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1. Introduction 

Cocaine is the main active alkaloid extracted from the leaves of the coca plant, Erythroxylum 
coca. It is a widely abused psychotropic drug, for its immediate neurological effects, 
including euphoria, reduced fatigue and increased mental acuity and sexual desire (Devlin 
& Henry, 2008; Goldstein et al., 2009; Small et al., 2009). However, cocaine abuse is usually 
followed by many pathophysiological consequences, namely central and peripheral 
neurochemical changes that result in hypertension-related morbidity and mortality, 
including myocardial infarction and cerebrovascular accidents, as well as liver and kidney 
toxicity, tissue ischemia and adverse psychotic effects such as paranoia and hallucinations 
(Devlin & Henry, 2008; Glauser & Queen, 2007; Heard et al., 2008; Karch, 2005; Lombard et 
al., 1988; Ndikum-Moffor et al., 1998; Tang et al., 2009; White & Lambe, 2003). 

According to a recent report on drug abuse, and despite a visible decrease of production 
and consumption in the last few years, in 2008 cocaine abuse still affected up to 0.5% of the 
adult population (15-64 years old) worldwide. Cocaine remains the second most 
problematic drug in the world, after opiates (UNODC, 2011).  

In Europe, cocaine ranks second in most abused illicit drugs, after cannabis. It revealed a 
mean prevalence of 1.3% of the adult population by the same year, with national prevalence 
reaching over 6% of the young adult population (15-34 years old) (EMCDDA, 2010). 

In this chapter we will point out the clinical and forensic relevance of measuring cocaine 
and its metabolites in different biological matrices, and provide a bibliographic review on 
techniques for sample preparation and existing chromatographic methodologies for cocaine 
analysis. 

2. Toxicokinetics 

Chemically, cocaine may exist in two forms: a hydrochloride salt or a free-base rock 
(“crack”). “Crack” melts at 98 ºC and volatizes above 90 ºC, but is not very soluble in water, 
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making it possible to smoke but not to inject. In contrast, the salt is easily soluble in water 
but has a high melting point (195 ºC) and decomposes when smoked, being suitable for 
intravenous (i.v.) injection, nasal insufflation (or snorting) or ingestion (Cook, 1991; Favrod-
Coune & Broers, 2010).  

Subsequently to absorption, cocaine is easily diffused in the blood into most body organs 
including heart, brain, liver, kidneys and adrenal glands (Favrod-Coune & Broers, 2010; 
Fowler et al., 1989; Volkow et al., 1992). However, its bioavailability depends on the route of 
administration, being of about 90% if injected or smoked, 25 to 94% when snorted, depending 
on the dose, and only up to 30% after ingestion (Cook, 1991; Leikin & Paloucek, 2008). 

The onset of action, the intensity and the duration of the effects experienced by consumers 
are also affected by the type of consumption. For the smoked form, the onset occurs almost 
immediately, and the intensity of the neurological effects is nearly two-fold higher than for 
the other means of abuse (Favrod-Coune & Broers, 2010; Freye & Levy, 2009), most likely 
the reasons why “crack” is the most consumed form of cocaine. 

 

BE - benzoylecgonine; CE - cocaethylene; CYP450 - cytocrome P450; ED - ecgonidine; EDEE - ecgonidine 
ethyl ester; EDME - ecgonidine methyl ester; EEE - ecgonine ethyl ester; EME - ecgonine methyl ester; 
EtOH - ethanol; hCE1 - human carboxylesterase type 1; hCE2 - human carboxylesterase type 2; NBE - 
norbenzoylecgonine; NCE - norcocaethylene; NCOC - norcocaine; NCOC-NO - norcocaine nitroxide; 
NCOC-NO+ - norcocaine nitrosonium; NEDME - norecgonidine methyl ester; NEME - norecgonine 
methyl ester; N-OH-NCOC - N-hydroxynorcocaine; OH-BE - hydroxybenzoylecgonine; OH-COC - 
hydroxycocaine; PChE - pseudocholinesterase. 

Fig. 1. Cocaine metabolic pathways.  
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The i.v. injection takes a few seconds (15 - 30 s) to onset the first effects, following the 
snorted form with over a minute, and finally the oral form, the most unusual one among 
addicts, which takes over 20 minutes to produce effects (Freye & Levy, 2009; Heard et al., 
2008; Jeffcoat et al., 1989).  

The psychotropic effect usually lasts 2 to 3 hours after cocaine ingestion, approximately 1 
hour when snorted, and less than 30 minutes for the injected and smoked forms (Favrod-
Coune & Broers, 2010; Jeffcoat et al., 1989). 

Figure 1 represents cocaine metabolic profile, which strongly depends on both form of 
consumption and administration route.  

Following administration, cocaine is primarily metabolized into two major metabolites, 
benzoylecgonine (BE) and ecgonine methyl ester (EME), and two minor metabolites, 
norcocaine (NCOC) and m- and p-hydroxycocaine (OH-COC) (Goldstein et al., 2009; Maurer 
et al., 2006; Zhang & Foltz, 1990). 

BE is mainly produced in the liver, through human carboxylesterase type 1 (hCE1), whereas 
EME may be formed in the liver by hCE2, and in the plasma via a pseudocholinesterase 
(PChE), namely butyrylcholinesterase (Goldstein et al., 2009). Both free metabolites are 
excreted in urine, together representing up to 95% of the excretion products (Kanel et al., 
1990). 

NCOC results from hepatic N-demethylation of the drug through the cytocrome P450 
(CYP450) system, in particular CYP3A4 in human liver, and represents no more than 5% of 
the administered dose (Goldstein et al., 2009; Kloss et al., 1983; LeDuc et al., 1993). The same 
enzyme mediates further oxidations, yielding the secondary metabolites N-
hydroxynorcocaine (N-OH-NCOC), norcocaine nitroxide (NCOC-NO) and norcocaine 
nitrosonium (NCOC-NO+), which are described as responsible for cocaine-induced 
hepatotoxicity (Kovacic, 2005; Ndikum-Moffor et al., 1998; Pellinen et al., 1994; Thompson et 
al., 1979).  

Regarding OH-COC, despite being produced at very low levels (less than 12% that of 
NCOC in hepatic microssomes), the isomer p-OH-COC was proven to be pharmacologically 
active in mice (Watanabe et al., 1993). 

Polydrug abuse is a common pattern among cocaine users. In fact, by 2009, over 40% of 
them simultaneously consumed ethanol (UNODC, 2011). From this combination results the 
formation of the biologically active metabolite cocaethylene (CE), transesterification product 
via hCE1 between cocaine and alcohol (Harris et al., 2003; Hearn et al., 1991; Laizure et al., 
2003).  

Like cocaine, CE can undergo further N-demethylation via CYP450 or hCE2-mediated 
hydrolysis, yielding two unique ethanol-related cocaine metabolites, norcocaethylene (NCE) 
and ecgonine ethyl ester (EEE), respectively (Boyer & Petersen, 1990; Dean et al., 1992; Wu et 
al., 1992). NCE may also be a NCOC transesterification product in the concurrent use with 
alcohol (Maurer et al., 2006). 

Besides cocaine, both EME and BE can undergo a N-demethylation as well, producing 
norecgonine methyl ester (NEME) and norbenzoylecgonine (NBE). This last metabolite can 
also be formed by hydrolysis of NCOC or NCE (Maurer et al., 2006). 
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During “crack” smoking, ecgonidine methyl ester (EDME) is formed in large quantities as a 
thermal breakdown product of cocaine (Jacob et al., 1990; Kintz et al., 1997). EDME may be 
metabolized by identical pathways as for cocaine: it can be oxidized into norecgonidine 
methyl ester (NEDME) via CYP450, or hydrolyzed through hCE1 into ecgonidine (ED) or 
ecgonidine ethyl ester (EDEE) in the presence of ethanol. This last one may be analyzed as a 
specific biomarker of the concomitant use of “crack” and ethanol (Fandino et al., 2002). 

3. Clinical and forensic relevance of cocaine analysis 

Over decades, cocaine abuse has reached epidemic proportions, and health complications 

related to cocaine use continue to be a major social burden worldwide.  

According to the World Drug Report 2011 (UNODC, 2011), drug of abuse-related deaths are 

estimated between 104,000-263,000 per year, and they include fatal overdoses (over 50% of 

all deaths), accidents, suicides, deaths from infectious diseases transmitted through the use 

of contaminated needles, including hepatitis C and HIV, or complications due to chronic 

use, namely organ failure and myocardial infarction (Kloner et al., 1992; Shanti & Lucas, 

2003; UNODC, 2011). 

In Europe, cocaine-related deaths represent 21% of all deaths related to illicit drug abuse, 

with a report of approximately 1,000 deaths per year (EMCDDA, 2010; UNODC, 2011). 

Of note, the reported mean purity of traded cocaine rounding 50% by 2009 and a lowering 

trend along the years, as well as the common mixture with several active adulterants like 

painkillers, may complicate the scenario of cocaine intoxications (EMCDDA, 2010; UNODC, 

2011). In addition, since the polydrug use includes approximately 62% of cocaine users, 

drug combination often results in complex clinical patterns which are difficult to 

discriminate and treat (UNODC, 2011). 

Thus, a thorough methodology for detection and quantification of cocaine, alongside with 

other drugs, may be crucial for an accurate evaluation of cocaine intoxication cases and 

contribute for a positive outcome.  

For human performance forensic toxicology purposes, also defined as behavioral 

toxicology, cocaine is frequently tested in urine samples and swabs of oral fluid from 

drivers and applicants for driving licenses with a history of drug use (Brookoff et al., 1994; 

Gjerde et al., 2008; Montagna et al., 2000; Samyn et al., 2002; Tagliaro et al., 2000; Wylie et 

al., 2005). 

Cocaine detection is also a common procedure in the context of workplace drug testing, 

more often in pre-employment and post-accidental screening, but also in random 

screenings, usually in urine samples (George, 2005; Verstraete & Pierce, 2001; Zwerling et 

al., 1990).  

Another area of forensic toxicology is postmortem forensic toxicology, which involves in 

suspected drug-related deaths. These may include suspected drug intoxication cases 

(overdoses or accidental), suicides, homicides, motor vehicle accidents, arson fire fatalities 

and apparent deaths due to natural causes. In these cases, cocaine and its metabolites may 

be analyzed in several specimens including blood, vitreous humor, bile, urine, stomach 
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contents or organ tissues (Bertol et al., 2008; Darke & Duflou, 2008; Dias et al., 2008; Garlow 

et al., 2007; Graham & Hanzlick, 2008; Simonsen et al., 2011). 

4. Determination of cocaine and its metabolites in biological specimens 

The development of a procedure for the quantitative analysis of a biological matrix includes 

several steps, from sampling, to sample preparation, chromatographic analysis and finally 

analysis of the results (figure 2). 

 

Fig. 2. Schematic representation of the steps included in the overall procedure for analysis of 
exogenous compounds in a biological specimen. 

One of the main concerns regarding biological sampling for cocaine determination involves 

its instability in many matrices. At room temperature, cocaine can be quickly hydrolyzed 

into BE, and it is even more susceptible in cholinesterase-containing samples, including 

plasma and whole blood, in which the parent drug easily degrades into EME (Garrett & 

Seyda, 1983; Isenschmid et al., 1989).  

The stability issue is not as significant in urine specimens as it is for plasma or blood. While 

in blood stability appears to be dependent on cocaine initial concentration, in urine it 

depends mainly on pH (Baselt, 1983). It was shown that cocaine concentration in urine may 

fall down to 37% when stored at -20 ºC, for a 12-month period of time (Dugan et al., 1994), 

but by acidifying the samples to a pH of 5.0, cocaine and BE levels in the frozen urine 

samples may be stable for at least 110 days (Hippenstiel & Gerson, 1994). In these samples, 

the use of preservatives, such as sodium fluoride, appears to have only minor effects on the 

specimen stability (Baselt, 1983). In blood and plasma without preservation, most cocaine is 

hydrolyzed into EME. This may be prevented with the addition of a PChE inhibitor 

(Isenschmid et al., 1989). 

Urine specimens are the most commonly used for general drug screening (Leyton et al., 

2011; Marchei et al., 2008; Zwerling et al., 1990). However, for cocaine detection, there are 

some limitations, including limited window of detection, occurrence of false-negatives as a 

consequence of very low cocaine concentrations in samples, specific requirements for 

storage, possibility of sample dilution in vivo by excessive fluid ingestion, requirement of 

collection under observation to avoid adulteration or sample exchange, or even absence of 

urine specimens in postmortem cases (Cone et al., 1998; Cone et al., 2003; Musshoff et al., 

2006; Polla et al., 2009).  

The analysis of oral fluid swabs, sweat patches and hair samples has become a viable 

substitute to urinalysis, specifically in the context of behavioral toxicology and workplace 

drug testing (Samyn et al., 2002; Toennes et al., 2005; Verstraete, 2005).  
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The main advantages of oral fluid include not only the non-invasiveness of the collection, 
but also the higher concentration of the parent drug found in saliva when compared to 
blood and urine. For the same individual, cocaine concentration in oral fluid is 
approximately three-fold of that found in plasma and over five-fold in urine (Cone et al., 
1994a; Moolchan et al., 2000; Samyn et al., 2002; Schramm et al., 1993). In addition, cocaine 
elimination half life is lower in saliva, which makes oral fluid analysis suitable for 
determination of very recent use (Dolan et al., 2004; Jufer et al., 2000). Moreover, saliva can 
provide an unequivocal screen result within minutes and has demonstrated a good 
correlation with impairment symptoms of drivers under the influence of drugs, reasons that 
make saliva the preferred matrix for roadside analysis (Kidwell et al., 1998; Verstraete, 
2005). 

However, oral fluid use has some limitations, such as the limited volume of specimen when 
compared to urine sampling, especially considering that recent use often results in the 
production of little amounts of saliva or even none at all, and the variability of salivary pH 
(Cognard et al., 2006; Kidwell et al., 1998; Verstraete, 2005). 

Similarly to oral fluid, sweat is occasionally chosen for on-site testing (Samyn et al., 2002; 
Samyn & van Haeren, 2000). The sweat samples may be collected as skin swabs or through 
patches similar to bandages attached to the skin (Kacinko et al., 2005; Kidwell et al., 2003). 
These patches can be worn comfortably for several days (usually one week). This allows an 
accumulation of cocaine in the patch over the days, which is very useful, for example, for 
monitoring patients on drug-abuse treatment or epidemiologic surveys on cocaine-use in a 
given population (Burns & Baselt, 1995; Chawarski et al., 2007; Kidwell et al., 1997; Preston 
et al., 1999). 

The main limitations of sweat analysis include the lower amount secreted at a given time in 
comparison to saliva, the great variability of results between doses and individuals, the 
variation of drug disposition between sites of collection and collection devices, and the 
occurrence of false positives from prior skin contamination or external patch contamination. 
Part of the drug may as well be reabsorbed into the skin or degraded in the patch (Burns & 
Baselt, 1995; Donovan et al., 2011; Huestis et al., 1999; Kidwell et al., 1998; Kidwell et al., 2003). 

An early controlled study demonstrated that cocaine is detected in sweat samples up to 48 
hours after administration (Cone et al., 1994b), but subsequent works suggested a window 
of detection as long as one week (Burns & Baselt, 1995; Kintz, 1996). Nonetheless, cocaine 
concentration in sweat is an indicator of a relatively recent use (Chawarski et al., 2007; 
Kidwell et al., 1997). 

For past drug abuse, hair samples present the wider window of detection, allowing a higher 
rate of positive results than urine (Dolan et al., 2004; Kline et al., 1997; Scheidweiler et al., 2005). 
A study on hair cocaine and BE incorporation showed that a single 25-35 mg intravenous 
cocaine dose may be detected in hair for up to 6 months (Henderson et al., 1996).  

A segmental hair analysis, meaning a determination of cocaine content in the length of the hair 
shaft, provides useful information about the individual history of drug abuse and may be used 
to estimate time of exposure back to a few months (Scheidweiler et al., 2005; Strano-Rossi et al., 
1995). This characteristic makes hair analysis a suitable alternative matrix for long-term studies 
such as monitoring relapses during treatment programs or follow-up of treatment outcomes 
(Moeller et al., 1993; Simpson et al., 2002; Strano-Rossi et al., 1995; Wish et al., 1997). 
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Hair samples are not easily adultered and collection procedure does not violate the 
individual privacy. The hair fibers are preferentially obtained from the posterior vertex area 
of the scalp and as close as possible to the skin. Due to its stability, there are no specific 
criteria for transportation or storing, although it is recommendable to wrap the samples in 
aluminum foil to avoid contamination and store at room temperature. 

A general critical step of hair analysis is the interpretation of the results. At this point, a few 
issues must be taken into account. One potential problem inherent to hair cocaine 
interpretation concerns the racial bias. Some studies have demonstrated that ethnicity must 
be considered, since the incorporation of cocaine into the human hair seems to be more 
extent in non-Caucasian than in Caucasian subjects, possibly due to pigmentation 
differences (Henderson et al., 1998; Joseph et al., 1996; Joseph et al., 1997; Reid et al., 1996). 
Hair cosmetic treatments, like bleaching or dying, can also interfere with the analytical 
results as they may affect the drug stability, leading to a partial or total loss of hair cocaine 
contents (Skender et al., 2002; Wennig, 2000). 

Hair cocaine may reflect not only chronic cocaine abuse, but also environmental 
contamination. This last one includes passive contamination, for example cocaine from dust 
or sprays deposited on the hair surface, and passive ingestion, which may be related to 
passive “crack” smoking or unknowingly oral ingestion, by contact with persons who have 
consumed cocaine or with contaminated objects (Mieczkowski, 1997). 

Several studies have demonstrated that the inclusion of an efficient washing step prior to hair 
analysis, typically with an organic solvent such as dichloromethane, will effectively eliminate 
the environmental drug contamination component (Kintz, 1998; Koren et al., 1992; Schaffer et 
al., 2002; Skender et al., 2002). However, Kidwell & Blank (1996) showed that heavy hair 
cocaine contamination cannot be completely eliminated with any of the washing solutions 
tested (from water and methanol, ionic or non-ionic solutions, to dimethylformamide). 
Romano et al. (2001) also demonstrated that even a rather small amount of cocaine (10 mg) 
applied to the hair persists despite using decontamination procedures. 

In order to distinguish systemic exposure from environmental contamination, Koren et al. 
(1992) suggested the determination of the major metabolite BE in hair samples, which 
allegedly is detected only as a result of cocaine abuse and not contamination, whereas Cone 
et al. (1991) identified NCOC and CE more suitable to classify hair cocaine as a reflection of 
drug abuse. 

Postmortem cocaine determination and interpretation can involve additional problems. As 
defined by Mckinney et al. (1995), “the interpretation of postmortem cocaine concentrations is 
made in an attempt to estimate drug concentrations present at the time of death and thus 
infer not only drug presence but also drug toxicity”.  

For instance, when the postmortem interval is excessively prolonged, or when the autopsy or 
laboratory analysis takes too long to be processed, cocaine can be completely hydrolyzed, 
chemically or enzymatically. Moreover, postmortem cocaine redistribution and release from 
tissues is a reality and has to be taken into account (Drummer, 2004; Yarema & Becker, 2005). 

Several studies have demonstrated the lack of predictability of postmortem redistribution 
rates of cocaine and its metabolites over time. Also, postmortem blood and urine cocaine and 
its metabolites levels do not reflect the antemortem or perimortem values, and thus should not 
be used to establish cause of death (Karch et al., 1998; McKinney et al., 1995; Stephens et al., 
2004; Yarema & Becker, 2005). 
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In alternative, samples from gastric contents and vitreous humor, nails, either fingernails or 
toenails, bone, and tissues such as brain, lung, liver and muscle may be analyzed to 
determine postmortem drug levels (Garside et al., 1998; McGrath & Jenkins, 2009; Stephens et 
al., 2004; Yarema & Becker, 2005). 

Due to its isolation in the eye cavity, vitreous humor seems to be less susceptible to 
postmortem redistribution and putrefaction than other biological fluids. Despite the small 
amount of sample that can be collected, this specimen can be useful when the body 
undergoes massive bleeding or burning, or when it is in a state of prolonged decomposition 
(De Martinis & Martin, 2002). 

4.1 Sample preparation 

Due to the short half-life of cocaine in most biological specimens and its extensive 
metabolism, it is important to include into the analysis cocaine metabolites as well, 
increasing thus the detection window for drug abuse. 

In order to obtain “clean” samples for analysis and increase the chromatographic sensibility 
towards specific drugs and their metabolites, most biological matrices require pre-treatment 
and concentration steps prior to chromatographic analysis. This is accomplished by 
extraction procedures that include mainly liquid-liquid extraction (LLE), solid-phase 
extraction (SPE) and more recently solid-phase microextraction (SPME).  

4.1.1 Extraction procedures 

The variation of acid-base properties among cocaine and its metabolites, as displayed in 
table 1, may challenge the selection of the most efficient extraction procedure.  

The LLE consists on the separation of analytes based on their solubilities, with extraction 
occurring between two liquid immiscible phases (one aqueous and one organic) by adding 
adequate solvents.  

Analyte Acid-base properties 

Cocaine weak base; pKa = 8.6 

Benzoylecgonine amphoteric; pKa = 2.2, 11.2 

Ecgonine methyl ester weak base; pka > 8.0 

Norcocaine weak base; pka = 8.0 

Hidroxycocaine weak base 

Cocaethylene weak base; pka > 8.0 

Ecgonidine methyl ester weak base 

Hydroxybenzoylecgonine amphoteric 

Benzoylnorecgonine amphoteric 

Norcocaethylene weak base 

Ecgonine ethyl ester weak base 

Ecgonidine amphoteric 

Table 1. Acid-base properties of cocaine and its metabolites. 
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Through LLE, the weak base analytes, such as cocaine, NCOC and EME, are the most easily 

extracted from biological matrices. On the other hand, isolation of amphoteric compounds, 

including BE, is more complex and requires a careful choice of the appropriate solvent and 

regulation of the pH. 

Wallace et al. (1976) described a method for cocaine and BE determination in urine samples 

of patients who undergone surgery with cocaine anaesthesia. After extraction into a 

chloroform-ethanol solution (80/20%), the organic phase was evaporated to dryness at 55 

ºC, under a stream of filtered air. Recovered extracts were analyzed by gas chromatography 

(GC) coupled to a flame ionization detector (FID), and using this LLE method it was 

attained a recovery of 93 and 65% for cocaine and BE, respectively, and a limit of detection 

(LOD) of <0.1 and 0.2 µg/mL. 

This relatively low recovery of amphoteric species may be a great limitation of LLE. 

However, it can be useful when the aim is to quantify the parent drug in a matrix where one 

or more metabolites are known to be present in large amounts. An example of this 

application is the determination of cocaine levels in urine samples, in which BE is the major 

analyte present.  

With this purpose, Garside et al. (1997) reported a single-step LLE method using petroleum 

ether as the only solvent for quantification of cocaine in urine through GC coupled to mass 

spectrometry (MS) detection. The method has a considerably low cost and since only cocaine 

and other non-polar metabolites were isolated, it was not necessary to use the time-

consuming and expensive derivatization step. However, a mean recovery of only 48.8% for 

cocaine was achieved. 

A following study by Farina et al. (2002) using as solvent an ethyl ether-isopropanol mixture 

led to a 74.4% recovery of cocaine from urine samples, as measured by a GC method with 

nitrogen-phosphorous detector (NPD). 

LLE was also efficiently applied to cocaine and its metabolites determination in other 

matrices including hair (Kintz & Mangin, 1995), nails (Engelhart & Jenkins, 2002), serum 

(Williams et al., 1996), plasma (Dawling et al., 1990), whole blood (Gunnar et al., 2004) and 

organ tissues (Hime et al., 1991). 

Nonetheless, there are obvious limitations inherent to the LLE, including the use of large 

amounts of possibly hazardous solvents and the low recovery as a result of poor separation 

of the organic and aqueous phases or even formation of emulsions (Ferrera et al., 2004; 

Franke & de Zeeuw, 1998; Ulrich, 2000). 

The SPE technique has been efficiently used to extract cocaine and its metabolites from 

several biological matrices, including whole blood, plasma, urine, saliva, hair and sweat, 

with recoveries over 80% for all analytes (Badawi et al., 2009; Bjork et al., 2010; Brunet et al., 

2008; Cordero & Paterson, 2007; Lin et al., 2001; Ohshima & Takayasu, 1999). Despite the 

advantages, SPE still requires organic solvents, though in lower quantities compared to LLE, 

and the columns’ price can increase the costs of the extraction procedure. When comparing 

extraction efficiencies of LLE and SPE applied to the same samples, for the same purpose, it 

is generally observed that both recovery and quality of chromatograms are superior for the 

SPE technique (Clauwaert et al., 1997). 
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For both liquid chromatography (LC) and GC, SPE appears to be the preferred extraction 

method through which all cocaine analytes may be isolated from a single sample with very 

reasonable recovery rates.  

SPE allows the extraction of compounds dissolved in a liquid matrix by adsorption of the 

analytes in a solid porous phase. The compounds are then separated based on their affinity 

to the stationary phase. Therefore, the selection of the appropriate SPE column type depends 

on the analytes chemical and physical properties. For cocaine analysis the most usual phases 

used include strong cation-exchange phases, non polar C8 or C18 and mixed-mode phases 

that combine the other two, allowing the extraction of both polar and non polar cocaine 

analytes in the same column. 

In a recent study, Jagerdeo and Abdel-Rahim (2009) compared the specificity and 

extraction efficiency of different SPE columns for cocaine and its metabolites from urine 

samples. They showed that a non polar C8 sorbent efficiently extracted the parent drug 

and CE, but no EME and only a trace amount of BE. On the other hand, both 

divinylbenzene copolymers ENV+ (for aliphatic and aromatic polar analytes) and Oasis 

MCX (strong cation-exchange phase) enabled the extraction of all analytes, with improved 

signal to noise ratio but with a lower extraction rate than C8. The mixed-mode phase 

showed the best results, with better recoveries, cleaner chromatograms and great mass 

accuracy. 

In the last few decades, a solvent-free extraction method, the solid-phase microextraction 

(SPME), first designed for isolation of volatile chlorinated organic chemicals in water 

(Arthur & Pawliszyn, 1990), has been applied to the analysis of biological samples.  

SPME can be used both in laboratory context and on-site, and it consists of a syringe-like 

device with a fused silica fiber coated with a polymeric stationary phase, like polyacrylate or 

polydimethylsiloxane, which adsorbs the analytes by direct immersion on liquid samples or 

by head-space (HS) extraction. The fiber is then placed in the injection port of a 

chromatography equipment and the analytes are recovered through desorption at elevated 

temperatures (Manini & Andreoli, 2002).  

For cocaine analysis, SPME allows the detection of cocaine analytes at parts per billion (ppb) 

levels (ng/mL) in variable specimens such as urine, plasma, sweat, saliva and hair (Alvarez 

et al., 2007; Bermejo et al., 2006; Follador et al., 2004; Yonamine & Saviano, 2006; Yonamine 

et al., 2003). 

Besides the low LOD values, SPME is considered easy to automate and involves little 

equipment. It can be used for the extraction of either liquid or solid matrices and it can be 

performed on very small samples (Ulrich, 2000). However, there are several disadvantages 

inherent to SPME technique, namely the possibility of carry-over from one sample to next 

one, the cost and fragility of the fiber, and the prolonged equilibration time prior to 

extraction (Ferrera et al., 2004). 

Table 2 presents the main advantages and limitations of each extraction method.  

The choice of extraction method will depend on the matrix to be analyzed, the analytes to 

detect, and the budget and material existent in the laboratory. 
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Method Advantages Limitations 

LLE Inexpensive 

May be good for solid matrices 

Large amounts of organic solvents 

Difficult separation  

Poor and variable recoveries 

Emulsion formation 

Not appropriate for extraction of 

chemically different analytes 

SPE Fast 

Easy to automate 

Good for extraction of 

chemically different analytes 

Clean extracts 

Handles small samples 

Use of organic solvents 

May require derivatization 

Expensive 

SPME Solvent-free 

Easy to automate 

Little equipment required 

May be used on-site 

Adequate for solid matrices 

High sensitive 

Small volume samples 

Expensive 

Fragile polymer coating 

Prolonged extraction  

Requires procedure optimization 

(extraction time and temperature) 

Possible carry-over between samples 

Low recoveries 

LLE – liquid-liquid extraction; SPE – solid-phase extraction; SPME – solid-phase microextraction. 

Table 2. Advantages and limitations of the extraction procedures.  

4.1.2 Derivatization procedures 

Derivatization is a reaction by which a compound is chemically modified through reaction 
with a so called derivatizing agent, with a specific functional group. The reaction product is 
a compound (or derivative) with new properties that include different volatility, solubility, 
aggregation state or reactivity. It may be performed for several reasons, such as increasing 
compatibility with the chromatographic equipment (e.g. by decreasing polarity and 
increasing volatility), improve separation and resolution efficiency and attain lower 
detection limits (Wang et al., 2006).  

Derivatization can also be useful when isotopically labeled analogs of the analytes are 

chosen as internal standard (IS). In these cases, it is required that the analytes and the IS 

generate sufficiently separated peaks, and that derivatization of the analytes allows the 

elimination of the phenomenon of “cross-contribution”, i.e. “contribution of the analyte and 

the IS to the intensities of ions designated for the IS and the analyte” (Chang et al., 2001). 

For GC analysis, the derivatizing agents include silyl, acyl or alkyl groups that will 

substitute the proton from a terminal -N-H, -S-H and/or a -O-H polar group, producing 

non-polar and more volatile derivatives (Segura et al., 1998; Wang et al., 2006). 

The ability of the analytes to form silyl or acyl derivatives depends on their functional 
group. While the TMS derivatives have large affinity towards hydroxyl and carboxyl groups 
and much lower towards amines, the acylating agents promptly targets highly polar groups 
including amines and both alcohols and phenols (Segura et al., 1998; Soderholm et al., 2010).  
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The overall derivatization technique is described in figure 3.  

 

Fig. 3. Schematic representation of the steps included in the overall derivatization procedure 
of the analytes. 

After adding the IS to the sample, extraction procedure is carried out. Subsequently, the 
solvent is evaporated to dryness with a gentle nitrogen stream, optionally with heating. 
The derivatizing agent is added and the derivatization of the analytes is performed by 
heating the sample. For silylating agents, the procedure ends at this time point and the 
sample is ready to analyze, right after cooling to room temperature. When performing 
acylation or alkylation, the samples have to be evaporated once more to eliminate the 
excess of agent, and the residue is further recovered by a solvent for posterior 
chromatographic analysis. 

Cocaine and CE are not prone to derivatization. On the other hand, all N-demethylated 
metabolites, such as NCOC, NBE and NCE, can produce derivatives from the –N-H 
substitution, while BE, EME and the metabolites OH-BE and OH-COC may undergo a 
hydroxyl substitution. 

Table 3 summarizes some studies on determination of cocaine and its metabolites in 
biological samples using either acylation, alkylation or silylation as derivatization methods 
for GC analysis. 

The most usual agents for silylation are the trimethylsilyl (TMS) derivates, which confer to 
the new compounds high volatility and stability. Several TMS derivates with different 
chemical and physical characteristics have been produced and commercialized so far, but 
the TMS-amides N-methyl-N-trimethylsilyltrifluoracetamide (MSTFA) and N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) are still the most commonly used, generally 
and particularly for cocaine analysis in biological specimen (Brunet et al., 2008; Romolo et 
al., 2003; Segura et al., 1998).  

In addition, many studies employ a catalyst like trimethylchlorosilane (TMCS) with BSTFA 
(Brunet et al., 2008; Brunetto et al., 2010; Cone et al., 1994a; Kintz & Mangin, 1995; Romolo et 
al., 2003), or less commonly t-butyldimethylchlorosilane (TBDMCS) with the silylating agent 
N-methyl-N-t-butyldimethylsilyltrifluoroacetamide (MTBSTFA) (Lowe et al., 2006), to 
improve the silylating potential of the derivatizing agents (Segura et al., 1998). 

Acylation is frequently applied to cocaine and its metabolites determination as well, 
however the acidic by-products generated in this reaction requires the elimination of the 
excess of derivatizing agent prior to analysis, while silylating agents can be directly injected 
into the GC equipment for analysis. The shorter time of preparation and the less amount of 
solvents required for analysis are the main advantages of silylation over acylation (Segura et 
al., 1998).  
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Sample Analytes 
Derivatizing 
agents 

LOD Reference 

Blood 
Urine 

Cocaine, BE PFPA/HFIP 20 ng/mL (Aderjan et al., 1993) 

Plasma 
Saliva 
Urine 

Cocaine, BE, EME 
Other metabolites 

BSTFA/TMCS 1 ng/mL 
3-6 ng/mL 

(Cone et al., 1994a) 

Hair Cocaine, BE HFBA/HFIP 0.03 ng/mg (Jurado et al., 1995) 

Hair Cocaine, BE, EME, 
CE 

BSTFA/TMCS 0.05 – 0.8 
ng/mg 

(Kintz & Mangin, 1995) 

Hair Cocaine, BE BSTFA/TMCS 0.05 – 0.2 
ng/mg 

(Romolo et al., 2003) 

Blood 
Urine 
Muscle 
tissue 

Cocaine, BE, EME, 
CE 
Other metabolites 

PFPA/ PFPOH 2 ng/mL 
2-640 ng/mL 

(Cardona et al., 2006) 

Brain 
tissue 

Cocaine, BE, EME, 
CE, EDME, EEE 

MTBSTFA/TBD
MCS 

50 ng/g (Lowe et al., 2006) 

Urine Cocaine, EME PFPA/PFPOH 12.5 - 50 
ng/mL 

(Saito et al., 2007) 

Sweat Cocaine, BE, EME, 
EDME 

BSTFA/TMCS 2.5 ng/patch (Brunet et al., 2008) 

Urine Cocaine, BE BSTFA/TMCS 3 - 10 ng/mL (Brunetto et al., 2010) 

Adipose 
tissue 

Cocaine, BE, EME, 
CE 

BSTFA 5 - 20 ng/g (Colucci et al., 2010) 

Hair Cocaine, CE MSTFA 0.08 – 0.09 
ng/mg 

(Merola et al., 2010) 

BE - benzoylecgonine; BSTFA - N,O-bis(trimethylsilyl)trifluoroacetamide; CE - cocaethylene;  
EDME - ecgonidine methyl ester; EEE - ecgonine ethyl ester; EME - ecgonine methyl ester;  
HFBA - heptafluorobutyric anhydride; HFIP - 1,1,1,3,3,3-hexafluoroisopropanol; MSTFA - N-methyl-N-
trimethylsilyltrifluoroacetamide; MTBSTFA - N-methyl-N-t-butyldimethylsilyltrifluoroacetamide;  
PFPA - pentafluoropropionic anhydride; PFPOH - 2,2,3,3,3-pentafluoro-1-propanol;  
TBDMCS - t-butyldimethylchlorosilane; TMCS - trimethylchlorosilane. 

Table 3. Studies on determination of cocaine and its metabolites in biological samples by gas 
chromatography using derivatization procedures.  

For acylation of cocaine analytes, the haloalkylacyl derivates, particularly the fluorinated 

ones like pentafluoropropionic anhydride (PFPA) and heptafluorobutyric anhydride 

(HFBA), are widely applied to several biological matrices, like blood and urine (Aderjan et 

al., 1993; Cardona et al., 2006; Saito et al., 2007), and hair and tissues (Cardona et al., 2006; 

Jurado et al., 1995). 
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Due to the weak reaction of acyl derivatizing agents with carboxyl groups, most of the 
studies on cocaine determination using a GC method combines to the acylating agent an 
alkylating one, such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,3,3,3-pentafluoro-1-
propanol (PFPOH) (see table 3), which easily displace the reactive proton of carboxyl 
groups, increasing thus the efficiency of the derivatization of all hydroxyl, carboxyl and 
amine functional groups (Cardona et al., 2006). 

4.2 Chromatographic analysis 

Over the years, several chromatographic methods have been developed to determine 
cocaine analytes in biological samples. For screening, one of the easiest and less expensive 
methods is the thin-layer chromatography (TLC), presenting a good alternative to 
immunoassays. Gas chromatography (GC) and liquid chromatography (LC) are more 
appropriate for confirmation and quantification. 

4.2.1 Thin-layer chromatography 

Since early before the 1980’s, TLC has been systematically used for urine drug screening. 
Through this method, cocaine, the major urinary metabolite BE, and the transesterification 
product CE, can be detected. However, the method presents low sensitivity, with LOD 
values over 1 µg/mL, even when methylating BE back into the parent drug is performed 
(Bailey, 1994; Budd et al., 1980; Wolff et al., 1990).  

The simplicity of the method, the rapid analysis time, and the ability to detect not only the 
parent drug but also metabolites and other interfering drugs made TLC very useful for 
forensic purposes. However, due to its proven low sensitivity and lack of specificity, as the 
conventional methodology may not distinguish cocaine from other compounds usually 
present in biological samples (for example, nicotine and caffeine), TLC is not as much 
applied to drug screening as immunoassays are (Janicka et al., 2010; Yonamine & Sampaio, 
2006). 

More recently, an improved and computerized TLC technique denominated high-
performance thin-layer chromatography (HPTLC) was developed. HPTLC presents better 
resolution, allowing the separation of cocaine and its metabolites from interferences, and is 
more sensitive, reaching LOD values down to 50-550 ng/mL. In addition, the association to 
an advanced densitometer and a detector, such as the ultraviolet (UV) detector, makes 
HPTLC suitable for quantitative analysis in cases of high cocaine doses, as for example in 
cocaine overdoses (Antonilli et al., 2001; Yonamine & Sampaio, 2006).  

4.2.2 High-perfomance liquid chromatography 

For many decades, LC has been widely applied to the separation of organic compounds. The 
separation through LC is based on the analytes distribution between a liquid mobile phase 
and a stationary phase. Nowadays, the LC is usually equipped with pumps that apply 
relatively elevated pressures to force the mobile phase through the very small packing 
particles that forms the stationary phase, being referred as high-performance liquid 
chromatography (HPLC). Table 4 summarizes some studies on cocaine and its metabolites 
determination in biological material through LC or HPLC, with variable detection 
equipment. 
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Sample Analytes Column Mobile phase Detector LOD Reference 

Urine Cocaine, 
BE 

C18 (A) NH4HCO3  
(B) CH3OH  
5-90-5% B in A 

MS/MS 1 – 1.4 
ng/mL 

(Berg  
et al., 2009) 

Serum Cocaine, 
BE 

PFPP (A) 0.1% HCOOH + 
HCOONH4 1mM  
(B) CH3CN + 0.1% HCOOH 
+ HCOONH4 1mM 

MS/MS 0.1 -0.4 
ng/mL 

(Bouzas 
et al., 2009) 

Urine Cocaine, 
BE, CE 

C18 (A) CH3COONH4 in 
H2O:CH3OH:CH3CN (8:1:1) 
(B) CH3COONH4 in 
H2O:CH3OH:CH3CN 
(1:2:2) 
100-47.2% A in B 

DAD 20 
ng/mL 

(Clauwaert 
et al., 1996) 

Plasma Cocaine, 
BE, CE 

C8 (A) CH3CN 
(B) PO4

3-
 buffer 

10-50-10% A in B 

DAD 10 
ng/mL 

(Fernandez 
et al., 2006) 

Blood 
Urine 

Cocaine, 
BE, EME, 
CE, 
NCOC 

C18  (A) 5% CH3CN + 0.05% 
HCOOH 
(B) 100% CH3CN + 0.05% 
HCOOH 
95-60% B in A 

MS/MS 0.001 – 
0.003 
mg/kg 

(Johansen & 
Bhatia, 
2007) 

Hair Cocaine, 
BE 

C18 (A) 0.01% HCOOH  
(B) CH3OH 
(C) CH3CN 
10% B + 70-30-70% A + 20-
60-20% C 

MS/MS 1 – 10 
pg/mg 

(Lopez  
et al., 2010) 

Hair Cocaine, 
BE 

C18 CH3OH:CH3CN:KH2PO4 

buffer (10:15:75) + 0.25% 
N(CH2CH3)3 

FD 1 
ng/mL 

(Mercolini 
et al., 2008) 

Saliva Cocaine, 
BE 

Phenyl (A) CH3OH + HCOONH4 
10 mM 
(B) H2O + HCOONH4 10 
mM 
6-41.2% A in B 

MS/MS 0.22 - 
0.29 
ng/mL 

(Mortier 
et al., 2002) 

Urine Cocaine, 
EME 

PFPP CH3CN + HCOONH4 5mM 
+ HCOOH 

MS/MS 1.6 – 2.8 
pg on 
column

(Needham 
et al., 2000) 

Plasma Cocaine, 
BE, EME, 
NCOC 

C18 HOC(COOH)(CH2COOH)2 
0.05 M:Na2HPO3 (4:1) + 18% 
CH3CN + 0.3% N(CH2CH3)3

UV 35 – 90 
ng/mL 

(Virag  
et al., 1996) 

Serum Cocaine, 
CE 

Cyanopro
pyl 

CH3CN: PO4
3-

 buffer (38:62) UV 25 
ng/mL 

(Williams 
et al., 1996) 

BE - benzoylecgonine; CE - cocaethylene; DAD - diode array detector; EME - ecgonine methyl ester; FD 
- fluorescence detector; MS - mass spectrometry; NCOC - norcocaine; PFPP - pentafluorophenylpropyl; 
UV - ultraviolet. 

Table 4. Studies on cocaine and its metabolites determination in biological samples by liquid 
chromatography.  
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The separation of cocaine analytes is usually performed in reversed-phase columns, such as C8 
and C18. However, other stationary phases may be used, depending on the properties of the 
analytes in study. For example, Needham et al. (2000), after observing the unsuccessful 
retention in a C18 column of EME, a very polar cocaine metabolite, demonstrated that a 
pentafluorophenylpropyl (PFPP) bonded silica column increased the retention and improved 
the peak shape of both metabolite and parent drug.  

Among the detection equipment used with chromatographic methods, two of the most 
popular for LC cocaine analysis include the UV detectors and the fluorescence detector (FD), 
due to their low cost and easy automation (Janicka et al., 2010). 

The weak UV absorption of polar cocaine metabolites diminishes the usefulness of an UV 
detector. Nonetheless, some studies have shown acceptable results using an UV or a diode 
array detector (DAD), but with visible lack of sensitivity when compared to other detectors 
(see table 4).  

Mass spectrometry (MS) greatly improved the detection and identification of analytes after 
chromatographic elution, providing identification based on mass-spectral data. More 
common than the simple MS detection, many LC methods use tandem MS (or MS/MS, or 
MS2) in which multiple steps of MS selection enable a more accurate identification. 

The elevated sensitivity of MS allows detection of compounds at concentrations below ppb 
levels, as found for several biological specimens (see table 4). 

4.2.3 Gas chromatography 

GC is a widely used methodology for drug abuse analysis. In this chromatographic 
technique the mobile phase is a carrier gas, typically an unreactive gas like nitrogen, 
hydrogen or helium. The sample is carried through a liquid or a polymeric stationary phase 
bounded to a solid support inside a column. This column is located inside an oven that 
controls the temperature of the mobile phase, and the analytes in the sample are separated 
based on polarity and vapor pressure differences. 

Either liquid or gaseous (extracted through HS-SPME) samples may be analyzed by GC, 
however, only volatile compounds can be detected. Thus, while cocaine and its non polar 
metabolite CE are easily determined in biological samples extracts without prior preparation 
techniques (Cognard et al., 2005; Hime et al., 1991), most of the other cocaine analytes 
requires previous derivatization. 

Like LC techniques, GC presents high selectivity and low detection levels. Table 5 presents 
some analytical studies on cocaine and its metabolites by several GC techniques in different 
biological matrices. 

Before the development of the MS detector, cocaine analysis in biological samples by GC 
methods used essentially a nitrogen-phosphorus detector (NPD). This detector is moderately 
priced and provides a quite sensitive analysis, with cocaine LOD values below 100 ng/mL.  

Among the studies using GC-NPD, the use of extraction methods slightly improves the 
sensitivity of the chromatographic method towards cocaine analytes. Urine samples 
extracted by SPME shows a somewhat lower cocaine LOD than urine samples treated by 
LLE (12 vs. 15 ng/mL), while the analysis of non extracted blood samples presents lower 
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sensitivity than the other two (LOD = 20 ng/mL) (Farina et al., 2002; Hime et al., 1991; 
Kumazawa et al., 1995). 

Sample Analytes Extraction/
Derivatization  

Detector LOD Reference 

Plasma Cocaine, CE SPME/- MS 11 – 19 
ng/mL 

(Alvarez  
et al., 2007) 

Hair Cocaine, BE SPE/MSTFA+TMCS MS 15 – 20 
pg/mg

(Barroso  
et al., 2008) 

Blood 
Urine 
Muscle 
tissue 

Cocaine, BE, 
EME, NCOC, CE, 
EDME, NBE, 
NCE, OH-BE, EEE

SPE/PFPA+ PFPOH MS 2-640 
ng/mL 

(Cardona  
et al., 2006) 

Hair Cocaine, EME, 
CE, EDME 

SPE/- MS/MS 5 – 50 
pg/mg 

(Cognard  
et al., 2005) 

Saliva Cocaine, EME, 
CE, EDME

SPE/- MS/MS 0.1 – 0.5 
ng/mL

(Cognard  
et al., 2006) 

Urine Cocaine LLE/- NPD 15 ng/mL (Farina  
et al., 2002) 

Blood Cocaine, CE -/- NPD 20 ng/mL (Hime  
et al., 1991) 

Placenta Cocaine, BE, CE SPE/MSTFA MS 0.2 – 0.7 
ng/mL

(Joya  
et al., 2010) 

Urine Cocaine SPME/- NPD 12 ng/mL (Kumazawa 
et al., 1995) 

Saliva 
Urine 

Cocaine, BE, EME LLE/PFPA + PFPOH MS 2 ng/mL (Strano-
Rossi  
et al., 2008) 

HPTECs Cocaine, BE, 
EME, NCOC

SPE/MSTFA MS 0.4 – 20.9 
ng/mL

(Valente  
et al., 2010) 

Nails Cocaine, BE, 
NCOC 

SPE/PFPA + PFPOH MS 3 – 3.5 
ng/mg 

(Valente-
Campos  
et al., 2006) 

Skin 
biopsy 

Cocaine, BE, 
EME, NCOC, CE, 
EDME, NCE, EEE

SPE/MTBSTFA+TBD
MCS 

MS 1.25 – 5 
ng/biopsy

(Yang  
et al., 2006) 

BE - benzoylecgonine; CE - cocaethylene; EDME - ecgonidine methyl ester; EEE - ecgonine ethyl ester; 
EME - ecgonine methyl ester; HPTECs - human proximal tubular epithelial cells; LLE - liquid-liquid 
extraction; MS - mass spectrometry; MSTFA - N-methyl-N-trimethylsilyltrifluoracetamide; MTBSTFA - 
N-methyl-N-t-butyldimethylsilyltrifluoroacetamide; NBE - norbenzoylecgonine; NCE - 
norcocaethylene; NCOC - norcocaine; NPD - nitrogen-phosphorus detector; OH-BE - 
hydroxybenzoylecgonine; PFPA - pentafluoropropionic anhydride; PFPOH - 2,2,3,3,3-pentafluoro-1-
propanol; SPE - solid-phase extraction; SPME - solid-phase microextraction; TBDMCS - t-
butyldimethylchlorosilane; TMCS - trimethylchlorosilane. 

Table 5. Gas chromatography studies measuring cocaine and its metabolites in biological 
samples. 
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MS development for GC analysis greatly improved the detection of cocaine analytes. In fact, 
when comparing equal specimens analyzed by GC-NPD and GC-MS, LOD values for the 
parent compound using the second method may be ten-fold lower than those seen with the 
conventional NPD. Taking the example of blood samples once more, while Hime et al. 
(1991) described a cocaine LOD of 20 ng/mL by GC-NPD analysis, Cardona et al. (2006) 
obtained a cocaine LOD of 2 ng/mL using a GC-MS equipment with prior SPE extraction 
and combined acylation/methylation of the analytes. 

GC-MS is more often applied to the analysis of less conventional biological matrices than 
LC. These include nails and even biopsy material (Joya et al., 2010; Valente-Campos et al., 
2006; Yang et al., 2006). Moreover, GC-MS allows the determination of metabolites of 
specific consumption patterns, like EDME and EEE for “crack” abuse, and CE and NCE for 
concomitant use with alcohol, and other secondary minor metabolites, such as NBE and 
OH-BE (Cardona et al., 2006; Yang et al., 2006).  

Furthermore, and as described for LC techniques, the detection of analytes eluted through GC 
can be performed by tandem MS as well. MS/MS improvement over MS is visible when 
comparing equal samples analyzed by both methods. For instance, saliva samples analyzed by 
GC-MS showed a cocaine LOD of 2 ng/mL, whereas GC-MS/MS was sensible for cocaine 
concentrations below ppb levels (0.1 ng/mL) (Cognard et al., 2006; Strano-Rossi et al., 2008). 

In our laboratory, we have recently developed and validated a GC method for detection and 
quantification of cocaine and its metabolites in primary cultured human proximal tubular 
epithelial cells (HPTECs) (Valente et al., 2010). As far as we know, this was the first 
chromatographic technique described for the analysis of cocaine analytes in a cellular matrix. 

This in vitro cellular model, which was previously optimized and characterized by our 
group (Valente et al., 2011a) as well, was used to evaluate the specificity and sensitivity of a 
GC-MS method for the quantification of cocaine, its major metabolites BE and EME, and the 
minor metabolite NCOC, particularly known for its cytotoxic effects on the liver.  

Samples of confluent cells cultured at physiological conditions (supplemented medium, at 
37 ºC and a humidified environment with 95% O2 and 5% CO2) were used as matrix for 
analysis in which standard solutions of cocaine and its metabolites were prepared. 
Extraction was then performed through strong cation-exchange phase SPE columns (OASIS 
MCX), allowing the pre-concentration of the cocaine analytes in the samples. The 
compounds were then submitted to derivatization with MSTFA, which generated well 
resolved chromatographic peaks for all the analytes in study. 

The method was proven to be accurate, linear for a wide range of concentrations (0 - 100 
μg/mL) and specific for cocaine analytes. It provided very low LOD values for all cocaine 
analytes (0.4 – 20.9 ng/mL). 

This validated GC-MS technique was further successfully applied to a toxicokinetics study 
on renal cocaine metabolism, in which we were able to demonstrate that, unlike what 
happens in the liver, cocaine is metabolized in the kidney into EME and NCOC in lesser 
extent, but not into BE (Valente et al., 2011b).  

This study demonstrated the usefulness of GC, and particularly GC-MS, not only for the 
determination of drugs of abuse in biological samples, for either clinical or forensic 
purposes, but also for physiological evaluations and development of toxicological models. 
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4.3 Data analysis 

After a complete chromatographic separation, a chromatogram is obtained as the example 

shown in figure 4a. The identification of each peak in the chromatogram can be attained 

through comparison of the retention times of the compounds in the sample and standard 

compounds analyzed at the same chromatographic conditions. Another way is the 

comparison of the mass spectrum of the analyte, provided by a MS detector, with the 

existing mass spectra in a database.  

 

(a) full scan chromatogram, (b) mass spectrum of indicated peak and (c) cocaine identification through a 
mass spectrum database (National Institute of Standards and Technology, NIST 05 database). 

Fig. 4. Analysis of a biological matrix containing cocaine and its metabolites, through gas 
chromatography with detection by mass spectrometry.  

Figure 4 represents the identification of the cocaine peak in a biological sample eluted in a 
GC-MS equipment. In figure 4a is pointed out a peak (1A) and the respective mass spectrum 
in figure 4b, indicating the relative abundance of each mass-to-charge ratio (m/z) in that 
peak. The m/z profile of the selected peak is then compared to those existing in the 
database, and the compounds with approximated spectrum are presented in a decreasing 
order of similarity. In this case, cocaine m/z profile is given as the most resembling to the 
1A peak (figure 4c). 

Independently of the detector used, the quantification of an analyte requires the use of 
calibration curves obtained from standard solutions of the compounds in study analyzed at 
the same chromatographic conditions of the samples, and preferably prepared in an equal 
matrix to eliminate matrix effects. 
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To avoid miscalculations resulting from errors inherent to steps prior to analysis, for 
example injection of variable sample volumes in the chromatographic equipment, it is 
recommendable to use an IS. The IS is added to each sample at the same time point, its 
concentration should not alter with further preparation procedures, and the IS 
chromatographic peak cannot interfere or elute at the same time of any analyte of the 
sample. 

Using an appropriate IS, for both samples and SS, the determination of the compounds takes 
into account the area of the IS chromatographic peak, and the calibration curves are 
presented as [standard solution area/IS area = f(concentration of the standard solution)]. 
Finally, the concentration of each analyte will be extrapolated using the ratio [analyte 
area/IS area]. 
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