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1. Introduction 

One of the many goals of plant geneticists and breeders pertains to the explanation of 

phenotypic variation as it relates to changes in DNA sequence (Myles et al., 2009). The 

development of molecular markers for the detection and exploitation of DNA 

polymorphisms in plant systems is one of the most significant developments in the field of 

molecular biology and biotechnology. Linkage mapping has been a key tool for identifying 

the genetic basis of quantitative traits in plants. However, for linkage studies, suitable 

crosses, sometimes limited by low polymorphism or small population size, are required. In 

addition, only two alleles per locus and few recombination events are considered to estimate 

the genetic distances between marker loci and to identify the causative genomic regions for 

quantitative trait loci (QTL), thereby limiting the mapping resolution. To circumvent these 

limitations, linkage disequilibrium (LD) mapping or association mapping (AM) has been 

used extensively to dissect human diseases (Slatkin, 2008). This approach has received 

increased attention during the last few years. AM has the potential to identify a single 

polymorphism within a gene that is responsible for phenotypic differences. AM involves 

searching for genotype-phenotype correlations among unrelated individuals. Its high 

resolution is accounted for by the historical recombination accumulated in natural 

populations and collections of landraces, breeding materials and varieties. By exploiting 

broader genetic diversity, AM offers three main advantages over linkage mapping: mapping 

resolution, allele number and time saving in establishing a marker-trait association and its 

application in a breeding program (Flint-Garcia et al., 2003). Although AM presents clear 

advantages over linkage mapping, they are often applied in conjunction, especially to 

validate the associations identified by AM, thus reducing spurious associations. 

The inherent nature of AM brings its own limits such as the fact that biological and 

evolutionary factors affect LD distribution and mapping resolution. The strength of AM 

relies on the analysis of common variants, which explain at most 5%-10% of the heritable 

component of human diseases (Asimit & Zeggini, 2010). The role of rare variants in 

explaining the remaining heritable variation is becoming more important. New statistical 

models for AM are being developed to better consider rare variants because early methods 

allocated most of the statistical power to higher frequency alleles.  
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Since most of the traits important for environmental fitness and agricultural value are 
quantitative in nature (Yu & Buckler, 2006), there is tremendous interest in using AM to 
examine them. In this chapter, we introduce the concept of linkage disequilibrium, which 
plays a central role in association analysis. For this reason, it is critical to understand LD 
measurement, its variation across the genome and how it is affected by population structure 
and relatedness. Recent AM studies in plants, advantages and disadvantages of AM, and its 
integration with other mapping methods are also reviewed and discussed. An overview of 
the software currently available for AM and their main characteristics is presented. Future 
perspectives of AM in plants, application in other emerging research areas, potential 
usefulness for new cultivar development and for the conservation of adaptive genetic 
variation are outlined. 

2. Linkage disequilibrium and association mapping concepts 

The terms LD and AM have often been used interchangeably in the literature. However, they 
present subtle differences. According to Gupta et al. (2005), AM refers to the significant 
association of a marker locus with a phenotype trait while LD refers to the non random 
association between two markers or two genes/QTLs (Figure 1). Thus, AM is actually an 
application of LD. In other words, two markers in LD represent a non random association 
between alleles, but do not necessarily correlate/associate with a particular phenotype, 
whereas association implies a statistical significance and refers to the covariance of a marker 
and a phenotype of interest. Although it lies outside the scope of this section, we would like to 
also clarify the difference between linkage and LD because they too are commonly confused. 
Linkage refers to the correlated inheritance of loci through the physical connection on a 
chromosome, whereas LD refers to the correlation between alleles in a population (Flint-Garcia 
et al., 2003). Although tight linkage between alleles on the same chromosome generally 
translate into high LD, significant LD may also exist between distant loci, and even between 
loci located on different chromosomes. The latter, reviewed in depth below, is the result of 
other forces such as selection, mutation, mating system, population structure, etc.  

Both QTL and AM approaches are therefore based on LD between molecular markers and 
functional loci. In QTL mapping, LD is generated by the mating design while in AM, LD is a 
reflection of the germplasm collection under study (Stich & Melchinger, 2010). In a mapping 
population, LD is influenced only by recombination in the absence of segregation distortion. 
In AM, LD may also be influenced by other forces such as those mentioned above as well as 
by recombination.   

The concept of LD was first described by Jennings in 1917, and its quantification (D) was 
developed by Lewontin in 1964 (Abdurakhmonov & Abdukarimov, 2008). The simplified 
explanation of the commonly used LD measure, D or D′ (standardized version of D), is the 
difference between the observed gametic frequencies of haplotypes and the expected 
gametic frequencies of haplotype under linkage equilibrium. 

 D = PAB - PAPB  (1) 

Where PAB is the frequency of gametes carrying allele A and B at two loci; PA and PB are the 
product of the frequencies of the allele A and B, respectively. In the absence of other forces, 
recombination through random mating breaks down the LD with Dt = D0 (1 – r)t, where Dt is 
the remaining LD between two loci after t generations of random mating from the original 
D0 (Zhu et al., 2008). 
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Fig. 1. Principles of linkage disequilibrium and association mapping. a. Linkage 
disequilibrium. Locus 1 and Locus 2 present an unusual pattern of association between 
alleles A-G and T-C, which deviate from Hardy-Weinberg expectations, but without any 
statistical correlation with a phenotype. b. Association mapping. Locus 1 and Locus 2 are in 
LD. Significant covariance with the seed colour phenotype is considered evidence of 
association. 

Several statistics have been proposed for LD, and these measurements generally differ in 

how they are affected by marginal allele frequencies and sample sizes. Here, we introduce 

the two most utilized statistics for LD. Both D′ (Lewontin, 1964) and r2, the square of the 

correlation coefficient between two loci (Hill & Robertson, 1968), reflect different aspects of 

LD and perform differently under various conditions. D′ only reflects the recombinational 

history and is therefore a more accurate statistic for estimating recombination differences, 

whereas r2 summarizes both recombinational and mutational history (Flint-Garcia et al., 

2003). For two biallelic loci, D′ and r2 have the following formula: 

 D′ = |D| / Dmax                      (2) 

Dmax = min (PA Pb, Pa PB) if D > 0; 

Dmax = min (PA PB, Pa Pb) if D < 0 

 r2 = D2 / PA Pa PB Pb   (3) 

D is limited because its range is determined by allele frequencies. D′ was developed to 

partially normalize D with respect to the maximum value possible for the allele frequencies 

and give it a range between 0 and 1 (Zhu et al., 2008). The r2 statistic has an expectation of 

1/(1+4Nc), where N is the effective population size and c is the recombination rate, and it 

also varies between 0 and 1 (Hill & Robertson, 1968).  

Choosing the appropriate LD statistics depends on the objective of the study. Most studies 
on LD in animal populations used D′ to measure population-wide LD of microsatellite 
data (Du et al., 2007). However, D′ is inflated by small sample size and low allele 
frequencies; therefore, intermediate values of D′ are unsafe for comparative analyses of 
different studies and should be verified with r2 before being used for quantification of the 
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extent of LD (Oraguzie et al., 2007). Although r2 is still considered to be allele frequency 
dependent, the bias due to allele frequency is considerably smaller than in D′ (Ardlie et 
al., 2002). Currently, most LD mapping studies in plants use r2 for LD quantification 
because it also provides information about the correlation between markers and QTL of 
interest (Flint-Garcia et al., 2003; Gupta et al., 2005). Typically, r2 values of 0.1 or 0.2 are 
often considered the minimum thresholds for significant association between pairs of loci 
and to describe the maximum genetic or physical distance at which LD is significant (Zhu 
et al., 2008).  

3. Visualization and statistical significance of LD 

Since D′ and r2 are pairwise measurements between polymorphic loci, it is difficult to 
obtain summary statistics of LD across a region (Gupta et al., 2005). There are two 
common ways to visualize the extent of LD and the genomic regions or haplotype blocks 
found to be in significant LD. LD scatter plots are used to estimate the rate at which LD 
declines with genetic or physical distance (Figure 2a). An average genome-wide decay of 
LD can be estimated by plotting LD values, from a data set covering an entire genome, 
against distance. Alternatively, the extent of LD can be estimated for a particular region 
carrying a gene/QTL of interest previously identified by linkage mapping. These scatter 
plots are useful to determine the average effective distance threshold above which 
significant LD (commonly 0.5 for D′ and 0.1 for r2) is expected based on the curve of a 
nonlinear logarithmic trend drawn through the data points of the scatter plot (Breseghello 
& Sorrells, 2006). Disequilibrium matrices or LD heat maps are also very useful for 
visualizing the linear arrangement of LD between polymorphic sites within a short 
physical distance such as a gene, along an entire chromosome or across the whole genome 
(Figure 2b) (Flint-Garcia et al., 2003). LD heat maps are colour-coded triangular plots 
where the diagonal represents ordered loci and the different intensity coloured pixels 
depict significant pairwise LD level expressed as D′ or r2. Blocks of high intensity pixels 
afford an easy visualization of loci in significant LD. In this figure, the larger the blue 
blocks of haplotypes along the diagonal of the triangular plot, the higher the level and 
extent of LD between adjacent loci in the blocks, meaning that there has been either 
limited or no recombination since the LD block formation (Abdurakhmonov & 
Abdukarimov, 2008). These graphical representations enable us to determine the 
optimum number of markers to detect significant marker-trait associations and the 
resolution at which a QTL can be mapped. Because LD estimation based on D′ or r2 can be 
sensitive to marker density, highly saturated and representative linkage groups are ideal 
for LD calculations. 

The statistical significance of LD is typically determined using a χ² test of a 2 × 2 

contingency table. A p-value threshold of 0.05 is often used to declare lack of independence 

of alleles at two loci, thus suggesting association (Gupta et al., 2005). From a 2 × 2 

contingency table, the probability (P) of independence of alleles at two loci is generally 

calculated through a Fisher’s exact test (Fisher, 1935; as cited in Gupta et al., 2005). 

Statistically significant LD can also be calculated using a multifactorial permutation analysis 

to compare sites with more than two alleles such as microsatellite markers. These statistical 

methods are implemented in software such as PowerMarker (Liu & Muse, 2005) and 

TASSEL (Trait Analysis by aSSociation Evolution and Linkage) (Bradbury et al., 2007). 
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Fig. 2. Visualization of linkage disequilibrium in flax (Linum usitatissimum L.). a. Scatter  
plot of LD decay (r2) against genetic distance (cM), representing a measure of an average 
genome-wide LD. b. Heatmap of LD variation between pairwise polymorphic loci of four 
linkage groups. Blocks in significant LD are highlighted by red triangles. LD distribution is 
heterogeneous within and between linkage groups.  

4. LD variation as an effect of biological factors 

4.1 Recombination 

Several biological factors influence LD strength and its distribution across genomes. Many 
regions of the human genome display rates of recombination that differ significantly from 
the genome average recombination rate of 1 cM/Mb (Arnheim et al., 2003). These regions 
have been called “hotspots” and “coldspots” for high and low recombination rates, 
respectively. LD is strongly influenced by localized recombination rate and is correlated 
with other associated factors such as GC content and gene density (Dawson et al., 2002). In 
principle, local sequence features can affect LD directly and indirectly. For example, GC-rich 
sequences may be associated with higher rates of recombination and/or mutation, two 
phenomena that could directly lower surrounding levels of LD. Furthermore, in some 
protein-coding sequences, changes created by recombination or mutation may affect the 
fitness of an individual, and these sequences could be indirectly associated with unique 
patterns of LD as a consequence of natural selection (Smith et al., 2005).  

Because LD is broken down by recombination, and recombination is not distributed 
homogeneously across the genome, blocks of LD are expected. Also, differences in LD 
between micro chromosomes and macro chromosomes have been reported (Stapley et al., 
2010) as well as intra-chromosomal variation, where centromeric regions showed higher 
levels of LD.  Teo et al. (2009) conducted a comprehensive analysis of genomic regions with 
different patterns of LD to unravel the consequences of this patterning for AM in human 
populations. Plant genomes have revealed similar general conclusions with regards to LD 
distribution. Inter-chromosomal LD variation has been reported in barley (Hordeum vulgare), 
maize (Zea mays), tomato (Solanum lycopersicum) and bread wheat (Triticum aestivum) 
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(Malysheva-Otto et al., 2006; Robbins et al., 2011; Yan et al., 2009; Zhang et al. 2010), where it 
varied between less than 1 cM to more than 30 cM (r2 > 0.1). As a consequence, investigation 
of LD variation at the genome and chromosome scale to accurately estimate marker density 
for each chromosome is required to provide insights to the most cost-effective AM 
approach.  

4.2 Mating system 

The mating system has profound effects on LD (Myles et al., 2009). Selfing reduces 

opportunities for effective recombination because individuals are more likely to be 

homozygous than in outcrossing species (Flint-Garcia et al., 2003). In self-pollinated species 

such as rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) 

(Garris et al., 2005; Nordborg, 2000; Zhang et al. 2010), LD extends much further as 

compared to outcrossing species such as maize (Zea mays), grapevine (Vitis vinifera) and rye 

(Secale cereale) (Li et al., 2011b; Myles et al., 2009; Tenaillon et al., 2001). As a result, genetic 

polymorphisms tend to remain correlated, and LD is expected to be maintained over long 

genetic or physical distances (Gaut & Long, 2003). However, because LD declines more 

rapidly in outcrossing plant species than self-pollinated plants, a higher resolution is 

expected, enabling more accurate fine mapping and potentially facilitating the cloning of 

candidate genes. A detailed review of LD decay in self-pollinated and outcrossing species 

can be found in Flint-Garcia et al. (2003) and Abdurakhmonov & Abdukarimov (2008). 

4.3 Germplasm 

The germplasm plays a key role in LD variation because the extent of LD is influenced by the 

level of genetic diversity captured by the population under consideration. In general, the 

larger the genetic variation, the faster the LD decay, a direct consequence of the broader 

historical recombination. The population sample effect is evident in maize (Zea mays) where 

LD decays within 1 kb in landraces, approximately doubles (~ 2kb) in diverse inbred lines and 

can extend up to several hundred kb in commercial elite inbred lines (Jung et al., 2004). 

Tenaillon et al. (2001) investigated sequence diversity at 21 loci on chromosome 1 in a diverse 

group of maize germplasm, including exotic landraces and US accessions. An average LD 

decay was determined to occur within 400 bp (r2 = 0.2), but extended up to 1000 bp in a group 

of US inbred lines. In Michigan local Arabidopsis populations, LD decay varied within 50 kb 

up to 50-100 cM. The latter was explained as a genetic bottleneck or founder effect, which 

reduced dramatically the genetic variation (Nordborg et al., 2002). In cotton (Gossypium 

hirsutum), the genome-wide average LD (r2 ≤ 0.1) declined to 10 cM in landraces, but was up to 

30 cM in varieties (Abdurakhmonov et al., 2008). Myles et al. (2011) studied LD variation in 

over 1000 samples of domesticated grape (Vitis vinifera) and its wild relatives, reporting a rapid 

LD decay, even greater than in maize, as result of a weak domestication bottleneck followed 

by thousands of years of widespread vegetative propagation.  

Estimates of genome-wide average LD decay may not reflect LD patterns between different 
populations of the same species. Each of these populations should be explored 
independently for the extent of LD in order to conduct successful association mapping 
studies (Abdurakhmonov & Abdukarimov, 2008). Taking into account these three important 
biological factors, an obvious question is whether an increased or decreased level of LD is 
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favourable in AM? Populations with either rapid or slow LD decay can be useful in AM, 
depending on the purposes of the study. Thus, populations with narrow genetic diversity 
and long extent of LD are amenable to coarse mapping with fewer markers requiring fine 
mapping in more genetically diverse populations, assuming that the causal genetic factors 
are sufficiently similar across different germplasm groups.  

5. LD variation as effect of evolutionary factors 

5.1 Selection 

Initial interest in LD arose from questions surrounding the modus operandi of natural 
selection. Simply stated, if alleles at two loci are in LD and they both affect positively 
reproductive fitness, the response to selection at one locus might be accelerated by selection 
affecting the other (Slatkin, 2008). Thus, positive selection will increase LD between and in 
the vicinity of the selected loci, a phenomenon known as genetic hitchhiking (Maynard 
Smith & Haigh, 1974; as cited in Slatkin, 2008).  Even if the second locus is selectively 
neutral, the selection applied over the first will increase LD between them. The LD level 
between the two loci will remain constant over time depending on the genetic distance, the 
recombination rate and the effective population size (N). In contrast, if both loci are 
maintained by balancing selection, then LD can persist indefinitely (Lewontin, 1964).  
Nonetheless, LD should be higher in loci affected by positive selection because a strong 
positive selection limits genetic diversity as opposed to a balancing selection which tends to 
maintain or increase polymorphism. In general, disease resistance genes in plants (R-genes) 
are affected by balancing selection with low intragenic LD and rapid decay (Yin et al., 2004), 
which could facilitate fine mapping of disease resistance genes providing high marker 
saturation. Artificial selection also has dramatic effects on LD. Mosaics of large LD blocks 
are observed, especially in regions carrying agronomic-related genes. Domestication 
bottlenecks followed by strong selection for specific environments and end-use traits have 
modified the genome architecture in many crops reducing genetic diversity and creating 
population structure, which may be the main factor affecting the power of AM. 

5.2 Population structure 

Selection affects the genome and LD in locus-specific manner. In contrast, population structure 
affects LD throughout the genome. Consequently, genome-wide patterns of LD can help to 
understand the history of changes in populations (Slatkin, 2008). However, the power of AM 
can be strongly reduced as a consequence of population structure (Balding, 2006). Population 
structure occurs from the unequal distribution of alleles among subpopulations of different 
ancestries. When these subgroups are sampled to construct a panel of lines for AM, the 
intentional or unintentional mixing of individuals with different allele frequencies creates LD. 
Significant LD between unlinked loci results in false-positive associations between a marker 
and a trait. The effect is obvious in the following case. Suppose that one subpopulation is fixed 
for A and B alleles at two loci whereas another is fixed for a and b. Any mixture of individuals 
from the two subpopulations would contain only AB and ab haplotypes, implying that they 
are in perfect LD, when in fact there is no LD in either subpopulation (Slatkin, 2008). By 
definition, polymorphisms at two or more loci must exist to estimate the level of LD. In the 
above example, both loci are monomorphic in their respective subpopulations. However, 
when individuals are mixed, in the newly created artificial single population, false 
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polymorphisms and consequently significant but spurious LD is observed. Thornsberry et al., 
(2001) reported significant associations between polymorphisms at the maize Dwarf8 gene and 
variation in flowering time, but they also stated that up to 80% of the false positive associations 
resulted from population structure. The occurrence of spurious associations is markedly 
higher in adaptation-related genes because they show positive correlations with the 
environmental variables under which they have evolved, and, as a result, the genomic regions 
carrying these genes could present stronger population differentiation. Several statistical 
models take into account the potential effect of population structure. Commonly used 
algorithms are those of Pritchard & Rosenberg (1999) implemented in the software 
STRUCTURE (Hubisz et al., 2009; Pritchard et al., 2000). Other methods are based on Principal 
Component Analysis (PCA) (Price et al., 2006), and Principal Coordinate Analysis and Modal 
Clustering (PCoA-MC) (Reeves & Richards, 2009).   

5.3 Genetic drift, population bottleneck and gene flow 

The effect of genetic drift in a small population results in the consistent loss of rare allelic 
combinations which increases LD level (Flint-Garcia et al., 2003). Genetic drift can create LD 
between closely linked loci. The effect is similar to taking a small sample from a large 
population. Even if two loci are in linkage equilibrium, sampling only few individuals can 
create LD (Slatkin, 2008). 

LD can also be created in populations that have experienced a reduction in size (called a 
bottleneck) with accompanying extreme genetic drift (Dunning et al., 2000; as cited in Flint-
Garcia et al., 2003). After a bottleneck, some haplotypes will be lost; generally resulting in 
increased LD. Subsequent bottlenecks will further contribute to augment LD by increasing the 
effect of genetic drift. Colonizing species undergo repeated bottlenecks, and many models of 
the history of hominids assume the occurrence of a bottleneck when modern humans first left 
Africa (Noonan et al., 2006). Several studies of humans have argued that long distance LD in 
humans is the result of this early bottleneck in human history (Schmegner et al., 2005). In 
plants, comparisons with wild ancestors indicate that, in maize, approximately 80% of the 
allele richness has been lost as a consequence of domestication bottlenecks (Wright & Gaut, 
2005) while this number is 40-50% in sunflower (Liu & Burke, 2006) and 10-20% in rice (Zhu et 
al., 2007). Gene flow introduces new individuals or gametes with different ancestries and allele 
frequencies among populations. If selection maintains differences in allele frequencies at two 
or more loci among subpopulations, LD in each subpopulation will persist (Slatkin, 1975; as 
cited in Slatkin, 2008), but generally when random mating and recombination take place, LD 
caused by gene flow eventually breaks down. 

Factors such as genetic drift, population bottlenecks and gene flow can contribute to 

generating artificial LD and negatively impact the ability to use LD in AM for the precise 

localization of QTL. In general, any biological or evolutionary forces that contribute to an 

increase of LD beyond that expected by chance in an “ideal” population will result in false-

positive associations (Gaut & Long, 2003). 

6. Approaches for AM 

Many methodologies have been developed and are widely used for AM in humans (Schulze 
& McMahon, 2002), and several are perfectly applicable without change or with case-to-case 

www.intechopen.com



 
Association Mapping in Plant Genomes 

 

37 

modifications for a wide range of organisms, including plants. The methods to study 
marker-trait association using LD may differ for discrete and quantitative traits (Nielsen & 
Zaykin, 2001). Here, we will examine several approaches: Multiparent Advanced 
Generation Intercross (MAGIC), Case-control (CC), Transmission Disequilibrium Test (TDT) 
and other approaches that incorporate corrections for population structure such as genomic 
control (GC) and structured association (SA). 

6.1 Multiparent Advanced Generation Intercross (MAGIC) 

MAGIC is an extension of the advanced intercross method in which an intermated mapping 
population is created from multiple founder lines. A Recombinant Inbred Line (RIL) 
population is created from multiple founder lines, in which the genome of the founders are 
first mixed by several rounds of mating, and subsequently inbred to generate a stable panel 
of inbred lines. The larger number of parental accessions increases the allelic and phenotypic 
diversity over traditional RILs, potentially increasing the number of QTL that segregate in 
the population. The successive rounds of recombination cause LD to decay, thereby 
increasing the precision of QTL location (Mackay & Powell, 2007). In both crops and 
animals, the MAGIC design has the ability to capture the majority of the variation available 
in the gene pool. Although it might take several years before these populations are suitable 
for fine mapping, they are relatively inexpensive to develop and their value as mapping 
resources increases with each generation (Mackay & Powell, 2007). In plants, MAGIC can be 
used to combine coarse mapping with low marker densities on lines derived from an early 
generation, with fine mapping using lines derived from a more advanced generation and a 
higher marker density. Regardless of the generation used, LD decay remains the critical 
factor determining the mapping resolution.  

6.2 Case-control (CC) 

The classical methodology and design of AM is the “case and control” (CC) approach.  If a 
mutation increases disease susceptibility, then we can expect it to be more frequent among 
affected individuals (cases) than among unaffected individuals (controls). The essential idea 
behind CC-based AM is that markers close to the disease mutation may also have allele 
frequency differences between cases and controls if there is LD between the marker locus 
and the “susceptibility” mutations (Schulze & McMahon, 2002). For accurate mapping, this 
design requires an equal number of unrelated and unstructured case-control samples. The 
Pearson χ2 test, Fisher’s exact test or Yates continuity correction can be used to compare 
allele frequencies and detect association between a phenotype and a marker 
(Abdurakhmonov & Abdukarimov, 2008). The CC tests are sensitive to overall population 
LD between a marker and a locus affecting the trait. As previously discussed, LD can exist 
between unlinked loci, meaning that strong marker-trait association is not necessarily 
evidence for physical proximity between a marker and the gene affecting the phenotype. As 
a consequence, the CC approach is highly sensitive to population structure (Schulze & 
McMahon, 2002). To efficiently eliminate the confounding effects caused by population 
structure, Spielman et al. (1993) developed the Transmission Disequilibrium Test (TDT). 

6.3 Transmission Disequilibrium Test (TDT) 

The ability to map QTL in collections of breeding lines, landraces or samples from natural 
populations has merit. In these populations, LD often decays more rapidly than in 
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controlled crosses, enabling fine mapping. The challenge is to distinguish the effects of 
population subdivision from LD caused by linkage (syntenic LD). A robust method to test 
for this partitioning is the TDT (Spielman et al., 1993) that permits the detection of linkage 
in the presence of disequilibrium. Neither linkage alone nor disequilibrium alone (non 
syntenic LD) will generate a positive result in a TDT. As a consequence, the TDT is a 
robust method to control false positives (Mackay & Powell, 2007). In brief, TDT compares 
the transmission versus the non transmission of alleles to the offspring using a χ2 test, 
assuming a linkage between a marker and a trait. The TDT design requires genotyping of 
markers from three individuals: one heterozygous parent, one homozygous parent and 
one affected offspring. In the absence of linkage between QTL and marker, the expected 
ratio of transmission to non transmission is 1:1 (Nielsen & Zaykin, 2001). In the presence 
of linkage, it is distorted to an extent that depends on the strength of LD between the 
marker and the QTL. In addition, the power of the association will depend on the 
effectiveness of selection of extreme progeny in driving segregation away from 
expectation (Mackay & Powell, 2007).  

The initial TDT approach did not address the cases of multiallelic markers, multiple 
markers, missing parental information, large pedigrees and complex quantitative traits 
(Schulze & McMahon, 2002). A variety of extensions of the TDT approach have been 
developed and applied to resolve multiallelic marker issues (i.e., GTDT, ETDT, MCTm); 
reviewed by Schulze & McMahon (2002).  

In crops, parental and progeny lines are often separated by several generations of 

gametogenesis rather than one, as is often the case of human studies. For this reason, the 

TDT, while still valid, may be less robust because the breeding process may result in 

increased segregation distortion (Mackay & Powell, 2007). 

6.4 Other approaches 

Population structure arising from recent migration, population admixture and artificial 
selection will generate non syntenic LD. Assuming that such population structure has a 
similar effect on all loci, a random set of markers can be used to statistically assess the extent 
with which population structure is responsible for non syntenic LD (Stich & Melchinger, 
2010). This is the basis of genomic control (GC). For example, for a case-control analysis of 
candidate genes, the GC approach computes χ2

 
test statistics for independence for both null 

(random) and candidate loci. An average χ2
 

of null loci greater than 1.0 indicates the 
presence of significant structure. By using the magnitude of the χ2

 
test observed at the null 

loci, a multiplier is derived to adjust the critical value for significance tests for candidate loci 
(Mackay & Powell, 2007). By contrast, structure association (SA) analysis developed by 
Pritchard et al. (2000), first uses a set of random markers to estimate population structure 
(Q-matrix), and then incorporates this estimate into a general linear model (GLM) analysis 
which enables correction for false associations. Yu et al. (2006) developed a new 
methodology, the mixed linear model (MLM), which incorporates both population structure 
and familial relatedness or so-called “kinship” (K-matrix). To perform MLM: (1) a Q-matrix 
is generated using for example, STRUCTURE; (2) the pairwise relatedness coefficients 
between individuals of a germplasm collection (K-matrix) is estimated using for example, 
SpaGeDi software (Hardy & Vekemans, 2002); and (3) both Q- and K-matrices are used in 
AM to control spurious associations. Studies conducted in human, Arabidopsis and bread 
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wheat (Raman et al., 2010; Yu et al., 2006; Zhao et al., 2007a) have demonstrated the 
effectiveness of the MLM approach over the GLM.  

Another type of mixed model used in AM incorporates PCA instead of the Q-matrix. 
Promising results as a fast and effective way to identify population structure have been 
reported (Price et al., 2006). The PCA-based MLM model is computationally effective as 
compared to the Q-matrix estimated from STRUCTURE. Also, STRUCTURE has been found 
to overestimate the “true” number of subpopulations under particular scenarios (Evanno et 
al., 2005). 

7. AM studies in plants 

Some of the first LD mapping studies in plants were done in maize (Zea mays) (Bar-Hen et 
al., 1995), rice (Oryza sativa) (Virk et al., 1996) and oat (Avena sativa) (Beer et al., 1997). Bar-
Hen et al. (1995) and Virk et al. (1996) predicted the association of quantitative traits using 
RAPD and isozymes markers, respectively. Beer et al. (1997) associated 13 QTL with RFLP 
loci using 64 oat varieties and landraces. In these studies, a low number of genome-wide 
distributed markers were assessed without considering the population structure. The first 
empirical candidate gene association taking into account background molecular markers to 
correct for population structure was performed in maize looking at the D8 locus and its 
association with flowering time (Pritchard, 2001). In Arabidopsis, most of the AM studies 
focused on providing proof of concept, identification of QTL involved in adaptation and 
detection of additional alleles to supplement other mutagenesis approaches (Ersoz et al., 
2007). Aranzana et al. (2005) performed the first attempt at a genome wide association study 
(GWAS) in Arabidopsis, reporting previously known flowering time and three known 
pathogen-resistance genes. GWAS refers to the use of many markers that span an entire 
genome to identify functional common variants in LD with at least one of the genotyped 
markers. Numerous research papers focusing on LD and AM have since been published on 
more than a dozen plant species. These studies have been reviewed by Gupta et al. (2005) 
and more recently by Zhu et al. (2008).  

In the last five years, plant AM studies have expanded because of advances in sequencing 
technologies which enable more efficient and cost-effective development of a large number 
of molecular markers such as Single Nucleotide Polymorphisms (SNPs). In Arabidopsis, 
new studies have been carried out aiming to dissect downy mildew resistance genes and 
climate-sensitive QTL, with special efforts focused on the understanding of adaptative 
variation (Li et al., 2010; Nemri et al., 2010). The first applied a CG approach, and the second 
a GWAS based on no fewer than 213,497 SNPs. In maize, recent studies dissected the 
quantitative genetic nature of the northern leaf blight (NLB) resistance, southern leaf blight 
(SLB) resistance and leaf architecture, scanning the genome using ~ 1.6 million SNPs (Kump 
et al., 2011; Poland et al., 2011; Tian et al., 2011). Poland et al. (2011) identified several loci 
with small additive effects carrying candidate genes related to plant defense, including 
receptor-like kinase genes. Kump et al. (2011), from the same research group, identified 32 
QTL with predominantly small additive effects related to SLB resistance. Similarly, Tian et 
al. (2011) demonstrated that the genetic architecture of leaf traits is dominated by small 
effects and that the liguleless genes have contributed to more upright leaves. Currently, 
whole genome scanning has moved beyond Arabidopsis and maize to other species such as 
rice and barley. Huang et al. (2010) uncovered the genetic basis of 14 rice agronomic traits 
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based on ~ 3.6 million SNPs. The loci identified through GWAS explained ~ 36% of the 
phenotypic variance, on average. In barley, GWAS of 15 morphological traits identified one 
putative anthocyanin pathway gene, HvbHLH1, carrying a deletion resulting in a premature 
stop codon and which was diagnostic for the absence of anthocyanin in the germplasm 
studied (Cockram et al., 2010). Efforts towards understanding adaptation-related genes have 
been undertaken in wheat. Raman et al. (2010) applied GWAS in order to identify genetic 
factors associated with aluminium resistance, one of the most restrictive abiotic stresses on 
acid soils worldwide. The study confirmed previously identified loci and identified putative 
novel ones. Subsequently, Rousset et al. (2011) studied the genetic nature of flowering time 
in wheat to investigate the effect of candidate genes on flowering time. The Vrn-3 gene 
explained a high percentage of the phenotypic variation of earliness followed to a lesser 
extent by Vrn-1, Hd-1 and Gigantea (GI). In Brassica napus, several seed oil related loci were 
identified, with a few corresponding to previously reported genomic regions associated 
with oil variation (Zou et al., 2010). In tetraploid alfalfa (Medicago sativa), 15 SSR markers 
showed strong association with yield in different environments (Li et al., 2011a). In sugar 
beet (Beta vulgaris), genetic variation of six agronomic traits was dissected using GWAS, 
identifying several QTL with major effects and others with epistatic effects (Würschum et 
al., 2011).  Thus, LD mapping, considered a few years ago as an emerging tool in plant 
genomics, has recently been shown to be a powerful method to dissect complex traits in 
crops. Table 1 summarizes these and other recently published AM studies in plants. Earlier 
publications are summarized elsewhere (Gupta et al., 2005; Zhu et al., 2008).  

8. Benefits and limitations of AM 

The potential high resolution in localizing a QTL controlling a trait of interest is the primary 

advantage of AM as compared to linkage mapping (Figure 3). AM has the potential to 

identify more and superior alleles and to provide detailed marker data in a large number of 

lines which could be of immediate application in breeding (Yu & Buckler, 2006). 

Furthermore, AM uses breeding populations including diverse and important materials in 

which the most relevant genes should be segregating. Complex interactions (epistasis) 

between alleles at several loci and genes of small effects can be identified, pinpointing the 

superior individuals in a breeding population (Tian et al., 2011). Sample size and structure 

do not need to be as large as for linkage studies to obtain similar power of detection. Finally, 

AM has the potential not only to identify and map QTL but also to identify causal 

polymorphisms within a gene that are responsible for the difference between two 

phenotypes (Palaisa et al., 2003).  

AM suffers from some limitations such as when the trait under consideration is strongly 

associated with population structure. Most traits under local adaptation or in balancing 

selection in different populations may be thus affected (Stich & Melchinger, 2010). When 

statistical methods to correct for population structure are applied, the differences between 

subpopulations are disregarded when searching for marker-trait associations. Therefore, all 

polymorphisms responsible for the phenotypic differences between subpopulations remain 

undetected, thus underpowering AM. LD mapping often requires a large number of 

markers for genotyping in GWAS. The number of markers depends in large part on the 

genome size and the expected LD decay; linkage mapping generally requires fewer markers 

to detect significant QTL. A high density of markers can only be achieved through the  
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Species Germplasm Trait Marker 
system 

Reference

Arabidopsis Diverse accessions Flowering time/pathogen 
resistance

Sequences Aranzana et al. (2005) 

 Diverse accessions Multiple traits SSRs/SNPs Ersoz et al. (2007) 
 Natural accessions Flowering time SNPs Brachi et al. (2010) 
 Diverse accessions Climate-sensitive QTL SNPs Li et al. (2010) 
 Landraces Downy mildew SNPs Nemri et al. (2010) 
 
Maize 

 
Inbred lines Aluminum tolerance SNPs Krill et al. (2010) 

 Inbred lines Drought tolerance SNPs Lu et al. (2010) 
 Inbred lines Northern leaf blight SNPs Poland et al. (2011) 
 Inbred lines Southern leaf blight SNPs Kump et al. (2011) 
 Inbred lines Leaf architecture SNPs Tian et al. (2011) 
 
Teosinte 

 
Landraces Domestication-related 

genes
SNPs Weber et al. (2009) 

Wheat Cultivars Kernel size, milling quality SSRs Breseghello & Sorrells, 
(2006) 

 Diverse accessions Aluminum resistance DArT Raman et al. (2010) 
 Breeding lines Stem rust resistance DArT Yu et al. (2011) 
 Diverse accessions Flowering time SNPs Rousset et al. (2011) 
 
Barley 

 
Inbred lines Growth habit SNPs Rostoks et al. (2006) 

 Cultivars Anthocyanin pigmentation SNPs Cockram et al. (2010) 
 Breeding lines Winterhardiness SNPs Von Zitzewitz et al. (2011) 
 
Oat 

 
Diverse cultivars Agronomic and kernel 

quality traits
AFLPs Achleitner et al. (2008) 

 
Rice 

 
Landraces  Heading date, plant height 

and panicle length 
SSRs Wen et al. (2009) 

 Landraces Multiple agronomic traits SNPs Huang et al. (2010) 
 
Canola 

 
Diverse accessions Leaf traits, flowering time 

and phytate content
AFLPs Zhao et al. (2007b) 

 Diverse accessions Oil content SSRs Zou et al. (2010) 
 
Soybean 

 
Breeding lines Iron deficiency chlorosis SSRs Wang et al. (2008) 

 
Cotton 

 
Diverse cultivars Fiber quality SSRs Abdurakhmonov et al. 

(2009) 
 
Peanut 

 
Diverse accessions Seed quality traits SSRs-SNPs Wang et al. (2011) 

 
Sugar beet 

 
Inbred lines Sugar content and yield SSRs Stich et al. (2008) 

 Inbred lines Multiple traits SNPs Würschum et al. (2011) 
 
Alfalfa 

 
Cultivars Biomass yield and stem 

composition
SSRs Li et al. (2011a) 

SNPs: Single Nucleotide Polymorphisms; SSRs: Simple Sequence Repeats; DArT: Diversity Arrays 

Technology; AFLPs: Amplified Fragment Length Polymorphisms. 

Table 1. Association mapping studies in plants. 
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development of an integrated genotyping by sequencing (GBS) platform. Thus, the analysis 

of cost-benefit must be conducted in the light of the real impacts that such investments will 

have in the future market appreciation of that plant species. Alternative approaches such as 

linkage mapping and CG could be feasible for other studied traits. The power of AM to 

detect an association is influenced by allele frequency distribution at the functional 

polymorphism level. The results of empirical studies suggest that a high percentage of 

alleles are rare (Myles et al., 2009). Rare alleles cannot be evaluated adequately because, by 

definition, they are present in too few individuals and consequently lack resolution power. 

As a consequence, an important piece of heritability remains undetected. For such rare 

alleles, linkage mapping may be used because correlation between population structure and 

phenotypes can be broken, and allele frequencies can be inflated to enhance the power of 

mapping (Stich & Melchinger, 2010). In this regard, several studies have combined linkage 

mapping and LD mapping, a methodology known as “nested association mapping”, which 

reduces spurious associations caused by population structure, particularly for traits strongly 

affected by local geographic patterns (Brachi et al., 2010; Poland et al., 2011). With the 

growing interest in finding the missing heritability not accounted for by common alleles 

(Asimit & Zeggini, 2010), several new association analysis methods for rare variants are 

being proposed, with some important advances in complex trait dissection (Li & Leal, 2008). 

9. Computer programs for AM 

A variety of software packages are available for AM, and it can be inferred from the 
previous sections that LD studies are computationally demanding. Thus, newer and more 
powerful programs are constantly under development. TASSEL is a commonly used 
software for LD mapping in plants, frequently updated with newly developed methods. 
Current examples include the GLM and the multiple regression models combined with the 
estimates for false discovery rate. TASSEL can also be used for calculation and graphical 
display of LD statistics, analysis of population structure using PCA, and tree plots of genetic 
distance. Although TASSEL can handle both SSR and SNP markers, the latest version only 
accepts SNPs. For SSR analysis, users must continue with TASSEL v. 2.1. Alternatively, 
GenStat offers traditional statistical analyses as well as linkage and AM analyses for SSRs. 

GenStat performs structure analysis based on PCA, LD decay and single trait association 
analysis using PCA-based MLM. Version 14 was recently released and can be downloaded for 
non profit purposes from http://www.vsni.co.uk/2011/asides/genstat-14-released/. Gupta 
et al. (2005) and Excoffier & Heckel (2006) comprehensively reviewed the most common 
software for population genetics and LD mapping analyses but the majority of them can only 
handle a few thousand marker loci. Progress in sequencing technologies has solved the past 
issue of genotyping large populations with high marker densities and software development 
has also moved quickly. Nowadays, the main issue is the time required for processing large 
data sets and the availability of powerful statistical models to adjust for multiple testing. JMP 
Genomics v.5 is a Windows based program that offers several solutions for handling large 
SNP data sets (http://www.jmp.com/software/genomics). Among its main characteristics, 
JMP Genomics is capable of handling data sets as large as 1.5 million SNPs for 15,000 samples 
on a 32-bit desktop work station using CG or GWA. It also corrects for relatedness and 
population structure using association tests, and calculates identical by descent (IBD), identical 
by state (IBS) and allele-sharing individual relationship matrices. Interactive triangular plots 
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and zooming features permit visualization of LD blocks. Association between SNPs and 
multiple traits can be tested separately or jointly, while adjusting for covariates. JMP Genomics 
5 also simplifies the analysis of rare and common variants, and includes features for high 
quality graphs and figures.  
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Fig. 3. Comparison of mapping resolution between linkage mapping and AM. a. A Doubled 
Haploid (DH) mapping population. b. A Recombinant Inbred Line (RIL) mapping 
population. c. A collection of diverse germplasm. a and b present low QTL resolution as a 
consequence of few meiosis events accumulated; c presents a high QTL resolution because a 
larger number of recombination events have accumulated during the population history. 

Similar applications can be found in GenAMap software, which incorporates visualization 
strategies for structured AM (http://cogito-b.ml.cmu.edu/genamap/). It has a processing 
capacity of 1 million SNPs in approximately 1 hour. The analysis is performed on a remote 
cluster complete with complex parallelization schemes to optimize run-time efficiency. 
GenAMap gives an overview of the association results through a heatmap view where SNPs 
are plotted against a network of candidate genes, shows interactions between genes, 
integrates the association strengths of the genes to SNPs in the genome, and creates a tree 
view of structured genes to explore and identify functional relevant branches of the tree that 
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are associated with a genomic region. Although GenAMap was primarily developed for 
human diseases, it can be applied to plant AM as well.  

PLINK software v. 1.07 (Purcell et al., 2007; http://pngu.mgh.harvard.edu/purcell/plink/) 
is an open source C/C++ GWAS tool set. With PLINK, large data sets comprising hundreds 
of thousands of SNPs and individuals can be readily manipulated and analyzed. PLINK 
offers five main characteristics. Data management is a simple interface for reordering, 
recording and filtering genotypic information. Summary statistics to determine the 
randomness of genotyping failure highlights the test of missingness on a simple haplotypic 
case-control test. Population stratification is measured on the basis of a genome average 
proportion of alleles sharing identical by state (IBS) between any two individuals. PLINK 
offers tools to cluster individuals into homogeneous subsets to identify potential outlier 
individuals causing genotyping or pedigree errors, and to incorporate this stratification in 
GWAS. Association analyses include CC, stratified analysis, TDT, QTDT, sib TDT and 
correction for multiple tests. Table 2 summarizes these and other software based on their 
analytical focus. 

10. Future perspectives of AM 

Large scale GWAS have already been carried out in plants and many more are in progress. 

The technological problem of efficiently genotyping 1 million or more SNPs has been 

solved, and the cost of genotyping continues to decline (Slatkin, 2008). With this increased 

resolution of LD patterns, the study of crop history will shift in focus from understanding 

the average history of populations to understanding the history of different genomic regions 

in depth. GWAS will not be limited to the identification of QTL but will also provide in 

depth understanding of the genomic changes that have shaped crop plants as a consequence 

of domestication and selection. Such information will translate into improved design of 

breeding populations and germplasm collections capturing adaptative variation. 

Design and implementation of genotyping assays is no longer time-consuming or expensive. 

To fully exploit and benefit from the large amount of achievable genotyping data, care must 

be given to proper and powerful experimental design (Myles et al., 2009). Because LD 

mapping often involves a relatively large number of diverse accessions, phenotypic data 

collection with adequate replications across multiple years and locations can be challenging. 

Efficient field design, appropriate statistical methods and consideration for QTL × 

environmental interactions should be explored to increase the mapping power, particularly 

if field conditions are not homogeneous. Reducing errors associated with phenotypic 

measurements remains a priority.  

One of the limitations of LD mapping is that it provides little insight into the mechanistic 
basis of LD detected, so that genomic localization and cloning of genes based on LD may not 
be always straightforward. This limitation occurs because strong LD is sometimes the result 
of a recent occurrence of LD (recent mutations) rather than a close physical linkage between 
two loci exhibiting LD (Gupta et al., 2005). As a consequence, we anticipate increased usage 
of nested AM, because it has the power to simultaneously capture information about the 
linkage of the markers and the degree of LD historically created. Linkage mapping and LD 
mapping are complementary and their successful combination has been demonstrated in 
plant systems (Brachi et al., 2010; Poland et al., 2011). As mentioned earlier, AM is one of  
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Software Focus Description Website 

STRUCTURE 2.3 Population 

structure 

Compute a MCMC Bayesian 

analysis to estimate the 

proportion of the genome of 

an individual originating 

from the different inferred 

populations  

http://pritch.bsd.uchicago.e

du/software.html  

BAPS 5.0 Population 

structure 

Compute Bayesian analysis 

to estimate the proportion of 

the genome of an individual 

and assign individuals to 

genetic clusters by either 

considering them as 

immigrants or as descendents 

from immigrants 

http://web.abo.fi/fak/mnf/

mate/jc/software/baps.html 

mStruct Population 

structure 

Detection of population 

structure in the presence of 

admixing and mutations 

from multi-locus genotype 

data. It is an admixture 

model which incorporates a 

mutation process on the 

observed genetic markers 

http://www.cs.cmu.edu/~s

uyash/mstruct.html 

LDheatmap LD R environment software for 

LD estimation (r2) displayed 

as heatmap plots using SNPs 

http://www.jstatsoft.org/v1

6/c03 

LDhat 2.1 Recombinatio

n rates and LD 

R environment software for 

LD estimation and 

identification of hotspots 

using a Bayesian reversible 

jump MCMC scheme for 

SNPs 

http://www.stats.ox.ac.uk/

mcvean/ldhat.html 

MIDAS LD Compute LD heatmaps for D′ 
and r2 providing both inter 

loci and inter allelic LD 

variation  

http://www.genes.org.uk/s

oftware/midas/ 

Arlequin 3.5 Genetic 

analysis and 

LD 

Hierarchical analysis of 

genetic structure (AMOVA), 

LD for D′ and r2. Version 3.5 

incorporates a R function to 

parse XML output files to 

produce publication quality 

graphics 

http://cmpg.unibe.ch/softw

are/arlequin35/ 

www.intechopen.com



 
Genetic Diversity in Plants 

 

46

Software Focus Description Website 

Haploview 4.2 Haplotype 

analysis and 

LD  

LD and haplotype block 

analysis, haplotype 

population frequency 

estimation, single SNP and 

haplotype association tests, 

permutation testing for 

association significance 

http://www.broad.mit.edu/

mpg/haploview/ 

GGT 2.0 Genetic 

analysis, LD 

and AM 

Compute genetic distance 

based on Jaccard similarity, 

dendrograms are displayed 

using a Neighbour-Joining 

algorithm.  Displays LD 

heatmaps and LD scatter 

plots for D′ and r2 and 

performs simple AM analysis 

http://www.plantbreeding.

wur.nl/UK/software_ggt.ht

ml 

SVS 7 Stratification, 

LD and AM 

Estimate stratification, LD, 

haplotypes blocks and 

multiple AM approaches for 

up to 1.8 million SNPs and 

10,000 samples 

http://www.goldenhelix.com 

TASSEL Stratification, 

LD and AM 

SSR markers, GLM and MLM 

methods 

http://www.maizegenetics.n

et 

GenStat Stratification, 

LD and AM 

SSR markers, GLM and 

MLM-PCA methods 

http://www.vsni.co.uk/ 

JMP genomics Stratification, 

LD and 

structured 

AM  

SNPs, CG and GWAS, 

analysis of common and rare 

variants 

http://www.jmp.com/softw

are/genomics 

GenAMap Stratification, 

LD and 

structured 

AM 

SNPs, tree of functional 

branches, multiple 

visualization tools 

http://cogito-

b.ml.cmu.edu/genamap  

PLINK Stratification, 

LD and 

structured 

AM 

SNPs, multiple AM 

approaches, IBD and IBS 

analyses 

http://pngu.mgh.harvard.ed

u/purcell/plink/ 

 

Table 2. List of software used in LD and AM. 

many applications of LD. With the increasing availability of molecular markers, it is now 

feasible to scan a genome to identify signatures of selection (both positive and balancing 

selection). This approach, known as population genomics, simultaneously studies thousands 
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of marker loci distributed across the genome to better understand the roles that evolutionary 

processes have played in the current pattern of genetic variation across populations (Luikart 

et al., 2003). Among different approaches reviewed by Oleksyk et al. (2010), LD can be used 

to Identify loci that have been targets of selection. Strong positive selection quickly increases 

the frequency of an advantageous allele, resulting in linked loci remaining in unusually 

strong LD with that allele in the phenomenon known as genetic hitchhiking. Since 

conditions vary from one locality to another and differ considerably between ecosystems 

(Oleksyk et al., 2010), it is expected that genomic differentiation occurred between 

populations. Patterns of contrasting LD between populations can assist in identifying 

adaptative genetic diversity for emerging global problems such as drought tolerance, UV 

radiation, heavy metal related genes, and ultimately, food security. Since climate change is 

likely to affect a wide range of species and habitats, LD could assist in the development of 

specific “adapted germplasm collections” suitable for cultivar development and 

conservation rather than collections capturing mostly neutral variation. Studies on the 

adaptation of natural populations to local ecosystems based on LD variations have already 

been reported (Li & Merilä, 2011).  

Although GWAS have been successful in finding new causative alleles, usually tests for 
common variants are underpowered for detecting variants of lower frequency leaving a 
high proportion of undetected heritability. In human genetics, there is a growing interest in 
the role of rare variants in multifactorial disease etiology and there is an increasing body of 
evidence pointing to the role of rare variants in complex traits (Bansal et al., 2010). The 
frequency of any single rare or low-frequency variant is less than 5%, but collectively the 
number of rare variants is substantial. According to the multiple rare variant (MRV) 
hypothesis, there are many large effect rare variants in the population and cases of common 
inherited diseases have been the result of additive effects of a few of these moderate to high 
penetrance MRVs (Bodmer & Bonillna, 2008, as cited in Asimit & Zeggini, 2010). In the 
search for causal variants of type 1 diabetes (T1D), Nejentsev et al. (2009) identified four 
disease-associated rare variants in the IFIH1 gene, which are protective of T1D. Involvement 
of rare variants in hypertension has also been shown (Ji et al., 2008). Despite their 
importance, rare variants have not been studied as extensively as common variants because 
of cost limitations in next generation sequencing technologies and the lack of an appropriate 
analytical toolbox to enable powerful rare variant association analysis (Asimit & Zeggini, 
2010). With this in mind, several strategies for association studies involving rare variants 
have been proposed. The simplest approach is to test them individually using standard 
contingency table and regression methods such as those implemented in the genetic 
software PLINK (Purcell et al., 2007). This method, called “single-locus test” is highly 
problematic, given, for example, the poor power that such statistical tests have to detect 
small differences between diagnostic or phenotypic groups (Gorlov et al., 2008, as cited in 
Bansal et al., 2010). Other methods that overcome the power issues associated with testing 
rare variants individually include the collapsing strategy, methods based on summary 
statistics, multiple regression and data mining which are comprehensively reviewed by 
Bansal et al. (2010). Approaches involving direct sequencing have been tested by Li & Leal 
(2009). Since epigenetic factors are also likely to contribute to common complex traits, 
epigenome-wide association studies (EWASs) have been proposed to uncover another 
missing piece of heritability unexplained by common variants (Rakyan et al., 2011), 
specifically involving the study of variation in DNA methylation across the genome. 
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Future scenarios in plant AM will likely include a combination of studies involving common 

and rare variants to explain most of the phenotypic variation observed for agronomic and 

adaptative traits. The reader will have noticed the influence of human genetics in much of the 

discussion of LD mapping. Plant geneticists continue to follow human genetics research in 

order to improve QTL studies. However, plants offer advantages that cannot be afforded in 

humans such as population design and size, which promise to make plant GWAS a powerful 

tool. Overall, we anticipate witnessing advances in plant AM as a result of new approaches in 

human association studies in combination with the benefits of plant genetics that enable us to 

uncover and understand levels of plants genome complexity not seen before.          
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