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How to Optimize Population Screening Programs
for Breast Cancer Using Mathematical Models

Montserrat Rue et al.1

Research Group on Economic Evaluation and Health, Universities of
Lleida and Rovira i Virgili

Spain

1. Introduction

Breast cancer (BC) mortality in Western countries has followed a downward trend since the
early 1990s. However, BC remains the most common cancer in women worldwide and the
leading cause of premature mortality in women aged 35 to 64 years (Ferlay et al. (2007)).

Despite the widespread use of mammography, there is an intense debate in the scientific
community about the benefits and harms of screening for BC (Autier et al. (2011); Duffy et al.
(2010); Jorgensen & Gotzsche (2009); Tabar et al. (2003)). The guidelines of the US Prevention
Services Task Force in 2009 recommending biennial screening starting at age 50 (USPSTF
(2009)) originated dissension within the scientific community and BC interest groups. At
present, the screening recommendations reflect this dissent (ACOG (2011); Schousboe et al.
(2011)).

There is a need to consider optimization because, over time, technological improvements
allow access to programs that provide better results in exchange for higher costs. In an
environment where resources are scarce, policy makers face the possibility of their budget
being allocated to different programs, and need information on how to optimally allocate
resources. Economic evaluation helps them in decision making. One of the methods used
in economic evaluation -efficiency analysis- aims to maximize quality-adjusted life years
(QALYs) subject to the constraint of a fixed budget or the amount that society is willing to
pay per QALY (Abellán et al. (2008)). The QALYs take account of both the positive effects of
each technology as well as the adverse effects.

Evaluating the impact and costs of early detection programs using experimental designs is
not feasible. The randomised controlled trials currently have strong limitations, such as
sample size, long follow-up times and group contamination. It is difficult to use randomized
controlled trials to determine optimal ages and periodicities or to customize screening to
different BC risk groups. Although mathematical models have advantages and drawbacks,
they allow to include efficiency principles in the analysis.

Mathematical models can be used to design an optimal strategy for BC screening. Benefits,
adverse effects and the costs of screening and treatment over time need to be considered.

1Misericordia Carles, Ester Vilaprinyo, Roger Pla, Montserrat Martinez-Alonso, Carles Forne, Albert Roso
and Arantzazu Arrospide
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The aim of this chapter is a) to review the main characteristics and outcomes related to early
detection of BC and b) to describe how a mathematical model can help to find an optimal
screening strategy.

2. Important issues related to BC early detection

2.1 Measuring the benefits of early detection of BC

In the USA, the National Cancer Institute started an initiative, the Cancer Intervention and
Surveillance Modeling Network (CISNET), using modeling to inform and guide clinical
decisions and health planning for cancer control. Their landmark study on BC, which
measured the impact of mammography and adjuvant therapy on the decline in US BC
mortality in the period 1975/2000, showed that each intervention contributed about equally
to this decline (Berry et al. (2005); Cronin et al. (2006); Feuer (2006)).

In a study about the effectiveness of early detection on mortality reduction in Catalonia
(Spain), we found that relative BC mortality reduction varied from 20% for biennial exams
in the 50 to 69 age interval to 30% for annual exams in the 40 to 74 age interval (Rue et al.
(2009)). When strategies differed in periodicity but not in the age interval of exams, biennial
screening achieved almost 80% of the annual screening mortality reduction.

When assessing the effectiveness of BC early detection interventions there is currently a debate
about the balance of benefits (mortality reduction, in general well established) and adverse
effects, much less studied. Nowadays there is an increasing trend to encourage the study of
adverse effects of screening (Black (2000); Jorgensen et al. (2007); USPSTF (2009)) and also the
way to communicate the risks of screening to health professionals, women, and the general
population (Gotzsche et al. (2009)).

2.2 Adverse effects of screening: false positive and false negative results, interval cancers

and overdiagnosis

The use of mammography as a screening test has adverse effects, which can decrease quality
of life and increase costs, morbidity and mortality. An optimal screening program should
minimize the frequency of adverse events while maintaining or even increasing benefits.
Figure 1 presents a flow chart of a population screening program.

Some of the adverse effects of screening mammograms are:

• False positive (FP) results. These occur when the mammogram is abnormal but no cancer is
actually present. Abnormal mammograms are followed up with additional tests, in some
cases invasive tests. FP are the consequence of a lack of specificity of mammography. In
Spain, Roman et al. (2011a) examined how protocol-related and women’s characteristics
affect the cumulative risk of FP over 10 sequential mammograms in a retrospective cohort
of 1,565,364 women, from 1990 to 2006. The cumulative FP risk for a woman who starts
screening at age 50 was 20%, ranging from 7% to 51% in the lowest and highest risk profiles,
respectively. The cumulative risk for invasive procedures was 1.8%, ranging from 1.6% to
12%.

Mandelblatt et al. (2009) found that more FP results occur in strategies that initiate
screening at age 40 than in those that initiate screening at age 50 or later and in those
strategies that include annual screening rather than biennial screening. Annual screening
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Fig. 1. Flow chart of a population screening program.2

yields almost twice as many FP results as biennial screening and many more women
undergo unnecessary biopsies under annual screening than biennial screening.

An FP result can cause anxiety and discomfort in affected women. FP can increase
adherence to a screening program (if there are concerns about changes, anxiety, etc.) or
they can reduce the confidence of participants in the diagnostic test and, consequently,
reduce their adherence to the program. Roman et al. (2011b) found that reattendance
rate at the second screening was 79% for women with a FP result versus 85% for women

2 In a given population, women within an age interval are offered a screening mammogram with certain
periodicity. Each time a women is offered a mammography exam, she can accept or refuse it. Women
who participate have a mammogram exam, which in case of a positive result leads to a diagnostic exam
that may include additional non-invasive or invasive tests. In the case of a positive result, women
are diagnosed and treated for BC. During this process, the group of women with negative screening
exams consists of true negative cases (TN) and false negative cases (FN), while the group of women
with positive screening exams and negative diagnostic exams defines the group of false positive cases
(FP). If they are still candidates, these three groups of women together with the rest of population
within program age range, will be offered a periodic new mammogram unless, before the next call to
participate, they either develop an interval cancer and go straight to a diagnostic exam, or die. Women
with a diagnosis of BC consist of true positive (TP) and overdiagnosed (OD) cases.
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without a FP result. These differences disappeared over time; in the seventh screening
they were 95% versus 96%. Risk factors for non-attendance to subsequent screenings were
age, non-attendance to the first scheduled screening, and previous invasive procedures.
Either a familial history of BC or the use of hormone replacement therapy were significant
protective factors against non-attendance.

• False negative (FN) results. These occur when the mammogram result is negative even
though BC is present. FN are a consequence of the lack of sensitivity of the mammography.
A FN result can lead to a delay in cancer diagnosis due to a false sense of security, and in
consequence to more aggressive treatment. High rates of FN indicate poor quality in the
screening program.

• Interval cancers (IC). These are diagnosed in the interval between two screening exams.
IC have a tumor growth rate higher than screen-detected tumors. IC are an important
measure of screening effectiveness because they reflect screening sensitivity. A shorter time
between exams could decrease the rates of IC, but would increase the risk of FP results and
overdiagnosis. In Spain, Bare et al. (2008) found that 35% of 57 interval cancers were true
IC (26%) or occult in the previous mammogram (9%) and 14% were FN. The remaining
51% presented minimal signs in the previous mammogram (18%) or were unclassifiable
(33%).

The incidence of interval cancer increases with age, breast density, hormone use, and
family history (Lowery et al. (2011)). These women’s characteristics could be used
to develop risk profiles that may benefit from more intensive screening. In addition,
Domingo et al. (2010) found that a more aggresive molecular phenotype, the triple
negative, was more frequent in true interval cancers than in screen-detected cancers.

• Overdiagnosis and overtreatment (OD). These occur when tumors that never would be
diagnosed during an individual’s life are diagnosed by screening. Overdiagnosis has a
greater chance of occuring in older women, since other causes of death are competing with
BC incidence. But they may also affect women of any age when tumors grow slowly or
spontaneously regress (Zahl et al. (2008)).

Overdiagnosis affects the estimates of sensitivity, specificity, predictive values and
incidence of cancer. Overdiagnosis estimates of BC are highly variable, as are the methods
to estimate it. Jorgensen & Gotzsche (2009), in a systematic review of BC incidence before
and after the introduction of screening, estimated that one in three screen detected BCs is
overdiagnosed. Our estimates of overdiagnosis in Catalonia ranged from 0.4% to 46.6%
for women born around 1935 and 1950, respectively (Martinez-Alonso et al. (2010)).

2.3 The lead-time and length biases of survival time

Since screening mammography for early BC detection was introduced, assessing
improvements in the survival from the time of diagnosis misrepresents the benefit because
it is confounded by two biases specific to screening.

BC-specific survival is measured from the time of diagnosis to the time of death. If a BC is
screen-detected before symptoms, then the lead time in diagnosis equals the length of time
between screening detection and when the first signs/symptoms would have appeared. Even
if early treatment had no benefit, the survival of screened individuals is longer simply by
the addition of the lead time (Figure 2). The observed survival time Z after the diagnosis by
screening is defined as

Z = X + Y, (1)
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Fig. 2. Lead time bias. (Adapted from the National Cancer Institute)

• Y: the lead-time.

• X: the post-lead-time survival, the time from clinical detection to death or the end of study.

Length bias arises because the cancers detected in screening examinations are more likely
to have slower growth than cases detected in the intervals between examinations and other
groups of cancer cases not detected by screening. Patients with screen-detected cancers
survive longer in part because the screened cancers are more indolent, but the improved
survival cannot be accurately attributed to the early treatment (Figure 3). It is important to

Fig. 3. Length bias.

take the lead-time and length biases into account when assessing the impact of screening.
Different authors have developed methods to obtain non-biased survival time estimates
Mahnken et al. (2008); Xu & Prorok (1995); Zelen & Feinleib (1969); Zelen & Lee (2002). The
mathematical models, developed by Lee & Zelen (2008), that we use to assess the impact of
early detection provide lead-time and lenght unbiased estimates.

2.4 Economic evaluation

Economic evaluation aims to provide health care decision makers with information on costs
and outcomes of alternative interventions (Drummond et al. (1997)). To take economically

51How to Optimize Population Screening Programs for Breast Cancer Using Mathematical Models
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efficient decisions one needs to compare costs and benefits of all technically efficient options.
The basic tool is the cost-benefit analysis. Given the difficulty of assessing health in monetary
terms, alternatively, in health economics, cost-effectiveness analysis is used. The result of the
cost-effectiveness analysis is presented using a ratio between incremental costs and outcomes.
The costs are measured in monetary units and the outcomes in years of life gained. However,
the consideration that health outcomes are often multidimensional (e.g life expectancy and
quality of life) has lead to the use of the QALYs in the denominator of the cost-effectiveness
ratio. Then cost-effectiveness becomes a cost-utility analysis, and the values that are used to
weigh life years gained in terms of quality reflect the preferences of individuals in relation to
the different health states.

Oostenbrink et al. (2002) introduced a six-step procedure for estimating costs. These steps
include 1) the perspective of the study; 2) the choice of cost categories; 3) the identification
of units; 4) the measurement of resource use; 5) the monetary valuation of units; and 6)
the calculation of unit costs. In addition, they mentioned several key issues regarding the
standardisation of costs, e.g. methods for measurement and valuation or the reporting of
outcomes.

Different types of costs must be included in the study based on the decision taken at Step 1. If
the social perspective is taken, this involves estimating all the consequences of implementing
a new intervention taking into account all the agents involved (thus it includes all costs and all
benefits). However, many recent works have only the payer’s perspective. If a study assesses
both the social perspective and the payer’s perspective, both results should be presented
separately.

The choice of cost categories (Step 2) introduces the distinction between different cost items.
In the literature there is no single classification of costs. Table 1 shows one of the most common
classifications. Steps 3 to 6: identify the components of costs and measure the resources

Direct health care costs Costs directly related to prevention and treatment

Direct non health care
costs 1,2

Travel costs of patients and caregivers

Time costs of patients and caregivers

Indirect health care costs Productivity losses, paid and unpaid, of caregivers and patients
caused by death or disability
Leisure time of patients and caregivers

Table 1. Example of cost categories. Classifications where most authors agree
1 Weinstein (1990) includes in this section the costs of special education and juridical costs.

Oostenbrink et al. (2002) included these items in indirect costs.
2 Oliva et al. (2004) include in this section the costs of paid caregivers.

used. Once the resources are identified, the unit values need to be estimated. This step is
often difficult. Studies of economic efficiency attempt to examine real unitary costs for each
resource. But these studies often use the charges as a proxy for cost. However, this equivalence
is not recommended because costs and charges have a very different economic significance
(Finkler (1982)) and it calls into question the cost analysis. Also, in this case, the "bottom-up"
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calculation, despite being the most appropriate, is more complex because it needs individual
information on each item and it is nearly impossible to obtain all the data.

Despite economic evaluation studies being performed in a structured way, some issues remain
controversial. One of the weaknesses of economic evaluation studies is the lack of systematic
analysis of the costs which precludes a correct comparison of different studies. The two most
important points of disagreement, among others, are the lack of consensus on how to take
account of the indirect costs and the costs of the years of life gained.

A. Methods to estimate indirect costs

1. Human capital

The Human capital theory is based on the decisions of the individuals with respect to
their investment preferences (Becker (1964)). Many individuals do not enter the labor
market and continue studying, anticipating that in some years they will get higher
revenues. In terms of health, it can be reasoned that individuals follow healthier
lifestyles to increase their health. In both cases, in the future, individuals increase their
productivity and contribute to economic growth.

The method of human capital presents some limitations. On the one hand, the
calculation of indirect costs as the production loss due to mortality and morbidity is
less than the social welfare loss. On the other hand, when individuals improve their
health but do not return to the labor market the expenditure on health can not be
considered an investment (e.g. retired individuals). However, as Sala-i-Martin (1992)
and González-Páramo (1994) said, the contribution of these groups to social cohesion
and positive externalities over the production makes it possible to consider the health
expenditure as an investment

Puig-Junoy & Pinto (2001), concluded that, in general, the human capital method may
present strong inequities in the treatment given to individuals not included in the labor
market, for various reasons. The method neither considers unpaid productivity losses
(domestic productivity) nor the value of leisure time.

2. Frictional costs and the QALYs approach

These two methods are the principal alternatives to the human capital method. The
frictional costs method considers the costs of replacing the sick worker to be indirect,
and these costs are inversely related to unemployment. The QALY approach only
includes temporal costs (travel and waiting time) and the additional costs of training a
substitute in the work place as indirect costs (Oliva (1999)).

Lopez-Bastida et al. (2003) showed that indirect costs can represent between 20% (frictional
cost method) and 70% (human capital method) of the total cost of cancer. Antoñanzas et al.
(2006) estimated the direct and indirect costs of cancer in Spanish regions for a five years
follow-up, using the human hapital method. They did not include the costs of prevention
or early detection. In Catalonia, direct costs of BC accounted for 53.7 % of the total costs
and indirect costs for 46.3 %.

B. Costs incurred as a result of years of life gained

The future costs may be due to treatments applied, new health problems or those that
cause diseases not related, as well as other expenses of daily life. The key question is how
to measure future costs. The definition of related diseases may be arbitrary and there is no
consensus on the limits of what is understood by "other costs".

53How to Optimize Population Screening Programs for Breast Cancer Using Mathematical Models
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Most papers include costs related to the disease throughout life. However, Meltzer (1997)
stated that the clear theoretical implication from a model of lifetime utility maximization
is that cost-effectiveness analyses should include all future costs, whether medical or
nonmedical.

Meanwhile, Cutler (2007) introduced another element to the discussion when relating the
introduction of an intervention to the health stock. Interventions that reduce disability
could lower lifetime spending. If the intervention results in fewer lifetime years spent
disabled, or if death occurs at a later age and the end-of-life care is cheaper, the total costs
of care may decrease.

With regard to information provided to health policy makers by the cost-effectiveness
analysis, it is important to note that the use of "lifetime costs" can influence the results
substantially, particularly when the studied intervention adds years of life but not quality
of life.

3. Mathematical optimization

According to Lee & Zelen (1998), planning a screening program for early BC detection requires
determining a) the individual characteristics that indicate when participation should start, b)
the periodicity of the subsequent exams, and c) recommendations for high-risk individuals.
An "optimal screening program" should take into account the benefits of screening, adverse
effects and costs. More screenings at shorter intervals would make it possible to detect more
tumors at initial stages, but part of this benefit would be counterbalanced by more false
positive results, overdiagnosis and costs.

Mathematical optimization refers to the selection of a best element from some set of available
alternatives. In early detection of BC, mathematical optimization can help finding the "best
available" values of the objective function (for example number of QALYs) given a defined
domain or set of inputs. Multiobjective optimization deals with having more than one
objective -sometimes in conflict- in an optimization problem. For example, there is a screening
strategy that produces the maximum number of QALYs, another that has the minimum cost
-not necessarily the no screening strategy- and an infinite number of alternatives that are some
combination of QALYs and costs.

3.1 The One size fits all BC screening

In 2009, the USPSTF (2009) updated the previous 2002 recommendation which supported
screening mammography every 1-2 years for all women older than 40 years. The 2009
USPSTF guidelines recommended against routine screening of women aged 40-49 years and
recommended biennial screening mammography for all women aged 50-74 year. Also, the
USPSTF recommended against teaching breast self-examination and assessed as insufficient
the evidence for clinical breast examination.

The USPSTF recommendations were based on the joint modeling work of Mandelblatt
et al. (2009) for the CISNET, which provided estimates of the average benefits and harms
expected across a cohort of contemporary women. The outcome meaures were the number
of mammograms, reduction in deaths from BC or life-years gained, false-positive results,
unnecessary biopsies, and overdiagnosis. The conclusion of the modeling analysis was that
screening at biennial intervals is more efficient and provides a better balance of benefits and
harms than screening at annual intervals. The USPSTF recommendations caused an intense
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discussion that lead to an update of their recommendation for women under 50 years of age.
The new wording was: The decision to start regular, biennial screening mammography before the age
of 50 years should be an individual one and take patient context into account, including the patient’s
values regarding specific benefits and harms.

In June 2011, the American College of Obstetricians and Gynecologists (ACOG) announced
new BC screening guidelines, annual mammography screening beginning at age 40, that
conflicts with the USPSTF recommendations (ACOG (2011)). The ACOG argument was the
high incidence of BC in the US and the potential to reduce deaths from it when caught early.

It is important to note that neither the USPSTF nor the ACOG recommendations take into
account the cost-effectiveness of the recommendations.

3.2 The Risk based BC screening

3.2.1 Models that schedule exams based on BC risk

Several authors have proposed the use of BC risk to guide screening recommendations.

3.2.1.1 The risk-based threshold method

Lee & Zelen (1998) applied their modeling theory to scheduling the early detection exams.
Every time a woman has a mammogram and the result is negative, the risk of BC decreases,
and then starts to increase again as a function of age. Lee and Zelen introduced two basic ideas
that either individually or together allow to obtain satisfactory examination schedules. The
threshold method provides examination schedules so that the probability of an individual
being in the preclinical state is always bounded by a preselected value. The concept of
schedule sensitivity is the ratio of the expected number of BC cases diagnosed on scheduled
examinations to the expected total number of BC cases. Combining the threshold and schedule
sensitivity methods allows to compare different strategies and select the most appropriate.
They started setting the probability of being in the preclinical state, Sp, at age 50 years as a
threshold. When the woman’s probability of being in Sp reaches the threshold, it’s time to
have an exam. Since BC incidence increases with age, the intervals between the examinations
become smaller as women get older.

3.2.1.2 The Pareto-optimal criteria

Rauner et al. (2010) designed a dynamic disease policy model for selecting Pareto-optimal
screening strategies. They considered a rapidly progressing cancer in a high-risk group
(younger women) and a more slowly progressing cancer in a low-risk group (older women).
They applied the model to BC in Austria for a time horizon of 10 years. The problem of interest
was to identify screening policies that maximize the total number of QALYs and minimize
total costs, under selected budget constraints. The decision variables were optimized using
the Pareto ant colony optimization (P-ACO) paradigm and used a discrete time population
approach.

In the Rauner’s model, the population is categorized as healthy, latently sick and identified
sick individuals, with transition probabilities into the states and also to death. Effectiveness
and costs are obtained with detailed equations in each category of individuals. The P-ACO
algorithm is inspired by the search for food behavior of ant colonies. While walking, ants
release pheromones on the ground making a path that other ants may follow. Shorter paths
have a higher probability of being used as the scent of pheromones is stronger. This process
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can be simulated on the computer as an heuristic method to solve complex optimization
problems. It generates solutions by successively adding a solution component (an ant move)
to an initially empty set.

The Rauner’s model showed that, in the case of low budgets, mammography screening should
be exclusively directed to older women (aged 50-70 years) with infrequent, low screening
for women younger than 50 years. The fact that cancer incidence is higher in older women
dominates the effect of faster progressing cancers in younger women.

3.2.1.3 Cost-effectiveness based on individual BC risk

Schousboe et al. (2011) examined the health benefits and cost utility of mammography
performed at different time intervals in women with different profiles of BC risk based on
the Tice et al. (2008) model. According to the authors, the health benefits and cost utility of
screening mammography may be strongly influenced by a woman’s risk of BC, which can
be estimated from her age, breast density on an initial mammogram, history of breast biopsy,
and family history of BC. They used a Markov microsimulation model to compare the lifetime
costs and health benefits of having mammography annually, biennially, or every 3 to 4 years
or not having mammography. The data sources were the Surveillance, Epidemiology, and
End Results program (SEER), Breast Cancer Surveillance Consortium (BCSC), and the medical
literature. The time horizon was the lifetime and the authors assumed the perspective of the
national health payer. Two cost-effectiveness thresholds were considered: $100,000 or less and
$50,000 or less per QALY gained.

The results showed that the most cost-effective frequency of mammography depended on the
studied risk factors. The authors presented a schema of recommendations about the frequency
of mammography that differs from the more simplistic guidelines of 1 or 2 years starting at
age 40 or 50 in the USA or biennially starting at 50 in many countries in Europe, regardless of
risk factors. According to Schousboe et al. women may choose to have mammography at age
40 years, and those with average or low breast density and no other BC risk factors may start
periodic screening at age 50 (with reassessment of breast density and the other risk factors).
Or, women aged 50 to 79 years who have low breast density and no other BC risk factors, may
consider having mammography less frequently than every two years. The authors concluded
that mammography screening should be personalized on the basis of woman’s risk factors
and beliefs about the potential benefit and harms of screening.

Mandelblatt et al. (2011) mentioned several limitations of using the Schousboe et al.
recommendations to guide personalised risk-based screening. Among others, difficulties in
communicating to women and health providers or women that are left without guidance.
Mandelblatt also warns about the efforts that need to be taken to understand the links between
tumor types and risk factors and the mechanisms by which density is associated with BC.

3.2.2 Models for predicting individual risk for breast cancer

Population-based BC screening programs apply the same screening procedure to the entire
target population. Currently, age is the only risk factor used to identify women who will
be invited to participate. However, there are other risk factors like family history, genetic or
breast density that have shown a significant association with BC risk. A key point to propose
an "optimal screening program" is the individualized risk measurement. There are already
several predictive models for individual risk assessment which incorporate both population
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risk and personal or family medical history, reproductive, endocrine or genetic factors. The
incorporation of the risk measure in the organization of the screening program might allow
the design of a screening protocol based on individual risk.

So far, the most known and used model for predicting the BC risk was developed by Gail
et al. (1989). While previous models were aimed at specific populations such as relatives of
BC affected women, the Gail model was the first that attempted to estimate the BC risk for
women in the general population. The model was based on data from a case-control study
conducted in women participating in a BC early detection program between 1973 and 1980.

The risk factors used in the model were age at menarche, age at first live birth, number
of previous biopsies, and number of first degree relatives with BC. Individualized BC
probabilities were obtained from information on relative risks, the baseline hazard rate and
competing risks. The original Gail model, developed in the USA, included both invasive BC
and DCIS. There is another model, exclusive of invasive BC and known as the Gail-2 model,
that allows estimation of BC risk using an interactive web tool (Costantino et al. (1999)). In
general, the Gail models showed good calibration. Ratios between expected and observed BC
cases are above 0.80 in all evaluation studies and close to 1 for most of them (Cummings et al.
(2009)). However, the ability to discriminate who will or will not have BC is poor, with values
of the c-statistic3 ranging from 0.57 to 0.62. Despite these results, the Gail-2 model is the most
often used.

Since its publication, this model has undergone several changes with the inclusion or
exclusion of different risk factors. It is also the model with the largest number of performance
evaluations in women of different populations or races. Chen et al. (2006) modified the initial
Gail model, including breast density as a risk factor. The Chen’s model included age at first
birth, number of previous biopsies, number of first-degree relatives with BC, breast density
and weight. Compared to the initial Gail model, the Chen’s model did not include age at
menarche and some interaction terms of the Gail model.

Barlow et al. (2006) developed a model that incorporated breast density, hormone replacement
therapy, body mass index, and the results of previous mammography exams as predictors of
the risk of BC within one year of the screening mammogram. Race or ethnic group were also
included in this model. With the addition of breast density as a risk factor it was expected that
the Chen and the Barlow’s models would improve discrimination. The c-statistic became 0.64
for the Chen’s model and 0.63 and 0.62 for pre and post menopausal women, respectively, for
the Barlow’s model.

Tice et al. (2008) simplified the Barlow’s model and extended it to assess the 5-year risk of BC.
The Tice’s model included age, race or ethnicity, family history of BC, history of breast biopsy
and breast density. The model showed good calibration in major race and ethnic groups in
the USA. But, as in the previous risk models, it had a modest ability to discriminate between
women who will develop BC and those who will not (the c-statistic was 0.66). The authors
concluded that the accuracy of the model needed to be further evaluated in independent
populations before it could be recommended for clinical use.

3 The c-statistic measures the ability of the model to separate women who will develop BC from those
who will not. It estimates the proportion of pairs of women in which the woman with BC has a higher
predicted risk than the woman without BC. A c-statistic of 0.5 is equivalent to no discrimination, and a
c-statistic of 1.0 indicates perfect discrimination.
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The more recent models contain genetic characteristics. According to Pauw et al. (2009), the
lifetime risk of developing BC in the general population is around 10%. In contrast, the risk
of BC at age 70 increases to 65% in women carrying the BRCA1 gene and up to 45% for
carriers of the BRCA2 gene (Antoniou et al. (2003)). The Claus et al. (1991) models, BRCAPRO
(Parmigiani et al. (1998)), BOADICEA (Antoniou et al. (2002)) and IBIS (Tyrer et al. (2004)),
for example, incorporate the probability of carrying a mutation in these genes based on the
individual’s personal and family medical history of BC and ovarian cancer. The information
needed to use these models makes their use difficult in clinical practice. Also, women with
genetic BC risk have specific recomendations and screening protocols.

Individual risk estimated using risk models has been used in some cases to recommend
screening to women aged 40-49 years, based on the estimated risk for 50 years old women
without any risk factor (Gail & Rimer (1998)). Since there is a wide variety of models, it is
important to better analyze their applicability and effectiveness to specific populations or
conditions, in order to select the most suitable. Besides, the application of statistical risk
models for estimating individual risk is limited by the uncertainty of the estimates, in the
case of a specific model, and the variability, in the case of different models.

One of the limitations of BC risk models is that the risk factors and their impact on risk
of developing BC have been determined from observational studies in specific population.
Therefore, the estimations obtained from these models may not be valid for other populations.
We are currently assessing the predictions of the Gail’s model, the Barlow’s model and the
Chen’s model in Catalan population. Preliminary results show that these models are not well
calibrated for the Catalan population.

4. Our work

4.1 Cost-effectiveness of different screeening strategies in Catalonia. One size fits all BC

screening

Our objective was to help Catalan policy planners decide which population screening
strategies were cost-effective while using limited public resources. We performed an economic
evaluation of 20 screening strategies taking into account the cost over time of screening and
subsequent medical costs, including diagnostic confirmation, initial treatment, follow-up and
advanced care. Part of the cost-effectiveness analysis presented in this section has been
published elsewhere (Carles et al. (2011)). Based on the literature, in the present work we have
added an estimation of overall indirect costs to the direct costs that we used in our previous
study.

We generated 20 possible screening strategies by varying the periodicity of screening exams
and the age intervals of women screened. Annual or biennial screening with age intervals
that started at 40, 45 and 50 years and ended at 69, 70, 74 and 79 years were combined. The
background or non-screening scenario was also included. The probabilistic model developed
by Lee & Zelen (2008) was used to estimate the costs and effect of each screening scenario over
time.

4.1.1 The Lee and Zelen probabilistic model

Lee and Zelen (LZ) developed a probabilistic model that predicts mortality as a function of
the early detection strategy. The LZ model was one of the seven models used to estimate
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the impact of adjuvant therapy and mammography on US mortality from 1975 to 2000
(Cronin et al. (2006)). The LZ model had been previously validated by comparing the model
predictions with the randomized breast cancer early detection trials. It is a flexible model that
can accommodate complex natural histories and interventions (Lee & Zelen (2006)).

The characteristics and assumptions of the LZ model are described in detail elsewhere (Lee
& Zelen (1998; 2003; 2008; 2006)). The assumptions of the LZ model are: (1) a four-state
progressive disease in which a subject may be in a disease-free state (S0), preclinical disease
state (Sp: capable of being diagnosed by a screening exam), clinical state (Sc: diagnosis by
symptomatic detection), and death from BC state (Sd); (2) age-dependent transitions into the
different states; (3) age-dependent examination sensitivity; (4) age-dependent sojourn times in
each state; and (5) exam-diagnosed cases have a stage-shift in the direction of more favorable
prognosis relative to the distribution of stages in symptomatic detection.

S0 → Sp Sp → Sc Sc → Sd

|

��

Time in Sp

x
|

��

Survival time

y−τ

|

��

τ − x τ y

Where:
τ − x: Age entering Sp; τ: Age of incidence (entering Sc); y: Age at death.

The basic LZ model calculates the cumulative probability of death for a specific cohort
exposed to any screening program after T years of follow-up. Similarly, the cumulative
probability of death for the cohort group without screening can be calculated. These
probabilities were used to calculate the possible reduction in mortality from an early detection
program after T years of follow-up. We extended the model to estimate incidence and
prevalence and also to perform an economic evaluation of different screening strategies. The
inputs needed to model the Catalan data have been published elsewhere (Rue et al. (2008;
2009); Vilaprinyo et al. (2008; 2009)).

4.1.2 Measuring the effect of different screening scenarios

For each screening scenario and for the background, the effect of screening was measured
with the number of QALYs. QALYs were estimated by applying the weights derived from
the EuroQol EQ-5D utility scores that Stout et al. (2006) used in the USA. All the calculations
assumed an initial population of 100,000 women at birth. The incidence of BC and mortality
from other causes refer to the cohorts born in the period 1948-1952. The time horizon for the
study was 40-79 years of age.

4.1.3 Costs’ considerations

Direct and indirect healthcare costs were considered. The estimation of direct costs was
partitioned into four parts: screening and diagnosis confirmation, initial treatment, follow-up
and advanced care costs. Based on Antoñanzas et al. (2006), indirect costs were estimated as
46.3% of the total (direct+indirect) costs. All costs were valued in 2005 euros and both costs
and outcomes were discounted at an annual rate of 3%.
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The costs of screening mammograms, complementary tests and administrative expenses
were obtained from the Early Detection Program of IMAS in the city of Barcelona. Data
on treatment costs was obtained from a database that included 592 women consecutively
diagnosed and initially treated for BC at the IMAS-Hospital del Mar in Barcelona in the period
January 1st, 2000 - December 31, 2003. Details can be found in Carles et al. (2011).

4.1.4 Cost-effectiveness analysis

To compare the relative costs and outcomes of the different scenarios, we calculated the
incremental cost-effectiveness ratio (ICER). The ICER indicates the additional cost of obtaining
one additional unit of outcome when moving from one strategy to the next. Each scenario is
compared with the next most efficient alternative. Once dominated or extended dominated
strategies are excluded, the remaining strategies form the cost-effectiveness frontier, the
efficient alternatives for which no other alternative policy exists that results in better effects
for lower costs. When costs are plotted on the Y axis and outcomes on the X axis, a dominated
strategy lies above and to the left of the non-dominated strategy.

Usually there is a social threshold, or willingness to pay, that constrains the choice between
efficient strategies. But, finally, a rational decision maker has to decide whether or not to move
up the efficiency frontier. Sacristan et al. (2002) and Pinto (2001) pointed to 30,000 e/ QALY
as the threshold of reference for the public funding of health services in Spain. Ortún et al.
(2004) indicated that this value is above the per capita income and above the average cost of a
QALY in Spain in 2003. In any case, the most important fact is that health policy makers use
this threshold as an initial value that can be modified to achieve equity and move towards a
social welfare threshold.

Figure 4 presents the results of the cost-effectiveness analysis. The background scenario
was taken as the reference scenario. All the screening alternatives represented increased
effectiveness and costs with respect to the background scenario.

Fig. 4. Cost-effectiveness analysis of different screening strategies.

Figure 4 footnote: Cost per quality-adjusted life year (QALY). Empty figures correspond to annual
strategies and full figures to biennial. Screening start age: 40 (big), 45 (medium) and 50 (small). Screening
end age: 69 (circle), 70 (diamond), 74 (triangle), and 79 (square). The line joins the dominant scenarios.

60 Mammography – Recent Advances

www.intechopen.com



How to Optimize Population Screening Programs for Breast Cancer Using Mathematical Models 15

Table 2 shows the non-dominated or non-extended dominated alternatives. Six screening
scenarios, three biennial and three annual, were selected: B50-69, B45-69, B45-74, A45-69,
A40-69 and A40-74. Compared with the current public screening strategy, B50-69, all the
remaining selected scenarios started the exams earlier and two of them ended later. Given the
threshold accepted as willigness to pay, the three biennial alternatives could be considered for
implementation.

Scenario Cost ∆ Cost QALY ∆ QALY e/QALY
(×106

e) (×106
e)

Background 237.2 0
B 50-69 267.3 30.1 3,614 3,614 8,328
B 45-69 282.3 15.0 4,447 833 18,061
B 45-74 286.7 4.4 4,633 186 23,539
A 45-69 327.9 41.2 5,979 1,346 30,578
A 40-69 364.0 36.1 6,756 777 46,535
A 40-74 375.5 11.5 6,987 231 49,786

Table 2. Cost-effectiveness of mammography screening strategies in Catalonia (Spain).
Incremental cost per QALY assuming a cohort of 100,000 women at birth. Dominated or
extended-dominated strategies were not included.

4.1.5 Comment

A reduced number of screening strategies have been selected for consideration by researchers,
decision makers and policy planners. Mathematical models are useful to assess the impact and
costs of BC screening in a specific geographical area.

Variability in the methodologies, patient characteristics, perspectives and time horizons used
by different authors is high. Some characteristics that are common to most of the studies
are the acceptance of increasing costs of advanced cancer care over time and the substantial
weight of hospitalization costs. A major challenge is to estimate the costs of advanced disease.
Even though clinical practice guidelines provide standard treatment for advanced disease,
very often treatments are customized according to the tumor or the patient’s characteristics
and the response to each treatment line.

Our previous work on cost-effectiveness (Carles et al. (2011) included an analysis of direct
health costs based on a very detailed mathematical model. In the present work, indirect costs
have been estimated according to the relation between total an indirect costs described by
Antoñanzas et al. (2006), as was mentioned in the Costs’considerations section. The order of the
non-dominated alternatives was the same using either direct or direct+indirect costs. But the
inclusion of indirect costs changed the absolute value of the cost per QALY, allows a discussion
based on the significance of the efficiency threshold used and changes the possibilities of
implementing the efficient alternatives. In summary, the results of the economic evaluation
provide information on the rank of efficient alternatives. The implementation of these
alternatives depends on economic policy.

4.2 A risk based scheduling of mammograms

We compared the risk-based threshold method proposed by Lee & Zelen (1998) with the
personalized screening according to risk factors presented by Schousboe et al. (2011). As we
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mentioned earlier, the risk-based threshold method consists on having a mammogram every
time that the probability of being in the pre-clinical state is an a priori fixed value. As Lee
and Zelen did in their work, we chose as threshold the probability of being in the pre-clinical
state at age 50. Schousboe et al. performed a cost-effectiveness analysis with two thresholds,
$100,000 or $50,000 per QALY, to propose the risk individualized screening strategy.

We used the incidence model that Schousboe et al. (2011) estimated using the 1975-2005 SEER
data. We used the relative risks of breast density, family history and previous biopsies, for the
white US population, that Tice et al. (2008) determined. Figure 5 shows the incidence rates
by age, according to the sixteen BC risk groups defined combining breast density (4 BI-RADS
categories), family history (yes/no) and previous biopsies (yes/no). The bottom incidence
curve refers to women with BI-RADS density 1 and neither family history nor previous
biopsies whereas the top incidence curve corresponds to women with BI-RADS density 4 and
both family history and previous biopsies.

Fig. 5. Breast cancer incidence according to breast density, family history of BC and previous
biopsies. F: family history, B: previous biopsies.

Given that different combinations of risk factors produce similar incidence functions, we
decided to consider four BC risk groups, as an example. From low to very high risk:

1. Low : BI-RADS 1 with 0 or 1 risk factor, and BI-RADS 2 with 0 risk factors.

2. Intermediate: BI-RADS 1 with 2 risk factors, BI-RADS 2 with 1 risk factor, and BI-RADS 3-4
with 0 risk factors.

3. High: BI-RADS 2 with 2 risk factors, and BI-RADS 3-4 with 1 risk factor.

4. Very high: BI-RADS 3-4 with 2 risk factors

Figure 6 shows the probability of being in the pre-clinical state, Sp, in four different categories
of women, each one of them belonging to one of the above defined risk groups. Figure 6
a) correspond to the low, b) to the intermediate, c) to the high and d) to the very high risk
groups. Following Schousboe’s recommendations, in all cases, there are mammograms at
ages 40, 50, 60 and 70 years. The horizontal dotted line indicates the risk of being in Sp at
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age 50 in the general population, 0.00126. On one hand, the intervals between exams become
smaller as women get older. On the other hand, the number of exams increases as the risk of
BC increases. The periodicity becomes approximately annual and every 6 months for women
older than 60 years in categories c) and d), respectively.

(a) BI-RADS 1 and 0 risk factors (b) BI-RADS 2 and 0 risk factors

(c) BI-RADS 3 and 1 risk factors (d) BI-RADS 3 and 2 risk factors

Fig. 6. Examination schedule with age at initial examination=40 and reassessment at ages 50,
60 and 70. Examinations are scheduled whenever the probability of being in the preclinical
state reaches the same value as at age 50. Adapted from Lee & Zelen (1998).

Table 3 compares the screening recommendations based on the cost-effectiveness threshold
and the BC risk-based threshod methods. For women in category a) both methods give a
pattern of occasional mammograms. In category b) (intermediate risk) there is agreement for
women aged 40-49 and a similar pattern for women 50-59. For women older than 60 years,
the risk-based threshold method gives a higher number of exams. For women in categories c)
and d) the risk-based method results in a higher number of exams, except for women 40-49
years in category c). It is important to note that the risk-based method would result in very
high cost per QALY. The frequent exams in older women would cause low benefits in terms
of QALY and high adverse effects (high rate of overdiagnosis) and therefore, these strategies
would be dominated by less frequent strategies as Schousboe et al. proposed.

Figure 7 shows the probability of being in Sp in the same four categories as Figure 6. Here the
exams correspond to the periodicity recommended by Schousboe. The dotted horizontal line
indicates the threshold. Women in category a) would receive most of their mammograms
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Age Cost-effectiveness threshold BC risk based

threshold method

$ 50,000 per QALY $ 100,000 per QALY Exams at ages

a) BI-RADS 1, no family history and no previous biopsies

40-49 None until age 50 None until age 50 40

50-59 None until age 60 Every 3-4 yr, Reassess at 60 50

60-69 Every 3-4 yr, Reassess at 70 Every 3-4 yr, Reassess at 70 60, 68

70-79 Every 3-4 yr Every 3-4 yr 72, 75, 79

b) BI-RADS 2, family history and no previous biopsies

40-49 None until age 50 40

50-59 Every 2 yr, Reassess at 60 50, 53, 56, 58

60-69 Every 2 yr, Reassess at 70 Every 1.5 yr

70-79 Every 2 yr Annually

c) BI-RADS 3, family history and no previous biopsies

40-49 Every 2 yr, Reassess at 50 40, 47, 49

50-59 Every 2 yr, Reassess at 60 Every 1.5 yr

60-69 Every 2 yr, Reassess at 70 Annually

70-79 Every 2 yr Annually

d) BI-RADS 3, family history and previous biopsies

40-49 Every 2 yr, Reassess at 50 40, 44, 46, 47.5, 49

50-59 Every 2 yr, Reassess at 60 Annually

60-69 Every 2 yr, Reassess at 70 Every 6 months

70-79 Every 2 yr Every 6 months

Table 3. Screening recommendations and scheduling of exams.

at probabilities of being in Sp lower than the threshold, indicating that they would be
overscreened. Figures 7 b), c) and d) indicate that as BC risk increases, the periodicities
recommended by Schousboe et al. result in an increased distance between the probability
of being in Sp and the threshold. In other words, in each exam the risk of BC is higher than
in the previous exam. Considering that the benefit in terms of QALY decreases as women get
older, as mentioned before, the more frequent strategies would become dominated by the less
frequent.

The next step would be to perform an economic evaluation of One size fits all strategies and BC
risk personalized strategies. A cost-effectiveness analysis, as the one we performed in section
4.1, would provide valuable information to guide in the selection of an optimal strategy.
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(a) BI-RADS 1 and 0 risk factors (b) BI-RADS 2 and 0 risk factors

(c) BI-RADS 3 and 1 risk factors (d) BI-RADS 3 and 2 risk factors

Fig. 7. Examination schedule with age at initial examination=40 and reassessment at ages 50,
60 and 70. Examinations are scheduled according the Schousboe et al. (2011)
recommendations. The horizontal dotted line corresponds to the probability of being in Sp at
age 50.

5. Conclusions and future research

BC screening has brought benefits, but the costs have not been low. We are beginning to have
information on the undesirable effects of population screening programs. Overdiagnosis,
overtreatment, anxiety and unnecessary tests need to be addressed adequately. Is there
enough evidence to justify changing to a new, evidence-based system? It seems clear that
the current One size fits all paradigm is inadequate in light of current BC research. Screening
with fixed periodicity results in some women being screened too much and others not being
screened often enough. Using what we know now about the natural history of BC and the
characteristics of current screening technologies, it is possible to develop better systems that
are more cost-effective and better tailored to the patient’s needs.

Change is always difficult in health care provision systems. The process of spreading
knowledge has its own rules and requires time and leaders who believe in change. Many
examples show that the gap between evidence and its use in clinical practice is enormous,
despite the high cost and harmful consequences of not using evidence. Professionals
working in the field of screening may be resistant to new methods, but the current long-term
economic crisis makes it necessary to review health care interventions to ensure that they
are maximizing their return on scarce resources, especially those interventions designed to
prevent or to detect diseases early.

65How to Optimize Population Screening Programs for Breast Cancer Using Mathematical Models

www.intechopen.com



20 Will-be-set-by-IN-TECH

The theoretical advantages of a new approach require a careful, practical evaluation of how to
put it into effect. How would such a change be initiated and managed? According to Berwick
(2005; 2003) the translation of a new technology into improved patient outcomes involves at
least three overlapping processes: (1) decisions by a healthcare delivery organizations to adopt
these new technologies that are based on assessment of the efficacy and cost-effectiveness
of the technologies, (2) implementing these technologies within the complex organizational
structure of healthcare providers, and (3) monitoring the use of these new technologies.

What areas are the highest priority for ongoing research? There are some suggestions below:

1. Improvement of tools to measure BC risk. Dynamic evaluations are important, to the
extent that relevant information becomes available to incorporate into an individual risk
profile. Changes in breast density, family history, exposure to hormone replacement and
previous biopsies are examples of characteristics that should be considered to re-adjust
previous measurements of BC risk.

2. Conduct pilot studies of individualized screening. Assess benefits, adverse effects, costs
and difficulties in implementing them.

3. Investigate biological markers that help predict BC risk and risk of in situ tumors becoming
invasive.

4. Investigate indolent disease markers. Apply watchful waiting protocols instead of
aggressive interventions (mastectomies, chemotherapy).

5. Communicate facts (benefits and harms) about BC screening to women more effectively.

6. Improve information systems used to assess the effectiveness of interventions and
opportunities to make improvements. This calls for shared databases that integrate basic,
clinical and epidemiological research.

New technologies or interventions can certainly increase both life expectancy and quality of
life. However, the benefits may not exceed the costs when costs are considered in the broadest
sense: direct, indirect and intangible. Thus, as stated by Ortún et al. (2004), the overuse,
underuse and poor use exist in any health system and this negatively impacts the health of
the population. Understanding and analyzing effectiveness, beyond efficacy, is essential to
optimize the allocation of scarce resources and maximize the objective function that includes
both life expectancy and quality of life.
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