Di Renzo et al., 2000).The 
activation of several other tyrosine kinase receptors, including fibroblast growth factor 
(FGF), insulin-like growth factor (IGF) and the ERBB family has been found to induce EMT 
in vivo and in vitro (Valles et al., 1990). Although the Met receptor-mediated signaling 
results in cell scattering, it has not been made clear whether Met signaling also has a more 
permanent effect on the expression or localization of some of the effectors of EMT, such as 
E-cadherin and ┚-catenin. Recent work suggests that Met also regulates intracellular 
localization of ┚-catenin (Heuberger and Birchmeier, 2010). 

Twist: The basic helix-loop-helix transcription factor Twist, a master regulator of embryonic 
morphogenesis essential for initiating mesoderm development during gastrulation, was 
recently added to the growing list of developmental genes with a key role in E-cadherin 
repression and EMT induction, as well as metastasis (Kang and Massague, 2004; Martin and 
Cano, 2010). However, there have been very few reports on the relationship of Twist with 
the EMT in oral cancer cells. Hong et al (2009) reported that inhibition of Akt activity 
induced down-regulation of EMT-related Twist in OSCC cells. It has been recently reported 
that Twist directly regulates the stemness factor Bmi1, and that both proteins are required 
for the induction of EMT and stemness in head and neck squamous cell carcinoma (Yang et 
al., 2010). Twist is also induced by hypoxia showing a link between tumor 
microenvironment and the expression of EMT promoting transcription factors (Yang and 
Wu, 2008). Twist over-expression correlates with aggressive phenotypes and poor outcome 
in HNSCC (Yang et al., 2008). Twist can be up-regulated by Wnt signaling (Howe et al., 
2003) and can bind and repress the E-cadherin promoter (Vesuna et al., 2008) in epithelial 
cells. Twist confers metastatic properties to breast tumor cells and stem-like properties in 
epithelial cells (Mani et al.; Morel et al., 2008; Yang et al., 2004).  

Accumulating evidence demonstrates that tumor cells undergoing EMT acquire the capacity 
to migrate, invade the stroma and metastasize. EMT also involves other inducers such as 
matrix metalloproteinases (MMPs) and urokinase plasminogen activator which like growth 
factors, may be secreted by either the tumor cells themselves or by the surrounding tumor 
stromal cells. These molecules degrade the components of basal lamina leading to invasion 
of the migrating cancer cells into reactive stroma and subsequently lymphatic vessels and 
systemic circulation (Said and Williams, 2011). EMT cells also acquire stem cells 
characteristics suggesting crosstalk between EMT and pathways involved in promoting 
cellular stemness and that EMT might provide cells with both migratory and stem cells 
properties. Brabletz and colleagues proposed first the idea that disseminating cancer stem 
cells (CSC) represent the origin of metastasis (Brabletz et al., 2005). The experimental 
evidence to support this idea was provided by Weinberg and colleagues, by showing that 
cells induced to undergo EMT (by Twist/Snail/TFG-┚) acquired a CD44high/Cd24low 
signature, similar to a small sub-population of breast cancer stem cells that previously had 
been isolated and identified to have a unique ability to form tumors in xenograft models 
(Al-Hajj et al., 2003; Mani et al., 2008). Furthermore, EMT cells exhibited many properties of 
stem cells (mammospheres formation, ability to differentiate into cells of different lineages 
and to reconstitute a heterogenous tumor, (Mani et al., 2008). Another study reported that 
cells induced to undergo EMT by Ras-MAPK activation also displayed stem-like properties 
and a CD44high/CD24low signature (Morel et al., 2008). Colleagues at the University of 
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Michigan first demonstrated that a CD44+ population of cells possesses the properties of 
CSC in head and neck cancer (Prince et al., 2007), followed by other reports on head and 
neck cancer stem cells using other markers in addition to CD44 (Clay et al., 2010; 
Krishnamurthy et al., 2010; Krishnamurthy and Nor, 2011). In our recent study, we reported 
increased motility of CD44high CSC from head and neck cancer which is characteristic of cells 
undergoing EMT, and this may explain why, in our study, head and neck CSCs formed lung 
lesions in vivo, while non-CSCs did not (Davis et al., 2010). In fact, Takahashi et al. showed 
that, in EMT induced by tumor necrosis factor, the interaction between CD44 and 
hyaluronan indeed mediated cell-cell dissociation, actin remodeling, and, as a result, 
enhanced motility (Takahashi et al., 2010). These findings, in conjunction with our own, 
suggest that cell motility and the ability to undergo EMT are some of the most important 
characteristics of a metastatic cell, and it appears that CSCs may have those capabilities. 

Cancer stem cells seems to localize at the invasive fronts of the head and neck squamous cell 
carcinomas in the proximity of the blood vessels (Krishnamurthy and Nor, 2011) Future 
studies focused on better understanding the role of CSCs in EMT as it relates to oral, head 
and neck carcinomas are needed. In addition, further purification of the stemlike cell 
population in HNSCC is necessary to clarify what metastatic characteristics are indeed 
unique to these cells. Our laboratories are currently investigating these underlying 
mechanisms. Such knowledge would allow clinicians to exploit this particular set of 
attributes to target cancer cells that keep a tumor growing and allow it to spread. 
Furthermore, a better understanding of the EMT/MErT transformations during the OSCC 
progression will positively impact the clinical management of OSCC in the future.  
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