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1. Introduction  

The content of this chapter refers to uncooled resistive bolometers and the challenge that 
consists in their integration into monolithic devices exhibiting smart functions. Uncooled 
resistive bolometers are the essential constitutive element of the majority of existing 
uncooled infrared imaging systems; they are referred to as microbolometer pixels in that 
type of application where matrixes of such elementary devices are used. Uncooled 
bolometers represent more than 95% of the market of infrared imaging systems in 2010 
(Yole, 2010) and infrared imaging systems are required for more and more applications.  

Mature industrial applications of uncooled IR imaging are non-destructive test and process 
control in production lines. Booming applications of uncooled IR imaging are in two main 
fields: security and environment. Application to security involves the conveyance security 
controls on one side and on the other side the emerging market of automotive security 
systems. In that case, infrared imaging is applied to the detection of pedestrians, animals or 
black ice on roads. At the present time, the high cost of IR imaging equipments prevents 
their broad distribution and restricts their market to luxury cars. The huge and dynamic 
market of automotive industry promises cost reduction in the next years. Besides, 
strengthening of safety norms such as Euro-NCAP in Europe will someday turn pedestrian 
detection systems into standard equipments. Environment is the second booming 
application field. It is driven by the environmental and ecological concern to track heat leaks 
in buildings and to allow for thermal budgeting of buildings. Driven by thermal regulation 
laws that limit the maximum power consumption of buildings, such as the RT 2012 in 
France, standard applicable from 2013, this field is to grow substantially in the coming 
years. According to recent market research, the volume of sale of uncooled infrared imaging 
system is to triple by 2015 (Yole, 2010) that is to say a 23% annual growth rate. 

Such markets drive the research and development of uncooled infrared systems. Two main 
ways of development are investigated: (1) improvement of the bolometer pixel through 
appropriate choice of material and structure design, (2) optimization of the readout 
electronics. Amorphous silicon and other silicon based materials begin to challenge the 
historically dominant vanadium oxide (VOx) because their manufacturing is easier and 
cheaper. On the other hand, new packaging and microfabrication solutions such as through 
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silicon via are considered for further integration and cost reduction. Concerning the second 
point, now, most of the readout electronics has been moved onto the chip where it is 
referred to as the readout integrated circuit (ROIC). The ROIC incorporates parallel column 
circuitry, consisting of amplifiers, integrators and sample-and-hold circuits with a column 
multiplexer which provides a single channel output. Most of the approaches today employ 
CMOS silicon circuitry for which the power dissipation is much lower than that of bipolar. 
Research works are still going on to improve this electronics, mainly for noise 
considerations (Chen et al., 2006; Lee, 2010; Lv et al., 2010). However, that electronics only 
enables the readout of the measured signal and cannot be directly derived to implement 
smart functions or operate the bolometer with feedback. 

Independently from material or readout electronics, we address here another type of feature 
for uncooled bolometers that is the implementation of smart functions so as to derive 
“basic” uncooled resistive bolometers into smart bolometers. The smart qualification is not 
only a matter of readout circuit integration since it implies additional features compared to a 
bolometer pixel associated to conventional ROIC.  

This chapter deals with smart bolometers according to the IEEE 1451.2 definition of smart 
sensors which states that smart sensors are sensors “that provide functions beyond those 
necessary for generating a correct representation of a sensed or controlled quantity”. Test, 
identification and configurability are some examples of functions beyond conventional use, 
also called smart functions. Such smart functions contribute to an easier use of sensors and 
allow the sensors to take into account parameters discrepancies or evolutions. For instance, 
identification can be used to compensate for discrepancies between bolometers due to the 
process variations during the technological fabrication. Identification can, as well, allow the 
sensors to adjust to aging effects during their operating life. Combined with the 
configurability, the identification function makes possible to satisfy a large number of 
applications. The configurability takes advantage of the operation in a closed-loop mode to 
overcome the traditional trade-off between time constant and responsivity (Rice, 2000) and 
allows some flexibility in the choice of these characteristics. 

The smart bolometers considered here consist in uncooled resistive bolometers associated to 
an electrical substitution means that enables the implementation of smart functions. The 
electrical substitution configuration chosen is the capacitively coupled electrical substitution 
(CCES) (Denoual et al., 2009a, 2009b). The demonstration of the closed-loop operation of 
resistive bolometers with this configuration has been performed with digital electronics 
implementation (Denoual et al, 2010). The introduction of digital electronics and control for 
feedback leads to new performance because of system linearization; in addition, it simplifies 
the implementation of smart functions. This configuration has the potential to allow for a 
fully integrated smart sensor, i.e. a monolithic smart bolometer. Such integrated smart 
bolometer is the ultimate goal of the work presented in this chapter and illustrated in Fig. 1 
and Fig. 2. But before taking this rather large next step, it is important to understand the 
configurations that are available, and their ability to provide a higher level of intelligence 
and value to resistive bolometers. 

For this purpose, prior to integration, high-level or top simulations are investigated as well 
as experimental prototyping with microcontroller units. One role of the top-simulation and 
modeling is to provide the designer with potential performance regarding various control 
algorithm strategies based on current or coming resistive bolometer technologies. Top 
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simulations are desirable to validate the algorithms that implement the smart functions. 
Preferably, the validation of the algorithms should be performed in their operating context. 
These considerations guide the designer toward standard VHDL modeling technique as a 
solution. Such modeling technique exhibits indeed true interests including very fast 
simulation without convergence issues and the validation of algorithms in their operating 
context (Schubert, 1999; Staszewski et al, 2005). It is noticeable that this modeling technique 
is  applied here to a multi-domain system involving optical, thermal and electrical signals. 

 

Fig. 1. General functional block diagram of a smart bolometer. Smart functions require a 
built-in stimulus generation. The feedback control and feedback path are optional and allow 
closed-loop operation of the bolometer. 

 

Fig. 2. Integrated smart bolometer pixels. Line of monolithic smart bolometer pixels. Part of 
the conditioning and feedback electronics is integrated below the bolometer pixel. 

Macroscale experiments with discrete components complete the knowledge acquired 

through the top-simulations. Those experiments involve resistive bolometer prototypes with 

capacitively coupled electrical substitution feedback means associated to microcontrollers 

that implements the smart functions for proof-of-concept demonstration. That is the current 

phase of development and one of the necessary steps to the next level: the monolithic smart 

bolometer.  

This chapter is organized as follows:  

After this introduction, the second section describes the smart functions to be implemented 
and stresses the need for built-in stimuli solutions. The third section includes top simulation 
and experimental results. The contexts of those results are presented; especially the 
modeling technique for the top simulation and the experimental set-up for the macroscale 
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and discrete component based results are described. Based on these results, the expected 
performance of a fully integrated smart bolometer is explored. The ultimate capabilities of 
smart bolometers will be limited only by the performance of the integrated electronics and 
the imagination of the designer. The fourth chapter highlights a particular solution for the 
integration of the bolometer and its associated electronics for the implementation of smart 
functions that would enable the realization of lines or matrixes of pixels for smart infrared 
imaging systems.  

2. Bolometer with smart functions 

Referring to literature, functions performed by smart sensors in that role include correcting 

for environmental conditions, performing diagnostic functions, and making decision (Frank, 

2000). The smart functions implemented in the smart bolometer are described in this section 

as well as the means required for their implementation.  

Before getting further into the description of the smart functions and their implementations, 
some notations and vocabulary are defined. 

An uncooled resistive bolometer converts absorbed infrared (IR) radiation into heat, which 
in turn changes the resistance of a sensing resistor. The sensing resistor or thermistor is 
current biased. A bolometer can be modeled as an IR-sensitive element of thermal mass Cth 
linked via a thermal conductance Gth to a substrate acting as a heat sink (see Fig. 3).  

 

Fig. 3. Schematic of a resistive bolometer. 

The performance of the bolometer is characterized by figures of merit such as its 
responsivity (R), the temperature coefficient of resistance (TCR or  , positive or negative 

depending on the material) of the temperature sensing resistor, its specific detectivity (D*) 
and its effective time constant (τeff=Cth/Geff, Geff is the effective thermal conductance and 
depends on Gth, that takes into account the electro thermal effect (Richards, 1994)).  

The responsivity (R) describes the variations of the output voltage signal (vtemp) depending 
on the IR input radiation (popt) and it is expressed by the transfer function of the bolometer 
as follows: 
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where η is the absorption coefficient of the absorption layer of the device, IBIAS is the bias 
current, RB is the bolometer resistance (sensing resistor).  

The trade-off between time constant (τeff) and responsivity (R) appears in the dependence of 
those parameters according to the thermal conductance. A low Geff is required to improve 
the responsivity but this negatively increases the time constant.  

2.1 Investigated smart functions  

The smart functions of the smart bolometer described here are of two kinds: diagnostic 

functions and correction functions. A third type of smart functions is decision making which 

is not addressed here. Among the diagnostic functions, the first one is self-test. The self-test 

feature allows the verification of the thermal and electrical integrity of the bolometer at any 

time during its operating life. It provides the user with a qualitative result that informs 

whether the bolometer is working or not. The second diagnostic function is self-

identification. The self-identification feature is more complex than self-test. The self-

identification allows the characterization of the sensor and its associated electrical circuitry. 

This feature can be used at any time for monitoring the aging of the device and for deciding 

if a calibration is required. This feature is useful if closed-loop mode operation of the 

bolometer is considered in order to extract the forward path parameters (bolometer and its 

conditioning electronics) for the evaluation of the parameters of the controller that would 

drive the feedback path (Fig. 1.). Fig. 4. depicts the functional block diagram of an 

adaptative identification algorithm. Adaptative algorithms are interesting in that they run in 

real-time and do not require huge memory means since a few parameters and a few 

coefficients are stored. The identification principle is to iteratively adjust the parameters of 

the model to make the predicted output of the model converge towards the output of the 

forward path. The adjustment is performed according to the stimulation input signal and 

the error between the predicted output of the model and the current output. This 

convergence enables the extraction of estimated parameters representing the device, 

especially the time constant, the DC responsivity and the thermal characteristics of the 

bolometer. 

Self-identification refers to identification using a built-in stimulus. The same type of 

identification algorithms can be used for calibration, in that case external optical stimuli are 

used and identification results are used to derive coefficients stored in a calibration table.  

After diagnostic functions, the developed smart bolometer implements a correction function 

that is range selection. Open-loop and closed-loop operation modes should be 

distinguished. In open-loop operation mode, the input range can be modified by changes of 

the gain of the conditioning electronics or more rarely through the current bias of the 

sensing resistor of the bolometer. In closed-loop mode, the input range is selected by the 

gain of the controller and the gain of the feedback. The closed-loop mode, in addition, 

allows input range selection around a user defined operating point. 
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(^ indicates estimation) 

Fig. 4. Identification functional block diagram. With ( )u t the stimulation input (Pstim), 

( )y t the open-loop system output, ˆ( )t the parameters of the model, ( )t the observation 

vector, ˆ( ) ( )Tt t  the predicted output, ( )t the error between the system output and the 

predicted output, 0
ˆ ˆ ˆ, ,eff thG C R the extracted estimated parameters representing the device. 

Considering lines or matrices of pixels, the identification smart function associated to 

closed-loop operation is a way of compensation of the spatial noise caused by the bolometer 

resistance dispersion due to fabrication process. Bolometer pixels individually operating in 

closed-loop mode would be able to compensate this spatial noise after external calibration or 

built-in calibration thanks to built-in input stimulus. 

2.2 Requirements  

Addressed implicitly in the previous sub-section, a built-in stimulus means is the first 

requirement to implement self-test or self-identification functions, the second one being a 

digital core for the implementation of the algorithms of the smart functions. A built-in 

stimulus implies being able to stimulate the sensor with a self-generated signal in the same 

manner as an external optical power stimulus would do. The first and straightforward 

solution is to use an optical power source. The major drawback of this solution is the 

integration limitation, especially if lines or matrixes of pixels are considered. The second 

solution relies on the electrical substitution principle (Rice, 2000) also referred to as electrical 

equivalence principle (Freire et al, 2009). This principle states that Joule heating electrically 

produced can be used to equivalently stimulate the sensing resistor of a bolometer 

compared to optical incoming power.  

The availability of a built-in stimulation source can lead fairly directly to the closed-loop 

operation of the sensor. Indeed, only a controller has to be inserted in a feedback loop. The 

advantages obtained through closed-loop operation of bolometers detailed in (Denoual & 

Allègre, 2010) are rapidly recalled here. For instance, closed-loop operation mode enables to 

increase the bandwidth and the range of the measurement. Closed-loop mode makes it 

possible to work around a user-defined operating point. This feature is important for the 

input range selection around a user-defined operating point. 
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In practice, three ways exist for the realization of an electrical substitution stimulus and its 
extension for closed-loop operation of the bolometer. There are all based on electrical Joule 
heating generation and differ depending on whether the Joule heating is generated onto the 
sensing resistor of the bolometer or at its vicinity. The Joule heating is either produced by a 
current or a voltage. From now, voltage stimuli for the Joule heating generation are 
considered. The three implementations of electrical substitution are schematically 
represented in Fig. 5(b-d).  

    
(a) (b) (c) (d) 

optical electrical 

Fig. 5. Built-in stimulus means. (a) optical power source implementation. (b) electrical 
substitution (ES) configuration type 1. (c) ES type 2. (d) ES type 3. With RBIAS the bolometer 
biasing resistor, RB the sensing resistor of the bolometer, RH an additional resistor for Joule 
heating, VBIAS the biasing voltage, VSTIM the voltage stimulus, IBIAS the DC bolometer bias 
current, and iBIAS the variable bias current. 

In type 1 implementation, Fig. 5(b), the voltage stimulus, VSTIM, is added to the bias voltage 

VBIAS (Freire et al, 2009). The voltage stimulus produces Joule heating into the sensing 
resistor of the bolometer. The voltage across the sensing resistor of the bolometer changes 

according to the resistance variations of the sensing resistor due to both Joule heating 
variations and bias current, iBIAS, variations. In that case, the thermal and electrical operating 

points of the bolometer are intimately linked. This particular link makes the operation in 
closed-loop mode tricky and commonly yields to stability issues and does not allow taking 
advantage of the bandwidth increase due to closed-loop operation as pointed out in 

(Williams, 1990).  

The type 2 implementation, Fig. 5(c), uses an additional resistor (RH) as a heater to produce 
the Joule heating stimuli (Rice et al, 1998). It enables the separation between the electrical 
and the thermal operation points at the expense of an additional resistor. This additional 
resistor has to be close to the sensing resistor, which adds a constraint to the design of the 
bolometer. Operation in closed-loop mode using this configuration is successfully 
demonstrated in (Rice et al, 1998; Allègre et al, 2007).  

www.intechopen.com



 
Bolometers 

 

178 

The type 3 implementation, Fig. 5(d), exhibits the advantages of the type 1 and of type 2 

implementations without their disadvantages, i.e. no additional resistor but separation of 

thermal and electrical operating points. This implementation is compatible with existing 

resistive bolometer without any material or design modification but still allows separating 

the electrical and thermal operating points (Denoual et al, 2009). The operating points are 

separated according to frequency basis. The bial voltage signal, electrical operating point, is 

a low frequency signal while the voltage stimulus signal for the thermal operating point is a 

high frequency signal, typically tens of MHz. No additional heat source is needed, and 

stability issues are fixed.  

All this built-in stimulus implementations can be derived to operate the bolometer in closed-

loop mode (Denoual & Allègre, 2010). The four built-in stimulus solutions illustrated in Fig. 5 

may be used to implement smart functions and derive a smart bolometer. However, the ease 

of use and the flexibility of the type 3 implementation, Fig. 5(d), make it the best suitable 

candidate for smart bolometer integration despites its extra electrical circuitry compared to 

the other two electrically based solutions. This is demonstrated in the next section through 

simulation results and experiments on macroscale bolometer.  

3. Actual work  

Before getting into the long and expensive design and fabrication process of the monolithic 

smart bolometer, it is essential to perform validations to determine the feasibility and to 

guide the design. Our validation procedure goes through top simulations and macro-scale 

experiments with discrete components. Some results of both simulations and experiments 

are presented in this section to demonstrate the potentialities of integrated smart 

bolometers. As mentioned in the previous section, the integrated smart bolometer is based 

on the capacitively coupled electrical substitution (CCES) technique for built-in stimulus 

generation and closed-loop operation. Before getting into the results of simulations or 

experiments, the key features of the CCES principle are recalled; more information can be 

found in (Denoual et al, 2009; Denoual et al, 2010; Denoual & Allègre, 2010). 

Capacitively Coupled Electrical Substitution (CCES) 

The principle of the closed-loop mode operation using the electrical substitution (ES), also 

involved in the CCES technique, is depicted through Fig. 6 and Fig. 7, and described 

hereafter. With no external optical power applied, the thermal operating point (PBIAS) is set 

by the VPbias value. Typically the bolometer is heated up a few Kelvin, at temperature TBIAS, 

over the room temperature, T0. When an external optical power, Popt, is applied, a change in 

the resistance of the bolometer sensing resistor is sensed, and consequently the output signal 

of the controller changes, decreasing the average power of the feedback Joule heating, Pfb. 

The net effect is to produce a Joule heating to counterbalance the externally applied optical 

power on the bolometer so as to keep the temperature of the sensing resistor of the 

bolometer constant at TBIAS. 

Among ES techniques, the CCES technique presents several distinct characteristics.  

The capacitively coupled electrical substitution dissociates the electrical and thermal 

operating points according to a frequency basis as already mentioned. High frequency 
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modulated signals are used for the voltage applied to the sensing resistor for the heat 

feedback. Since the feedback is high frequency, the feedback signal does not end up in noise 

signals in the bandwidth of the sensor. 

 

Fig. 6. Block diagram of a closed-loop implementation of a bolometer using electrical 
substitution (ES). G is the amplifier gain and Gfb is the gain of the feedback shaping module. 
Vmes is the output in closed-loop mode. 

This implementation can be applied to any kind of uncooled resistive bolometer. The digital 

implementation, involving pulse width modulation (PWM) or Sigma-Delta modulation, in 

general terms pulse coded modulation (PCM), enables the linearization of the feedback path 

as well as a direct digital output power reading (Denoual et al, 2010). Clocking for this type 

of system is typically about 1-10 MHz. Fig. 8 depicts one example of such digital 

implementation. 

 

Fig. 7. Electrical substitution principle used for closed-loop mode operation. 遖 without 
external optical power, the thermal operating point is set by the bias power corresponding 
to the VPbias voltage. 遘 with external optical power, the total amount of power dissipated 
onto the bolometer is kept constant thanks to the variations of the feedback power. 
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Fig. 8. Schematic of a digital implementation of the capacitively coupled electrical 
substitution technique for closed-loop operation of a resistive bolometer involving a PWM 
modulation with a duty cycle a . 

3.1 Top-simulation and modeling 

Generally speaking, the main specification for the environment used for the top-simulation 

of a smart sensor is its ability to validate the algorithms implementing the smart functions in 

their operating context, i.e. including the sensor and its associated electronics. Few 

simulation environments address this specification because it implies mixed simulations 

(analog/digital) and multiphysics simulations, here optical, thermal and electrical. 

Environments commonly used address only one of each simulation type; for instance 

ANSYS® or COMSOL® for multiphysics simulation widely used for MEMS sensor design 

and simulation, SPICE-like environments for analog simulation and NCSim® or 

ModelSim® environments for digital simulation.  

Spice-like environments may be used for top-simulation of system combining electronics 

and sensors through modeling of the sensor with equivalent electrical circuits (Jones et al, 

2003). However, Spice-like simulators are not suitable for the validation of algorithms 

because the algorithms implemented on the digital part cannot be run. Only snapshots 

corresponding to specific and static configurations can be tested. 

Long time simulations or huge processing requirements prevent the usage of coupled or 

mixed environments for the type of simulation considered here.  

Modeling using VHDL-AMS or Verilog-AMS has been proposed for the modeling and for 

multi-domain simulation of MEMS devices in their functional environment (Chapuis et al, 

2008). But as far as top validation is concerned, i.e. test of embedded algorithms in their 

operating context, these techniques exhibit huge simulation times that are not compatible 
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with the validation of the algorithms and usually suffer from convergence issues. Besides, 

the set-up of that kind of simulations is often tricky. 

Matlab with appropriate modeling of the analog blocks of the system can be used for this 

kind of top-simulation, but no direct link exists between the electrical schematic and the 

Matlab schematic. This is a disadvantage when the design of the integrated circuit and 

monolithic device is considered. 

The simulation environment chosen here is purely digital and enables fast simulation 

without convergence issues. It is associated with a modeling technique already applied for 

mixed integrated electronic circuits such as phase-locked loops (Schubert, 1999; Staszewski 

et al, 2005) and uses the standard VHDL as a description language (Denoual & Attia, 2011).  

Advantages of the used modeling technique come from: (i) the event-driven nature of the 

simulation using purely digital environment and (ii) the properties of the standard VHDL 

language. The event-driven nature of the simulation results in drastically shorter simulation 

times compared to time-driven simulation using for instance Spice (Zhuang et al., 2006). 

This modeling technique does not suffer from the convergence issues usually observed with 

other techniques because it uses digital simulation environments (ModelSim, NCSim,…). 

Finally, the standard VHDL syntax with user’s defined types enables implicit connectivity 

check between the parts of the designed system since in VHDL two connected signals must 

have the same type. 

3.1.1 Modeling technique 

The basic principle of this modeling technique is the discretization of the analog parts of the 
design. An appropriate modeling of the analog parts of the design is desirable to overcome 
the problematic induced by different time scales. This type of problematic exists in this work 
involving low frequency thermal phenomena (< kHz), and high frequency electrical signals. 
All the elements of the system are modeled using standard VHDL language. Those elements 
are schematically presented in Fig. 9 corresponding to the testbench. The testbench also 
includes the optical power stimuli and the stimuli process. In this example, the smart 
function simulated is open-loop identification.  

In the case of this study, the modeling of the analog blocks, illustrated in Fig. 10, is 
performed in 3 steps: 1- definition of analog transfer function of the block; 2- discretization 
of the analog model; 3- VHDL description of the discretized model. 

The model for the bolometer corresponds to the VHDL transcription of the discretized 
transfer function (1). The discretization is achieved using the bilinear transformation. The 
conversion process is divided into two consecutive processes: the thermal process dealing 
with power inputs and temperature, and the electrical process corresponding to the 
temperature measurement. This divided structure would enable to take into account the 
electrothermal feedback phenomenon (Richards, 1994) of the bolometer itself if necessary in 
the simulation. At the present time, this phenomenon is taken into account through the use 
of the effective thermal conductance (Geff) rather than the physical thermal conduction (Gth).  

The models for the amplifier block merely consists in a gain since the bolometer voltage 
output signal is in the bandpass of the filter. 
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Fig. 9. Complete Testbench. The circle marked arrows indicate the signals observed in the result of sim

section. (a) VPbias is the voltage for the built-in electrical stimulus; (b) Popt  represents the optical input

in open-loop operation mode; (d) Pfb  is the feedback power considered in the simulations as the outp

mode; (e) is the predicted output evaluated by the identification algorithm; (f) is the error between the p

real output; (g) corresponds to the extracted parameters; (h) represents the controller parameters. 
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The model for the controller block in this case implements the equations of a digital 
proportional integral (PI) controller. The operation mode input, op_mode, enables to choose 
between open or closed-loop operation modes.  

The model for the feedback shaping block consists in a gain and saturation limitations 
corresponding to the PWM modulation. It linearly gives the feedback power (Pfb) according 
to the duty cycle a  of the PWM modulated control signal (Vcontrol) following fb fbP Ga  , 

with Gfb the gain of the feedback shaping block. Gfb is a function of the amplitude of the 
carrier (Vcarrier) and the resistance of the sensing resistor of the bolometer (RB). The high 
frequency carrier that translates the feedback bandwidth is not taken into account. 
Pragmatically, no signal at this frequency is generated for the simulations, only the feedback 
duty cycle is considered. 

The optical source block generates stimuli with parameterized frequency, amplitude and 
shape. 

The identification block implements a least-mean-square adaptative fitting algorithm which 
role is to extract parameters in order to optimize the feedback controller and/or to monitor 
the aging of the device; it corresponds to the functional block diagram of Fig. 4. Detailed 
explanation of this algorithm and of the parameters involved can be found in (Landau, 1988; 
Ljung, 1999). 

The complete modeling of the bolometer and its associated conditioning and feedback 
electronics as well as the modeling of the external optical source enable the validation of 
algorithms implemented in digital parts. Identification is an example of such algorithms that 
can be validated using this modeling technique and digital simulation tools.  

 

Fig. 10. Standard VHDL modeling procedure. 遖 analog model of the transfer function of 
the resistive bolometer, 遘 discretization of the analog model, 遞 VHDL transcription of the 
difference equations. 

3.1.2 Top-simulation results 

This section illustrates the type of simulation that can be performed with this modeling 
technique. The simulations were performed using the ModelSim® Altera 6.3 Quartus II 8.1 
software, i.e. a purely digital environment. The figure Fig. 11 shows the three configurations 
of the simulation sequence performed and illustrated in Fig. 12. First an open-loop operation 
sequence, Fig. 11(1), illustrates the time constant and magnitude of a typical response of the 
bolometer when exposed to an incoming square shape optical power Popt. The second 
sequence, Fig. 11(2), corresponds to a built-in random stimulation to perform the 
identification procedure. The adaptative least-mean-square algorithm illustrated in Fig. 4 is 
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implemented using standard VHDL to extract the characteristic parameters of the bolometer 
while the stimulus is applied. The duration of the identification procedure depends on the 
time constant of the bolometer. To achieve the convergence of the identification parameters, 
an identification duration of several hundred times the bolometer time constant is required. 
A 10 ms time constant bolometer leads to an identification procedure of a few seconds. 
Finally, in the last sequence, Fig. 11(3), the bolometer operates in closed-loop mode thanks 
to a controller adjusted with the extracted parameters at the end of the identification 
procedure. A standard factor 10 for the time constant reduction is applied in this simulation. 
One should notice that the time scale is not mentioned since all the timing parameters 
(sampling frequency, PWM frequency, carrier frequency) are adapted to the bolometer and 
therefore scale up or down with the time constant of the bolometer. The useful time 
reference is the time constant of the bolometer in open-loop.  
 

 

 

(1) 

 

 

(2) 

 

 

(3) 

Fig. 11. Simulation sequences. (1) open-loop mode operation. (2) identification procedure 
mode. (3) closed-loop mode operation. According to the operation mode, the location of the 
output differs. Note that input may be either external and optical (1,3) or internal and 
electrical (2). 

Simulations in either open-loop or closed-loop are performed without convergence issues 
within a few seconds. This enables fast parameters optimization for the control through 
series of simulations. It shall be mentioned that equivalent simulations with analog 
environments (spice-like, coupled or mixed simulators) would take hours if no convergence 
problems occur. A simulation result is represented in Fig. 12. This simulation underlines the 
ability of the modeling technique to validate algorithm supporting smart functions in their 
operating context by top simulation. 
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Fig. 12. Example of top simulation chronogram. Three consecutive operating sequences are represented: 

2- identification process in open-loop mode, 3- closed-loop mode operation. Insets illustrate the typical s

open-loop and closed-loop operating phases, the stimulus is an optical square shape signal. During the i

stimulus is electrical. A pseudo-random binary sequence is used in order to optimize the identification p

process allows the estimation of the thermal parameters of the bolometer. It consequently enables the ev

the controller in order to reach desired performance, here a time constant in closed-loop 10 times smaller

and a damping of 0.7 for stability and speed of response reasons. During the closed-loop operation, the a

electrical power is determined by negative feedback within the controller of the feedback path. When the

the incoming optical power, the temperature of the sensing element of the resistive bolometer is constant

power is a direct reading of the incoming optical power.  
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3.2 Macro-scale and discrete components experiments 

Macro-scale experiments are important in that they validate the models of the top-
simulations presented in the previous section. The top-simulations validate the system 
functionality and the smart function algorithms during the design phase, whereas the 
experiments exhibit additional non-simulated factors such as noise or nonlinearities and 
therefore exhibit the performance of the system. This section presents a macro-scale and 
discrete components set-up and some results of characterization performed with it. The 
major results are the successful reduction of the time constant of the system by at least two 
orders of magnitude, and the practical demonstration of the self-test and range selection 
smart functions.  

3.2.1 Description of the macro-scale set-up 

The set-up, depicted in Fig. 13, consists in a pair of resistive bolometers, RB, and a digital 
implementation of the CCES technique for the built-in stimuli generation and the closed-
loop mode operation. The resistive bolometers are connected in a bridge arrangement with 
one sensing resistor in each leg of the bridge (RBIAS and RB). Only one is exposed to the 

optical power stimuli for differential measurement. 

 

Fig. 13. Set-up for the macro-scale and discrete components experiments. Two resistive 
bolometers, RB, under vacuum, are used for differential measurement. Only one is exposed 
to the infrared optical power from a LED. The exposed bolometer in operated in closed-loop 
mode through a digital implementation of the CCES technique. 

The bolometers are macro-scale suspended bolometers made of 60 µm thick, 0.8 cm large, 
6 cm long suspended PolyEthylene Naphtalate (PEN) membranes covered with aluminum 
metallic layer. The aluminum layers are patterned to form the 700 Ω resistors used as 
sensing resistors. The active optical power absorption area is 0.5x0.5 cm2. Global 
characteristics of those bolometers extracted from measurements at 20 mTorr and room 
temperature are:  

TCR = 2.310-3/K; Geff = 550 µW/K, and eff = 110 s (cut-off frequency Fc=1.45 mHz). 
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The huge time constant, eff=110 s, is a consequence of the macro-scale nature of the 
bolometer. 

A microcontroller (PIC32) implements the closed-loop controller and the embedded 
algorithms. Two digital-to-analog converters (DAC) drive independently the voltage of the 
legs of the bridge to set the electrical bias point (Denoual et al, 2010). The operation mode 
input (op_mode) is a logic signal that selects between open-loop or closed-loop operation 
mode. The PWM modulated output signal for the feedback results in a linear dependency of 
the heat power feedback on the control voltage (Pfb). The frequency of the carrier is fixed at 
1 MHz while its amplitude changes between 100 mV and 200 mV depending on the 
measurement range choice. 

All the experiments are led at room temperature and under a primary vacuum of 20 mTorr 
to limit convection effects. 

The external optical power stimuli source is an infrared LED with a 1 mW power at 
┣=1.45 µm. The amplitude of the optical power is modified by duty cycle modulation (with 
duty cycle d) of the voltage of the power driver as in (Denoual et al, 2010) and illustrated in 
Fig. 14. The frequency, 1/TPWM, of the pulse modulated signal is 10 kHz, i.e. several orders 
of magnitude over either the open/closed-loop bandwidth. Consequently, the bolometer in 
open-loop or closed-loop operation modes merely responds to the average value of the 
applied power as illustrated in Fig. 14.  

 

Fig. 14. IR LED supply principle. A double modulation enables to generate square shape 
optical stimulus with controllable amplitude.  

3.2.2 Macro-scale and discrete components experimental results 

3.2.2.1 Time constant reduction 

The first set of experiments, illustrated in Fig. 15, aims to demonstrate the possibility of 
reducing the time constant by at least 2 orders of magnitude. 

During this experiment, the bolometer successively operates in open or closed-loop mode. 
During optical power ON sequence, 0.1 Hz frequency optical stimuli are applied from the 
infrared LED of the set-up. During power OFF sequence, no optical power is applied. 

The open-loop output signal during the open-loop operation phase illustrates the time 
constant of the system in open-loop through its typical first order response. The system in 
open-loop acts as a low-pass filter with a cut-off frequency of 1.45 mHz (τeff=110 s) that 
filters the 0.1 Hz frequency input optical stimuli and only responds to the activation of the 
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ON sequence of the optical power. On the contrary, during closed-loop operation zoomed in 
the upper view of Fig. 15, as the bandwidth of the system is increased, the closed-loop 
output signal is able to follow the 0.1 Hz variations of the optical input stimuli.  

 

Fig. 15. Experiment illustrating the time constant reduction in closed-loop operation mode. 
The main graph represents the recorded output signals in open-loop (VT) and closed-loop 
(Pfb). The open-loop output VT is in Volt (left axis) while the closed-loop output is in 
percentage of the feedback power full-range (right axis). The optical stimulus sequence is 
ON [0-s], OFF [0 s ; 1000 s], ON [1000 s ; 2700 s], OFF [2700 s ; end]. During the ON sequence 
of the optical stimulus, in the center of the graph, the operation mode is successively open-
loop and closed-loop.  

By operating the system in closed-loop mode, the bandwidth is increased from 1.45 mHz to 
more than 3 Hz. This result highlights an improvement of the system bandwidth by more 
than 200. 

3.2.2.2 Smart function validation: Self-test 

Although this function is rather basic, it may be useful for the user as a basic diagnostic 

function to answer the crucial question: “is the bolometer and its associated electronics 

working or not ?”. This feature requires the existence of a built-in stimulus input. The signal 

VPbias that sets the thermal working point of the system is used for this built-in stimulation 

(see Fig. 1, Fig. 6 and Fig. 13). Typically, self-test is activated by the user with a logic high 

level on the self-test input pin. During the logic high level, a Joule heating is applied onto 

the sensing resistor of the bolometer equivalent to approximately 20% of full-scale optical 

input power, and thus a proportional voltage change appears on the output signal, either 

open-loop or closed-loop output depending on the configuration test. When activated, the 

self-test feature exercises both the entire thermal structure and the electrical circuitry, and in 

addition in closed-loop mode the feedback path. The results presented in the Fig. 16 

illustrate this functionality both in open or closed-loop. In open-loop mode, the pulsed 

stimuli on VPbias result in pulsed response at the output indicating that the bolometer is 

working properly. In closed-loop mode, the pulsed stimuli on VPbias result in pulse response 

at the closed-loop output while the feedback signal, Pfb, is maintained constant so as to keep 
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the thermal working point constant. The different time scales in each cases illustrates once 

again the time constant reduction in closed-loop mode. 

  
(a) (b) 

Fig. 16. Self-test response in open-loop (a) and closed-loop (b) operation modes. Pulses on 
VPbias generate Joule heating onto the resistance of the bolometer through the feedback 
shaping electronics so as to stimulate a response from the device.  

3.2.2.3 Smart function validation: Range and operating point selection 

The next experimental results illustrate the range selection ability as well as the possibility of 
operating around a user-defined operating point. Fig. 17(a) shows the measured signal in 
open-loop mode as a function of the input power while Fig. 17(b) shows the measured 
power in closed-loop mode as a function of the input power. These transfer functions are 
obtained with infrared LED source stimulation in the bandwidth of the device (10 mHz in 
the open-loop mode configuration and 100 mHz in closed-loop mode configuration).  

 
(a) (b) 

Fig. 17. Transfer functions in open-loop (a) and closed-loop (b). The dashed lines (b) indicate 
the two different slopes of the transfer functions in closed-loop mode. (1) and (3) exhibit a 
slope twice as big as the one of (2). (3) is the transfer function in closed-loop mode around 
70% optical input power.  
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In open-loop the measured signal (VT) is a function of the input optical power, responsivity 
of the bolometer and the gain of the forward path amplifier. Therefore, the transfer function 
can be adapted to various incoming power ranges by modification of the gain of the 
amplifier. The modification of the responsivity through the bias current is not relevant 
because the signal-to-noise ratio is negatively impacted if the responsivity is decreased. The 
responsivity has to be as high as possible according to the fabrication technology.  

In closed-loop mode, the output signal is a function of the input power and the feedback 

shaping gain. The overall measurement range is then given by the pulse coded modulation 

range, the ADC range and the feedback gain. Therefore the measurement range of the 

device may be easily modified to measure lower power or higher power optical stimuli by 

respectively increasing or decreasing the feedback shaping scale factor. Gfb stands for the 

feedback shaping gain (see Fig. 6) involving the carrier voltage amplitude, the PCM voltage 

amplitude and the filtering amplification gain. The feedback shaping scale factor specifies 

the voltage change of the output per power unit of applied optical power. The selection of 

the operating point achievable in closed-loop mode also enables to move the operating point 

of the transfer function of the bolometer around a user-defined operating point, in order for 

example, to measure optical power variations in an input optical signal of given mean 

power value.  

These possibilities in closed-loop mode are illustrated in the graph in Fig. 17(b). Two 
transfer slopes resulting in two different measurement ranges are shown. In addition the 
transfer curve (3) of Fig. 17(b) shows the transfer of the system to optical power variations 
around an optical power mean value of 70% of the maximum IR LED power. 

Such control of the measurement range shall allow the implementation of algorithm that 

dynamically adjusts the scale to prevent saturation and optimize the resolution. 

3.3 Experimental results section conclusion 

The results section experimentally illustrates that a bolometer can be speed up by 2 orders of 
magnitude. Such time response improvement gives freedom in the design constraint of 
bolometers and especially for the conventionally responsivity/time constant tradeoff. For 
example, standard micro-bolometers designed for imaging are designed to meet the frame 
image refreshment rate of 20 Hz. This constraints the upper time constant limit for these 
devices. On the other hand, the thermal capacitance of these micro-bolometers cannot be 
boundlessly reduced because of material stiffness required to ensure self-sustention. 
Consequently, time constant consideration rather than responsivity optimization determines 
the thermal conductance. The demonstrated two orders of magnitude reduction of the time 
constant opens the door for bolometers two orders of magnitude faster than existing ones 
(200 µs compared to 20 ms) or bolometers exhibiting the same time constant but with a two 
order of magnitude higher responsivity. In both cases, such devices characteristics are not 
achieved yet. Currently the commercially available IR image sensors have detectivity, 
proportional to responsivity, of the order of few 108 W-1.cm.Hz1/2 and image refresh rate of 
10-30 frame/s. Two orders of magnitude improvement means detectivity and refresh rate 
reaching 1010 W-1.cm.Hz1/2 and several 1000 frames/s respectively. New application fields of 
infrared-monitoring in chemical and entertainment fields for instance will be then possible, 
while the existing applications fields will be reinvigorated. Faster frame rate of IR imager 
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used for process control will allow increasing the speed of production line; the economic 
impact is direct. In automotive safety applications, higher image data rate with optimized 
algorithms will result in faster and more reliable detection. For thermal budgeting of 
buildings, improved detectivity will enhance diagnostics. In all cases, the extra smart 
functionalities facilitate the use of IR imagers. 

4. Monolithic 3D smart bolometer 

Results shown in the previous section, demonstrate the possibly of realizing bolometer 

exhibiting smart functions such as self-test or range selection. The integration on one single 

chip of such device would yield to monolithic smart bolometer following the example of 

integrated accelerometers. Even though such devices might be interesting and competitive 

compared to thermopile-based IR detectors applied to distance temperature measurement 

(Texas, 2011), the real goal application of such devices is imaging. Imaging requires lines or 

matrixes of pixels and consequently adds geometrical constraints to the integration of smart 

bolometer pixels. The CCES technique enables closed-loop operation and smart functions 

implementation with built-in stimuli at the cost of an electrical circuitry bigger than the 

readout integrated circuitry of standard bolometer imaging devices. Consequently, the 

integration with existing topology and fabrication processes of the CCES circuitry under 

each pixel of an imaging device seems quite challenging. However, emerging 

micromachining technologies might come as a rescue to provide a solution. This solution is 

discussed in this prospective section. 

The integration issue comes from the lack of space under the pixel to integrate the CCES 

with actual planar conventional technologies, i.e. 2D technologies. Adding one dimension 

gives some more space and design freedom. A 3D geometry, as illustrated in Fig. 18, 

dissociates the sensing area of the pixel from the area needed for the electrical circuitry 

implementation. While the electrical circuitry is designed onto the device surface as it is 

common, the sensing area of the pixel is realized vertically in the bulk of the substrate.  

Such 3D design is made possible by the emerging 3D micro-fabrication technologies. Fig. 19 

illustrates the typical geometries and shapes available with submicron deep etching process. 

Vertical 50 µm walls in depth with few hundred nanometer thickness are reported using this 
etching process (Mita et al, 2006; Hirose et al, 2007). Such characteristics are fully compatible 

with the realization of the vertical sensing area, the resonant optical cavity for absorption 

enhancement and the folded legs behind, all together constituting the bolometer pixel. The 

sensing area is typically 30 µm to 50 µm wide and few hundred nanometers thick. The 
thickness of the sensing area is usually reduced in order to reduce the thermal capacitance 
of the bolometer pixel. The operation in closed-loop mode can release this constraint 

because of the bandwidth increase (time constant reduction) achievable in closed-loop 
mode. The resonant optical cavity, which enhances the absorption of incoming optical 
power, consists of a ┣/4 space between the sensing area and a reflective layer. Taking into 

account the mid-infrared range object of such devices ┣/4 is a few microns distance fully 
compatible with the submicron deep etching process. Usually, efforts to increase the fill 
factor include reducing the size of the contacts and can use buried legs on an intermediate 
level between the level of the sensitive area and that of the substrate. However the buried 

legs must not interfere with the increased absorption provided by the resonant optical cavity 
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(Kruse, 2001). In the proposed 3D configuration, the folded legs do not interfere with the 

resonant optical cavity. The folded legs can be lengthened to reach a target thermal 
conductance without negatively impacting the fill factor. Considering the etching 

performances of the submicron deep etching process, the legs can be very narrowly folded. 
Hence, the distance between the fold of the legs would not be limited by the fabrication 
technology but by thermal transfer at submicron scale. Indeed, at nanoscale, the thermal 
transfer mechanisms change and radiative heat exchange mechanism increases as the 

dimension between surfaces decreases below 200 nm because of surface phonon polariton 
mediated energy transfer (Rousseau et al, 2009; Shen et al, 2009). The space between the fold 
of the legs should not be below 200 nm to ensure that the thermal conductance of the pixel is 
only mediated by the conduction mechanism. Taking this into account and the actual pixel 

geometry and thermal conductance (10-6-10-7 W/K), the same thermal conductance could be 
achieved within a 30 µm space behind the pixel. 

 

Fig. 18. 3D bolometer pixel. The pixel is micro-machined vertically into the substrate while 
the conditioning and feedback electronics is on-plane. 

 

Fig. 19. SEM picture of submicron deep trenches in silicon. (Courtesy of Mita Lab., University 

of Tokyo). 

The 3D bolometer pixel and its association into matrixes to form a smart IR retina, depicted 
on Fig. 20, as defined with Dr. Yoshio Mita of the university of Tokyo, represents a 
technological breakthrough in the design, the fabrication and the use of uncooled resistive 
bolometers for infrared imaging; a technological breakthrough leading to faster, more 
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sensitive and smart infrared imaging devices. The 3D bolometer pixel consists in a resistive 
bolometer pixel associated with its conditioning and feedback electronics. Within the smart 
IR retina configuration, the processing means are shared between the 3D bolometers of the 
same line, and lines are stacked to form the imaging system. 

Such 3D design presents an additional advantage compared to current devices that is an 

improved spatial resolution. Thermal infrared detectors since they are fabricated over the 

same substrate in the classical fabrication process are not thermally independent. As a 

consequence, the thermal diffusion between the pixels reduces the spatial resolution of the 

imaging system. In the case of the proposed structure the sensing area of the 3D pixel are 

physically isolated by empty spaces and each pixel will be thermally regulated, therefore the 

thermal diffusion between pixel will be avoided and then the spatial resolution enhanced 

compared to current devices. 

 

Fig. 20. Smart IR retina. Several 3D bolometer pixels are associated with a common deported 
digital core on a line, here 4 or 6 3D pixels illustrated per line. Several lines, here 5, are 
stacked vertically to form the smart IR retina. 

The fabrication technique is fully compatible with standard integrated circuit manufacturing 

methods enabling all the signal processing (conditioning, control and feedback) circuitry to 

be combined on the same chip with the sensor.  

Even if the geometry principle and the fabrication technology are established, the fabrication 

of such monolithic device is still challenging and will require several years of development, 

but the work investment is worth. 

5. Conclusion 

The capacitively coupled electrical substitution technique is used to implement smart 

functions for uncooled resistive bolometers. Top-simulations and macro-scale experiments 

enable to derive the expected performance and functionalities of monolithic smart 

bolometer. This work takes place at a time where the microfabrication technologies and 
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smart function integration converge to give birth to what could be a technological 

breakthrough in the field of infrared imaging. 

“A rose with a microcontroller would be a smart rose”. 
-Randy Frank  
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