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1. Introduction

The first attempts to get energy from the controlled fusion of two light atoms nuclei date back

to the beginning of the fifties of the last century. The crucial difficulty to achieve this goal is

that particles need to have a large amount of thermal energy in order to have a significant

chance of overcoming the Coulomb repulsion. At such high temperatures the atoms are

fully ionized conforming a plasma. Such a hot plasma can not be in contact with solid walls

because it will be rapidly cooled down. Two main methods have been developed to confine

plasmas: the magnetic confinement and the inertial confinement. Here we are concerned with

the magnetic confinement approach.

Under certain conditions some magnetic configurations studied in the context of plasma

confinement become unstable and undergo a process called magnetic (or plasma) relaxation.

This process generally causes the system to evolve toward a self-organized state with lower

magnetic energy and almost the same magnetic helicity. A key physical mechanism that

operates during plasma relaxation is the localized reconnection of magnetic field lines. It was

demonstrated that magnetic relaxation can be employed to form and sustain configurations

relevant to magnetic confinement research.

The theoretical description of magnetic relaxation is given in terms of a variational

principle (Taylor, 1974). Despite the remarkable success of this theory to describe the final

self-organized state toward which the plasma evolves, it does not provide any information

on the dynamics of the plasma during relaxation. Since the process of relaxation always

involves fluctuations that degrade plasma confinement it is very important to understand

their dynamics.

The dynamics of the fluctuations induced during the relaxation process can be studied in

the context the magnetohydrodynamic (MHD) model. In this Chapter, we will study the

dynamics of the relaxation in kink unstable spheromak configurations. To that end we will

solve the time-dependent non-linear MHD equations in three spatial dimensions.

The rest of the Chapter is organized as follows. In Section 2 we give a general introduction

to magnetic confinement of high temperature plasma which is the main motivation of this

study. The physical background of this work is the MHD model which is presented in

Section 3. In Section 4 we describe the magnetic relaxation theory and its relationship with
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plasma self-organization. The role of the magnetic helicity and magnetic reconnection is

also discussed. In Section 5 we present a study of the dynamics of magnetic relaxation

in kink unstable spheromak configurations. These configurations are of special interest

because they approximate quite well the measurements in spheromaks during sustainment

(Knox et al., 1986);(Willet et al., 1999). Previous works have shown the existence of a

partial relaxation behavior in marginally unstable configurations (Garcia-Martinez & Farengo,

2009a); (Garcia-Martinez & Farengo, 2009b). In this work we analyze this process in detail and

we show, in particular, that this behaviour is connected to the presence of a rational surface

near the magnetic axis. The main conclusions are summarized in Section 6.

2. Magnetic confinement of high temperature plasmas

The charged particles which constitute a high temperature plasma are subjected to the Lorentz

force. The objective of magnetic confinement is to create magnetic field configurations to

constrain the motion of the particles trying to keep them trapped far from the container’s

wall. In order to accomplish this goal the following four conditions must be fulfilled:

1. The configuration must be in magnetohydrodynamic (MHD) equilibrium.

2. The configuration must be stable (or it should be possible to mitigate or control potential

instabilities).

3. Methods to produce, heat and sustain the configuration must be available.

4. The losses due to transport of heat and particles must be low enough to allow the system

to have an adequate confinement time.

Here we will discuss some general aspects of the first three points. A more detailed discussion

on these topics may be found, for instance, in the book of Wesson (2004).

2.1 MHD equilibrium

It is said that a magnetic configuration is in static MHD equilibrium if the Lorentz force cancels

out exactly the pressure force

J × B = ∇p. (1)

This force balance is part of the momentum equation of the MHD model that will be presented

in Sec. 3. The magnetic configurations employed for plasma confinement almost always have

toroidal topology. In this situation, each magnetic field line describes a toroidal magnetic

surface. These toroidal magnetic surfaces are nested around a circle called magnetic axis (see

Fig. 1). The separatrix is the outermost closed surface that does not touch the vessel. Three

axisymmetric toroidal configuration schemes are shown in Fig. 1. It is a common practice

to decompose the magnetic field into its toroidal and poloidal components. If we place a

cylindrical coordinate system at the center of the torus, aligning the z-axis with the axis of

symmetry (of revolution) of the torus, the toroidal direction coincides with the azimuthal

direction and the poloidal plane lies in the r-z plane. In the right column of Fig. 1 we show

the profiles of the toroidal and poloidal magnetic fields as a function of the distance between

the magnetic axis and the separatrix for each configuration. Let’s review the main features of

these configurations.

• Tokamak. The toroidal magnetic field is much larger than the poloidal one. This intense

toroidal field is imposed by a set of large external coils while the poloidal field comes from

86 Topics in Magnetohydrodynamics
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Fig. 1. Three examples of toroidal axisymmetric configurations used in magnetic
confinement research: the tokamak, the reversed field pinch (RFP) and the spheromak.

the toroidal current that flows through the plasma. Typically, this current is produced by

the electric field induced by the temporal variation of the magnetic flux linked by the torus.

• RFP (reversed field pinch). It is also an axisymmetric toroidal device whose aspect ratio

(ratio of the major radius and the minor radius of the torus) is generally larger than that

of the tokamak. The toroidal and poloidal fields have similar strengths. This makes the

system much more prone to develop MHD instabilities. The magnetic field generation is

analogous to that of the tokamak but using smaller coils for the toroidal field. The toroidal

field reverses (changes its sign) near the separatrix opposing the externally applied field as

a result of a magnetic relaxation process.

• Spheromak. It belongs to the family of compact tori. These are toroidal magnetic

configurations formed inside a simply connected volume. The lack of elements being

linked by the plasma represents a great advantage from a constructive and economical

point of view. The two components of the magnetic field have similar strength. This

87Dynamics of Magnetic Relaxation in Spheromaks
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configuration is formed as a result of a relaxation process that self-organizes the magnetic

field, closely related to that occurring in the RFP.

In all these three systems as well as in other important configurations the magnetic surfaces

spanned by the magnetic field lines play a central role in confinement. We examine this in

more detail. Let ψ(r, z) be the poloidal flux function defined as

ψ(r, z) =
∫

S(r,z)
B · ds (2)

were S(r, z) is the circle of radius r centered at the position z of the vertical axis. If the

configuration is axisymmetric we can express the poloidal flux function as

ψ(r, z) = 2π
∫ r

0
Bz(χ, z) χdχ. (3)

With this definition ψ reaches its maximum value at the magnetic axis (ψ(rma, zma) = ψma).

The magnetic surfaces, or flux surfaces, can be determined by the equation ψ(r, z) = C where

C is a constant. Note that this useful labeling system for the flux surfaces breaks down when

the axisymmetry is lost (due to an instability for example).

The poloidal flux function acts as a stream function for the poloidal field since

Bp = ∇×
(

ψ(r, z)

2πr
θ̂

)

(4)

where θ̂ is the unit vector pointing in the toroidal direction. Note that the poloidal flux

function is closely related to the toroidal component of the magnetic vector potential A since

Eq. (4) implies that

ψ = 2πrAθ . (5)

This relationship has important consequences for the confinement of the plasma particles.

Due to the axisymmetry, the canonical angular momentum Pθ = mrvθ + qrAθ turns out to

be a constant of the motion of each particle (m and Ze being the mass and the charge of the

particle, respectively). In terms of the poloidal flux we can see that

Pθ = mrvθ +
Ze

2π
ψ (6)

is a constant of motion. If the magnetic field is strong enough the term mrvθ may become

very small compared with Zeψ/(2π). In that case the particles are constrained to move

along surfaces of constant ψ, i.e. along magnetic surfaces. For this reason, an effective way

of confining charged particles can be obtained by creating a set of nested toroidal magnetic

surfaces. The rupture of flux surfaces caused by asymmetries in the field generation or

instabilities certainly has a detrimental effect on confinement.

2.2 Stability

An equilibrium is unstable if it is possible to find a small perturbation that growths

when is applied. Otherwise, the equilibrium is stable. The instabilities observed in
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magnetically confined plasmas can be classified into two groups: the microinstabilities and

the macroinstabilities. The first group is responsible for the turbulence at small scales and

it is generally related to finite Larmor radius effects (the gyroradius of charged particles

turning around the magnetic field) and asymmetries in the velocity distribution function of the

different species that compound the plasma. On the other hand, the macroinstabilities involve

fluctuations having a length scale comparable to that of the whole system and can, in their

simplest version, be described by the MHD model presented in Section 3. Their appearance

generally leads to the termination of the discharge and the destruction of the configuration.

In this Chapter we will deal with this kind of instabilities.

The usual procedure to study the MHD stability of an equilibrium is based on the analysis of

the energy increment δW introduced by a small perturbation to the equilibrium (Friedberg,

1987). Using the linearized equations of the MHD model it is possible to compute the growth

rate of each perturbation. If all possibles modes decay then the equilibrium is MHD stable.

According to the source of energy that feeds the instability, the macroinstabilities can be

divided in:

• External modes. In this case the energy of the instability comes from the interaction

between the plasma and the boundary (the separatrix) or the external magnetic fields. Two

typical examples appearing in spheromaks are the shift and the tilt instabilities. The first

one consists in the displacement of the configuration as a whole while the second one

involves the rigid rotation of the magnetic surfaces. The flux conserver (the chamber of

conducting walls inside which the spheromak is formed) plays a crucial role in suppressing

these instabilities. For instance, in a cylindrical flux conserver the tilt instability can be

avoided if the elongation of the cylinder (ratio between height and radius) is lower than

1.6.

• Current driven modes. They are activated by non uniform current distributions. The most

common example of this kind of instabilities is the kink mode, which may be either an

internal (it does not affect the separatrix) or an external mode. In tokamaks this instability

is closely related to a phenomenon called sawtooth oscillations that limits in practice the

maximum value of toroidal current. In spheromaks and RFP’s the kink mode triggers the

relaxation process that forms and sustains the configuration.

• Pressure modes. Pressure gradients combined with an adverse magnetic field line

curvature may act as a source of energy to develop instabilites (called ballooning or

interchange modes).

In Section 5 we will consider internal kink modes in spheromak configurations.

A comprehensive description of the MHD modes relevant to magnetic confinement

configurations can be found elsewhere (Friedberg, 1987);(Wesson, 2004).

2.3 Formation and sustainment

Once an MHD equilibrium with good stability properties has been devised it is necessary

to find appropriate methods to form and sustain the configuration. The formation methods

depend on the configuration under consideration. In fact, a given configuration can be

obtained using different formation schemes. In most cases, after the formation process the

plasma has a temperature sensibly lower than that required for fusion. Moreover, the resistive

89Dynamics of Magnetic Relaxation in Spheromaks
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dissipation which is ubiquitous on real plasmas causes the currents and the magnetic fields to

decay, so the configuration would be lost in the resistive time scale. It is then imperative to

apply adequate methods to drive currents and heat the plasma. Some common methods that

have already been successfully implemented are:

• Current induction by a primary coil. A primary coil is located at the center of the torus

and plays the role of the primary of an electric transformer while the plasma itself is the

secondary (the primary coil was not sketched in Fig. 1). This is the usual approach to

induce the toroidal current in tokamaks and RFP’s. It does not allow to operate in truly

steady state and it can not be used in compact tori.

• Radio frequency waves. Energy can be transferred to the plasma from an external source

of electromagnetic waves (antenna). The electric field of the waves transfers momentum to

the particles inducing currents and heating the plasma by collisions. Within a multi-species

plasma there exists a number of resonant frequencies that enhance the coupling between

the plasma and the antenna (ionic and electronic cyclotron resonances, hybrid resonances,

etc.).

• Neutral beam injection. Neutral atoms injected are not deflected by the magnetic field and

can penetrate the plasma until they become ionized through collisions. Once ionized these

particles follow orbits determined by the magnetic field and their energy. This process

heats the plasma and drives localized currents.

• Rotating magnetic fields. Plasma electrons may be dragged, and thus a current may be

induced, by externally applied rotating magnetic fields.

• Helicity injection. When a current is established along the magnetic field some amount

of magnetic helicity (see Sec. 4) is injected in the magnetic configuration. The driven

current may destabilize the configuration triggering a relaxation process that redistributes

the current. This is the main method used in spheromak sustainment and is the subject of

study of this Chapter.

2.4 The spheromak configuration

Early experiments in toroidal pinch configurations exhibited, under certain conditions, the

spontaneous reversal of the toroidal field near the wall of the chamber. This unexpected

feature was succesfully explained in terms of the relaxation theory proposed by Taylor (1974).

According to this theory, MHD fluctuations cause the plasma to minimize its magnetic energy

while conserving the total magnetic helicity (see Sec. 4).

Some years later, it was realized that the minimum energy state, for a given amount of

magnetic helicity, inside a sphere is a system of nested toroidal magnetic flux surfaces

(Rosenbluth & Bussac, 1979). The idea of a configuration relevant for fusion research that

would be self produced (or self-organized) inside a simply connected volume attracted the

attention of the scientific community. Several experiments were designed in order to check

this theoretical prediction. The success of these experiments was considered a proof of the

remarkable robustness of the relaxation theory (Bellan, 2000).

Despite the initial enthusiasm, it was later realized that the relaxation process involves

MHD fluctuations that strongly degrade the confinement. Because of these fluctuations the

confinement peformance of the spheromak is much lower than that of the tokamak or the
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RFP. Little is known about the dynamics of these fluctuations since the relaxation theory is

only able to predict the final state of the plasma but it can not provide any detail on how this

state is attained (Jarboe, 2005).

3. The MHD model

The MHD model describes the macroscopic behavior of a plasma in many situations of interest

in a relatively simple manner. Its validity relies, however, in a number of assumptions that

have to be borne in mind in order to understand what kind of phenomena can be explained

by the model and what effects lie outside this description.

3.1 Basic assumptions of the MHD model

The MHD model regards the plasma as a quasi-neutral electrically conducting fluid. The

first and most fundamental assumption of this description is to regard the ensemble of ions

and electrons conforming the plasma as a single continuum medium. This is valid when the

length scales associated with the magnetic field gradients is much larger than the internal

length scales of the plasma (such as the ionic and electronic gyroradii). This condition holds

in virtually every laboratory plasma dedicated to fusion research.

The second important assumption is to consider that the plasma is in thermodynamic

equilibrium so the particles have a Maxwellian distribution of velocities. This is a good

approximation as long as the shortest time scale of the process under consideration is much

longer than the collision time and the shortest length scale of the system is larger than the

mean free path of the particles. In other words, the plasma should be in a collisional regime

(this condition is required to derive the fluid equations from the kinetic equations (Braginskii,

1965)). The collisionality hypothesis is usually not satisfied at the highest temperatures

obtained in modern tokamak experiments. However, spheromak plasmas are much colder

(T ∼ 102 eV) so that this assumption is still reasonable. Moreover, there are several arguments

supporting the validity of the MHD model even in collisionless systems (Friedberg, 1987);

(Priest & Forbes, 2000).

Finally, in the context of the MHD model the plasma is assumed to be electrically neutral (or

quasi-neutral since the charges are present but exactly balanced). This is approximately true

when the length scales under consideration are larger than the Debye shielding of electrons.

3.2 MHD equations

Now we seek for the equations that describe the evolution of the two main quantities that

govern the dynamics of such an MHD system: the velocity field and the magnetic field. The

equation for the evolution of the plasma velocity u, expresses the balance of linear momentum

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + J × B + µ∇ · Π (7)

where ρ is the mass density and p is the thermodynamic pressure. The second term on the

right hand side is the Lorentz force, where J is the current density and B is the magnetic field.

We note that due to quasi-neutrality the current density is produced by the relative motion

91Dynamics of Magnetic Relaxation in Spheromaks
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between ions and electrons. The last term in Eq. (7) is the viscous force where µ = ρν is the

dynamic viscosity, ν is the cinematic viscosity and the tensor Π is given by

Π = ∇u +∇uT − 2

3
(∇ · u)I. (8)

If the flow is incompressible (∇ · u = 0) Π reduces to ∇u.

Let us mention some basic aspects of the Lorentz force term. Using the low-frequency Ampère

law J = ∇× B (we rescale B and J in such a way that µ0 = 1) and the vector identity (∇×
B)× B = (B · ∇)B −∇(B2/2), we can decompose this term into two contributions

J × B = (B · ∇)B −∇
(

B2

2

)

. (9)

The first term on the right represents a magnetic tension force in the direction of B which has

a restoring effect when the magnetic field lines are bent. The second term is regarded as a

magnetic pressure that acts in all directions. Clearly, both forces must cancel out along the

magnetic field lines since the term J × B can not accelerate the fluid in the direction of B.

The equation for the magnetic field evolution comes from the Maxwell equations and a

constitutive law that relates the electric field to the magnetic field and the current density

(the Ohm’s law). We begin with the Faraday’s law in the low-frequency limit (i.e. neglecting

the displacement current)

∇× E = − ∂B

∂t
. (10)

On the other hand, the Ohm’s law relates the current density to the electric field in the frame of

reference of the conducting medium E′ = ηJ′, where η is the electric resistivity (the reciprocal

of the conductivity) and the prime denotes that the quantities have to be measured in the

plasma’s reference frame. When this equation is expressed in the lab’s frame (from which the

plasma moves at velocity u) it adopts the form

E = −u × B + ηJ (11)

where relativistic effects have been neglected (u ≪ c, where c is the speed of light).

Combining Eqs. (10) and (11) together with the identity ∇×∇× B = ∇(∇ · B)−∇2B and

the constraint ∇ · B = 0, we obtain the MHD induction equation

∂B

∂t
= ∇× (u × B) + η∇2B (12)

where spatial uniformity of η was assumed. Although not considered in this work, we

point out that, whenever present, resistivity gradients may give rise to the so-called current

interchange effect which constitutes an effective mechanism of current exchange between flux

tubes (Zheng & Furukawa, 2010). Note that the terms J × B and u × B introduce a strong

non-linear coupling between Eqs. (7) and (12).
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3.3 Diffusion of magnetic field lines and frozen-in-flux condition

The two terms in the right hand side of Eq. (12) account for two very different physical effects.

The quotient between the magnitudes of these effects can be estimated as

|∇ × (u × B)|
|η∇2B| ∼ u0/L

η/L2
=

u0L

η
≡ Rm (13)

where u0 and L are typical velocity and length scales and Rm is the magnetic Reynolds

number. Thus, when Rm ∼ 0 the magnetic field simply diffuses and the configuration decays

in the resistive time scale τr = L2/η.

The opposite limit (Rm ≫ 1) is more representative of the actual situation in most laboratory

(in the context of magnetic confinement) and space plasmas. In this limit (called ideal limit)

the induction equation reduces to,

∂B

∂t
= ∇× (u × B) (Rm ≫ 1). (14)

This equation implies the conservation of the magnetic flux through any closed surface that

moves with the local velocity of the fluid. If we regard the magnetic field lines as very thin

flux tubes and we imagine closed curves surrounding them that move with the fluid, we

realize that the plasma drags the field lines as it moves. It is said that the field lines are frozen

in the plasma (frozen-in-flux condition). Since each field line is simply convected by the flow

(assumed to be smooth and continuous) its connectivity is preserved. This means that in the

ideal MHD approximation the changes in the topology of the magnetic field are not possible.

This idea, which is intimately related to the Kelvin’s circulation theorem for inviscid flows,

was first introduced by Hannes Alfvén in 1943. More details on the frozen in flux condition

may be found elsewhere (Biskamp, 2000);(Priest & Forbes, 2000).

3.4 Closing the system of equations

The system formed by Eqs. (7) and (12) and the constraint ∇ ·B = 0, has too many unknowns

and can not be solved. Even if the current density can easily be expressed in terms of the

magnetic field using Ampère’s law, we still need to introduce some information concerning

the density and the pressure. We describe four common approaches to accomplish this.

Firstly, the zero-β approximation gives the simplest option. The nondimensional parameter

β = 2p0/B2
0 measures the ratio between the thermodynamic pressure and the magnetic

pressure. A very low β value (which is the case in most confinement experiments) means

that the dynamics of the plasma is mainly dictated by the magnetic field (via the Lorentz

force) while the pressure gradient has little influence. Thus, we may simply remove the term

∇p from Eq. (7) and assume that ρ = ρ0 is a constant.

The second option is to consider an incompressible flow. In this case ρ is still a constant but

the pressure gradient is no dropped. In this case the required information is completed by

the incompressible condition ∇ · u = 0. The pressure can not be directly computed with this

equation but it can be indirectly inferred. It plays the role of a Lagrange multiplier. Although

this is a less crude and more consistent option, it is not generally a good approximation for

low β plasmas.

93Dynamics of Magnetic Relaxation in Spheromaks
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Thirdly, we could allow compressible flows by using the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (15)

and assuming some simple relationship between the pressure and the density. For instance,

p = c2
s ρ where cs is the speed of sound (isothermal approximation) or p = cadργ where cad is

a constant and γ is the polytropic index (polytropic approximation).

Finally, a more elaborated option can be obtained if we incorporate, besides Eq. (15), an

equation for the energy balance
∂w

∂t
= −∇ · q − Qc,r (16)

where w is the total energy density defined as

w = ρ

(

u2

2
+ e

)

+
B2

2
(17)

e is the internal energy per unit of mass, the term Qc,r accounts for conductive and radiative

losses and q is the energy flux given by

q =

[

ρ

(

e +
u2

2

)

+ p

]

u + E × B − µ
(

u · Π
)

. (18)

The three terms on the right denote respectively the energy flux due to convection, the

electromagnetic energy flux (Poynting’s vector) and the viscous dissipation of energy. In this

context we also need an equation of state of the form p = p(ρ, e). The most common choice is

the ideal gas law p = (γ − 1)ρe where γ is the ratio of specific heats.

3.5 Scales and dimensionless numbers

The results presented in Sec. 5 are obtained by numerically solving the MHD equations.

It is a common practice to use a nondimensionalized version of the considered equations.

The removal of the units is achieved by the choice of suitable scales that can be condensed

in few nondimensional numbers. We will see which are the chosen scales and the relevant

nondimensional quantities in this study.

Since spheromaks are very low-β plasmas, the zero-β approximation is used to close the

system. The resulting equations can be nondimensionalized with a length scale a (the radius

of the cylinder inside which we will solve the equations) and a velocity scale cA = B/
√

ρ,

which is known as the Alfvén velocity. Perpendicular perturbations travel along the magnetic

field lines at this velocity. The time will be normalized by the Alfvén time τA = a/cA, which

represents the typical time scale of the MHD fluctuations.

Using these scales we obtain two nondimensional numbers: the Lundquist number S =
acA/η and ν/acA which is usually expressed in terms of the magnetic Prandtl Pm = ν/η.

The Lundquist number can be rewritten as

S =
a2/η

a/cA
=

τr

τA
(19)
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where τr is the time scale of resistive dissipation. In the simulations presented in Sec. 5 we

have used Pm = 1 and S = 2 × 104.

4. Plasma relaxation

It is common to observe magnetized fluids and plasmas as well as other continuum media to

exist naturally in states with some kind of large scale order. These states are to some extend

independent of the initial conditions, that is to say, they are preferred configurations toward

which the system evolves if the correct boundary conditions are imposed. Moreover, if the

system is perturbed it tends to return to the same preferred state recovering the large scale

order. The large scale order of some quantity always comes together with the disorder at small

scales of another quantity. These preferred configurations are called self-organized sates and

the dynamical process of achieving these states is called self-organization (Hasegawa, 1985).

Plasma relaxation is an example of self-organization.

Self-organized (or relaxed) states can not be deduced from force balance or stability

considerations alone. The theory of magnetic relaxation always relies on some variational

principle, that is to say, the minimization of some quantity subjected to one or more

constraints. Possibly the simplest and surely the most widespread option adopted to describe

plasma relaxation was introduced by Taylor (1974). While a rather obvious choice was made

for the quantity to minimize (the magnetic energy) a very clever option was made for the

constraint. Among all the ideal MHD invariants Taylor chose the total magnetic helicity. The

total magnetic helicity quantifies several topological properties of the system and even when

magnetic reconnection can change the topology of the magnetic field lines, the total helicity of

the system is still a robust invariant. These ideas are further developed below.

4.1 Magnetic helicity

The total magnetic helicity H of the magnetic field B within the volume V is

H =
∫

V
A · B dV (20)

where A is the potential vector (B = ∇× A). A relevant question may be posed at this time

regarding how this quantity is modified by a change in the gauge of A. It is clear that in order

to have a meaningful definition, Eq. (20) should be gauge invariant. The helicity change ∆H

introduced when A is replaced by A +∇χ is

∆H =
∫

V
∇χ · B dV =

∫

V
∇ · (χB) dV (21)

where we have used the fact that ∇ · B = 0. Applying the divergence theorem in a simply

connected volume V this becomes

∆H =
∫

S
χB · ds (22)

where S is the surface that encloses V and ds is the outward-pointing normal surface element.

Therefore, the definition (20) is gauge invariant only if the normal component of the magnetic

field vanishes at the boundary of V, which was assumed to be simply connected. We will
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respect these two conditions throughout this work. When the normal component of the

magnetic field does not vanish at the boundary or the volume V is not simply connected

a generalized definition, the so-called relative helicity, must be employed (Finn & Antonsen,

1985).

To see how H can measure topological properties of the system we will consider the concept

of flux tube. The magnetic flux through an open and orientable surface S is

Φ =
∫

S
B · ds =

∮

C
A · dl (23)

where C is the path along the perimeter of S in the counterclockwise direction. Note that the

Eq. (23) holds even if the gauge of A is changed.

We present an example given by Moffat (1978). Consider two linked flux tubes like those

shown in Fig. 2 (a). We assume that there are no other contributions to the magnetic field. In

 
!

 
"

(a) (b)

Fig. 2. Linked flux tubes.

this simplified case the total helicity can be computed as H = H1 + H2, with Hi =
∫

Vi
A ·B dV,

for i = 1, 2. To compute Hi we note that dV = dl · ds, where dl is the element of length along

the tube and ds its cross section. By construction, dl and ds are parallel to B, so we can

rearrange the integrand as A · B dV = A · B dl · ds = (A · dl)(B · ds), and thus

Hi =
∮

Ci

∫

Si

(A · dl)(B · ds). (24)

Since the magnetic flux is constant along each curve Ci the last equation can be written as

Hi = Φi

∮

Ci

A · dl. (25)

On the other hand, the contour C1 encloses the magnetic flux Φ2 and vice versa, so from Eq.

(23) it is clear that
∮

C1

A · dl = Φ2 and
∮

C2

A · dl = Φ1 (26)

and thus H1 = H2 = Φ1Φ2 which finally gives

Hlink = 2Φ1Φ2 (27)
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for the helicity due to the linking of the tubes. In general, if each tube winds around the other

N times (in Fig. 2 (b) we have N = 6) one obtains H1 = H2 = NΦ1Φ2 (Moffat, 1978). N is the

linking number of the tubes.

The helicity can also measure the self-twisting of a single tube. So far we did not pay attention

to the tube’s cross section shape. In order to compute the helicity of a twisted flux tube it is

convenient to consider structures having elongated cross sections, like the ribbon shown in

Fig. 3 (a). This ribbon is untwisted and has no helicity. If we cut this ribbon, we rotate one end

 !"  #"  $"

Fig. 3. (a) An untwisted ribbon-like flux tube, (b) a twisted flux tube and (c) the same twisted
tube marked with different colors.

by 2π and we join both ends together again we obtain the twisted ribbon shown in Fig. 3 (b).

The helicity of this structure may be computed using Eq. (27) obtained for two linked tubes

applying the following reasoning. Regard the twisted tube as two adjacent tubes carrying one

half of the total magnetic flux (see Fig. 3 (c)). The helicity of this system has a contribution

coming from the linking of the two tubes H1
link and also a contribution coming from the self

twisting of the smaller tubes. If Φ is the total magnetic flux of the original twisted tube, the

helicity due to the linking of each half is

H1
link = 2

(

Φ

2

)2

. (28)

Note that this mental process to convert helicity due to twisting into helicity due to linking

can be recursively applied to obtain

Hn
link = 2n

(

Φ

2n

)2

=
Φ2

2n
(29)

for each contribution due to linking. Finally, the helicity of the twisted tube is obtained by

adding all these contributions

H = lim
N→∞

N

∑
n=1

Hn
link = Φ2

∞

∑
n=1

1

2n
= Φ2. (30)
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4.2 Localized magnetic reconnection

Magnetic reconnection is ubiquitous in almost all space and laboratory plasmas. It consists in

a rearrangement of the topology of the magnetic field due to a change in the connectivity of the

magnetic field lines. This process plays an important role in several confinement devices (such

us the tokamak, the RFP and the spheromak) as well as in several astrophysical phenomena

(Earth magnetosphere, solar corona, solar wind, accretion disks, etc.). Since the majority of

those plasmas have a very high magnetic Reynolds number (and a high Lundquist number as

well) the ideal MHD model should provide an adequate level of description for the physical

system. However, as already mentioned in Sec. 3.3, topological changes in the magnetic

field are not allowed in the ideal limit. What actually happens is that the coupled non linear

evolution of the magnetic field and the flow inevitably develops current sheets, i.e. localized

regions where the magnetic field gradients become very large. Within these highly localized

regions the ideal approximation breaks down and the last term of Eq. (12) becomes relevant

causing the magnetic field to diffuse and change the connectivity of the field lines.

The fundamental ansatz of the plasma relaxation theory is that these localized reconnection

events do not change the total helicity of the system. Even when dissipation is involved in

this process, it is assumed that only magnetic energy is affected. How can magnetic helicity

be conserved during a localized reconnection event is schematically shown in Fig. 4. Two

Reconnection

(a)   H = 2 Φ2 (b)   H = H1+H2 = 2Φ
2

H2 = Φ2

H1 = Φ2

After 

reconnection

Fig. 4. (a) Two linked ribbon-like flux tubes undergo a localized reconnection process that
give rise to two separate but twisted tubes (b). The global helicity of the system is conserved.

untwisted flux tubes that are initially linked can be locally reconnected giving rise to a pair of

separate but twisted tubes, in such a way that the total helicity of the system is conserved.

Moreover, plasma relaxation is based on the fact that localized reconnection events allow

topological changes and dissipate magnetic energy much faster than the total helicity. There

exists a number of arguments to justify this behavior (see Sec. 9.1.1 of Priest & Forbes (2000)

or Montgomery et al. (1978)). Let’s consider, for instance, how these two quantities (magnetic

energy and helicity) decay in the presence of a small uniform resistivity η. Magnetic energy,
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W =
∫

V B2/2 dV, decays at the rate

dW

dt
= −η

∫

V
J2 dV. (31)

This expression can be obtained by scalar multiplying Eq. (10) by B and integrating over a

fixed volume at whose boundary the normal component of the Poynting vector vanishes. For

the magnetic helicity we take the time derivative of (20) and obtain

dH

dt
=

∫

V

(

∂A

∂t
· B + A · ∂B

∂t

)

dV =
∫

V

(

∂A

∂t
· B + A · ∇ × ∂A

∂t

)

dV. (32)

Using vector identities and the divergence theorem, the last expression can be rewritten as

dH

dt
= 2

∫

V

∂A

∂t
· B dV −

∫

S
A × ∂A

∂t
· ds (33)

where S is the surface that encloses V. If field lines do not penetrate the volume V the surface

integral in Eq. (33) vanishes. In the absence of charge separation E = −∂A/∂t, and using

Ohm’s law E = ηJ, we finally obtain

dH

dt
= −2η

∫

V
J · B dV. (34)

It is clear that in the absence of resistivity (the ideal limit) W and H are conserved and, for

this reason, it is said that they are ideal invariants. By contrast, in a real plasma both energy

and helicity will decay at a rate proportional to η. However, when turbulence is present,

magnetic fluctuations produce many thin current sheets with thicknesses of order η1/2 and

current densities proportional to Bη−1/2. In such case, the energy decay rate becomes

dW

dt
∝

∫

V
B2 dV

which is independent of η. On the other hand, the total helicity decays as

dH

dt
∝ 2η1/2

∫

V
B2dV

so that as η tends to zero the helicity dissipation becomes negligible. Therefore, it is important

to keep in mind that a plasma will relax (in the sense described here) only if there is a

certain level of small scale fluctuations that gives rise to many localized current sheets. For

this reason, relaxation theory does not apply to devices with a very low level of magnetic

fluctuations, such as the tokamak.

Localized magnetic reconnection events may redistribute currents in the plasma by helicity

transfer between flux tubes. Even when this idea must be applied with care because the

helicity is by definition a global quantity, it is clear that the helicity of a single flux tube may

change after reconnection with another flux tube. This helicity transfer process is certainly

at work during toroidal current drive in spheromaks and other devices sustained by helicity

injection.
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4.3 Relaxed states

The magnetic relaxation theory is developed for systems in which the magnetic forces are

dominant, i.e. whenever the parameter β is low. In such cases, the MHD equilibrium Eq. (1)

reduces to the force-free condition

∇× B = λ(r) B (35)

where λ(r) is some scalar function. As discussed in the previous Section, magnetic

fluctuations induce localized reconnection events that relax the plasma toward the state of

minimum magnetic energy maintaining the total helicity of the system (Taylor, 1974). Woltjer

(1958) has shown that force-free fields with λ equal to a constant represent the state of lowest

magnetic energy under the constraint of magnetic helicity conservation in a closed system

(i.e. with no field lines intercepting the boundary). The proof uses the method of Lagrange

multipliers. At a constrained minimum, the variation of magnetic energy is equal to a constant

(the Lagrange multiplier) times the variation of helicity

δW =
λ

2
δH (36)

where λ/2 is the Lagrange multiplier. Substituting W =
∫

V B2/2 dV for the magnetic energy

and Eq. (20) for H yields

∫

V

[

2 B · δB − λ(δA · B + A · δB)
]

dV = 0. (37)

Using the identities

B · δB = δA · ∇ × B −∇ · (B × δA)

and

A · δB = B · δA +∇ · (δA × A)

and the divergence theorem in Eq. (37) one obtains

∫

V
2 (∇× B − λB) · δA d3r = 0 (38)

where we omitted the surface integrals because they vanish in the absence of field lines

penetrating the volume under consideration. Since δA is arbitrary, the parenthesis of the

integrand of Eq. (38) must be identically zero, which finally gives us the linear force-free

condition

∇× B = λB (39)

where λ is a constant. When we impose B · ds = 0 at the boundary, we obtain an eigenvalue

problem that has non trivial solution only for certain discrete values λn (which are real and

positive).

Since ∇×B = λnB, we can write the magnetic field as B = λnA+∇ f , where f is an arbitrary

potential. Thus, we can compute the magnetic energy as

W =
1

2

∫

V
B · (λnA +∇ f )dV =

λn

2

∫

V
B · A dV =

λn

2
H (40)
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since
∫

V B · ∇ f dV =
∫

V ∇ · ( f B)dV =
∫

∂V( f B) · ds = 0. Eq. (40) gives us an important

meaning for the eigenvalue: λn is proportional to the quotient W/H. For this reason it is

clear that for a given amount of helicity, the minimum energy state will be given by the lowest

allowed value of λn (i.e. λ1).

The most frequent model employed to describe a spheromak configuration is the relaxed state

inside a cylindrical flux conserver. Using cylindrical coordinates, the condition B · ds = 0

means Bz = 0 at z = 0 and z = h and Br = 0 at r = a, where h and a are the height and the

radius of the cylinder. In this case the solution to Eq. (39) can be found analytically (Bellan,

2000). In terms of Bessel functions and trigonometric functions the solution is

Br = B0
π

γ1h
J1(γ1r) cos(k1(z − h)) (41)

Bθ = −B0
λ1

γ1
J1(γ1r) sin(k1(z − h)) (42)

Bz = −B0 J0(γ1r) sin(k1(z − h)) (43)

where γ1 = x11/a, k1 = π/h and x11 is the first zero of J1. Note that, since this is an

eigenfunction (of the curl operator) it is defined up to a constant B0. Note also that this

solution has no toroidal dependence (i.e. it is axisymmetric). The corresponding eigenvalue

which depends on the geometry of the flux conserver is

λ1 =

√

x2
11

a2
+

π2

h2
. (44)

In Fig. 5 we show the magnetic field lines obtained after following the trajectories given by

Eqs. (41) - (43) from four different positions.

Fig. 5. Four magnetic field lines showing four nested magnetic flux surfaces. This fully
relaxed state has the same value of λ (equal to λ1) on each surface.
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5. Dynamics of magnetic relaxation in spheromak configurations

The relaxation theory as formulated by Taylor (1974) is a variational principle that can

not give details on the dynamical aspects of the process. All the considerations we have

made regarding the important role of localized reconnection in helicity conservation are only

heuristic arguments that try to explain the remarkable success of the theory at predicting the

self-organized final state of the plasma.

There are a number of reasons that motivate the study of the dynamics of relaxation. For

instance, in the context of spheromak research it is observed that during sustainment the

system does not remain at the lowest energy state. Small deviations from the relaxed state

as well as the ubiquitous presence of fluctuations are crucial issues that are out of the scope of

relaxation theory (Knox et al., 1986);(Willet et al., 1999). In this work we study these aspects

using numerical solutions of the non linear resistive MHD equations described in Sec. 3 as an

initial and boundary value problem in three spatial dimensions. The nondimensional version

described in Sec. 3.5 of these equations is used. The details of the numerical method are not

presented here but can be found elsewhere (Garcia-Martinez & Farengo, 2009b).

In this Section we present a study of the dynamics of the kink mode in spheromak

configurations. We will focus on the dynamics of systems that are only marginally unstable.

Even when this may sound as a rather specific topic we will see that this is a simple setup in

which we can study magnetic reconnection and helicity transfer between flux tubes. Firstly,

we describe the kink unstable configurations used as initial condition and explain how they

can be computed. Secondly, we study the dynamics of the kink instability in several cases and

discuss in which cases it leads to a complete relaxation process (as described in the preceding

Section) and in which cases the relaxation process is only partial. Thirdly, we introduce

the concept of safety factor and resonant surfaces and explain their relevance to the partial

relaxation behavior observed in marginally unstable configurations. Then, we analyze in

detail the reconnection process that is driven by the dominant kink mode. Finally, we discuss

simple models to describe this reconnection process.

5.1 Problem description

The minimum energy state for a given helicity inside a (not very elongated) cylindrical flux

conserver, see Fig. 5, is stable against small MHD perturbations. There exists, however, a

simple modification of this configuration which is MHD unstable, in particular kink unstable.

Now we derive the equations that will allow us to compute as well as to better understand

these modified configurations.

For simplicity we consider force-free configurations. In general this condition may be

expressed as J = λ(r)B, where λ may be an arbitrary function. However, we will restrict

our study to the case in which λ is a flux function, that is to say it takes the same value on each

flux surface and can only change from one surface to another. This condition is expressed as

∇× B = λ(ψ)B. (45)

Since we consider axisymmetric configurations, we can express the poloidal magnetic field

component (Bp) in terms of ψ using Eq. (4), while for the toroidal component we have

102 Topics in Magnetohydrodynamics

www.intechopen.com



Dynamics of Magnetic Relaxation in Spheromaks 19

Jz = (∇× B)z =
1

r

∂

∂r
(rBθ) = λBz. (46)

Using this, along with Eq. (3) we obtain

Bθ =
1

2πr

∫ r

0
λBz 2πr̃dr̃ =

1

2πr

∫ ψ

0
λ(ψ̃)dψ̃. (47)

Thus, expressing the magnetic field in terms of ψ we can rewrite the toroidal component of

Eq. (45) as

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+

∂2ψ

∂z2
+ λ(ψ)

∫ ψ

0
λ(ψ̃)dψ̃ = 0 (48)

which is the force-free version of the Grad-Shafranov equation. We are interested in solving

Eq. (48) in the rectangle Ω : (r, z) = [0, a]× [0, h], i.e. a cylinder of radius a and height h.

The most simple option for λ(ψ) would be λ = 0, which corresponds to the vacuum solution

(currentless magnetic field). The solution vanishes in this case if homogeneous boundary

conditions (ψ|∂Ω = 0) are applied.

A more interesting case is obtained by setting λ = λn (constant) which gives

− ∆∗ψ = λ2
nψ (49)

where we have introduced the Grad-Shafranov operator defined as ∆∗ = ∂2/∂r2 −
(1/r)∂/∂r + ∂2/∂z2. If we impose homogeneous boundary conditions we obtain an

eigenvalue problem which has non trivial solutions only for a discrete set of real and positive

values of λn. The lowest value (λ1) is given by Eq. (44) and its associated eigenfunction is

the minimum energy state described in detail in Sec. 4.3. Thus, if the appropriate boundary

conditions are imposed, we can also regard the spheromak as the lowest eigenfunction of the

Grad-Shafranov operator.

In this study we will consider initial equilibria having

λ(ψ) = λ̄

[

1 + α

(

2
ψ

ψma
− 1

)]

(50)

which is a linear λ(ψ) profile with slope α and mean value λ̄. When this linear profile

is injected in Eq. (48) a generalized non-linear eigenvalue problem is obtained. Some

mathematical considerations as well as a basic numerical scheme to solve this problem were

given by Kitson & Browning (1990). Note that even if one is able to solve the non-linear

Grad-Shafranov equation, the profile given by Eq. (50) includes ψma which is not know a

priori. The procedure adopted here is to set ψma = 1, fix the desired value of α and iterate over

λ̄ until ψ is equal to one at the magnetic axis. With this procedure we obtain the values of λ̄

listed in Table 1. Note that each α value uniquely defines a configuration.

In Fig. 6 (a) we show two linear λ(ψ) profiles and (b) ψ contours and the λ colormap for the

α = −0.4 case. The reason why we have chosen negative values for α is the following. It is

evident that for negative values of the slope the configuration will have larger λ values in the

outer flux surfaces (at lower ψ values) and vice versa. Since λ is proportional to the current
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α 0 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8

λ̄ 4.95 5.08 5.18 5.32 5.51 5.78 6.23

Table 1. λ̄ values for some prescribed α values.

Fig. 6. (a) Two λ(ψ) profiles. (b) ψ contours and λ colormap for the case with α = −0.4. A
hollow current profile is obtained for negative α values.

density it is said that the configuration has a hollow current profile. This is actually the case for

spheromak configurations during sustainment.

Real spheromaks have some amount of open magnetic surfaces (i. e. there is some magnetic

flux crossing the walls) along which current is driven. This injects magnetic helicity. Then the

system relies on magnetic relaxation to drive the current in the inner flux surfaces. In order

to sustain this current drive process in (quasi) steady state, some current (or λ) gradient is

required. In fact, experiments show that sustained spheromaks are better approximated by a

force-free state with α = −0.3 rather than by the lowest energy state (having α = 0) (Knox et

al., 1986); (Willet et al., 1999).

5.2 Complete relaxation vs partial relaxation

Up to this point we know that the minimum energy state is MHD stable and that we can

modify the configuration by giving the λ(ψ) profile a non zero slope. Now we consider the

stability of configurations having negative α values. A linear MHD stability analysis has

determined that there exists a threshold value for the slope at which the system becomes

unstable (Knox et al., 1986). Configurations with λ(ψ) profiles that are steeper than the

threshold (lower α values) are unstable while configurations with less steep profiles are stable.

The value of this threshold (which lies between −0.3 and −0.4 for the geometry used here)

was also verified using non-linear simulations of spheromak configurations (Garcia-Martinez

& Farengo, 2009b).
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The instability that arises has dominant toroidal number n = 1 (where n stands for the

number of the coefficient of the Fourier decomposition in the toroidal direction). This current

driven n = 1 mode is the kink mode. It is well known that the kink mode triggers the

relaxation process in spheromaks during sustainment. It has been shown that when the initial

unstable configuration has an α value close to the stability threshold, the relaxation process is

not complete (Garcia-Martinez & Farengo, 2009a);(Garcia-Martinez & Farengo, 2009b). This

means that the final state of the evolution is not a minimum energy state. In particular, the

λ profile is not uniform. This partial relaxation behavior can be observed in Fig. 7. In the

(a) (b)

Fig. 7. (a) Toroidal and poloidal magnetic field profiles at t = 0 and t = 200 (final time). The
dashed line shows the fully relaxed profiles. (b) λ(ψ) profiles at three times for the same α
values (Garcia-Martinez & Farengo, 2009b).

α = −0.6 case it is clear that the final state does not have neither the same radial magnetic

field profiles than the minimum energy state (shown in dashed lines) nor a uniform λ profile.

On the other hand, the most unstable case, α = −0.8, exhibits a fully relaxed final state.

Fig. 8 shows the evolution of the magnetic field lines during the kink instability. A magnetic

island is formed due to the helical distortion of the magnetic axis. This island then moves

toward the central position while the flux surfaces originally placed around the magnetic axis

are gradually pushed outward. A localized magnetic reconnection layer can be observed in

the region where the inner flux surfaces come into contact with the outer flux surfaces. This

is indicated in the small box drawn in Fig. 8 (a). After a reconnection process, a system with

axisymmetric nested flux surfaces is recovered (see Fig. 8 (e)).

The Poincaré maps showing the evolution of the α = −0.6 case can be observed in Fig.

9. The overall behavior is analogous to the previously studied case. A magnetic island is

formed at an outer position (relative to the magnetic axis) which then moves and occupies
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Fig. 8. Poincaré maps at several times showing the evolution of kink instability for the
α = −0.4 case. The black contour shows the initial position of the q = 1 surface.

the magnetic axis position. However, in this case a large region of stochastic magnetic field

lines emerges between the two magnetic o-points and we are no longer able to identify a well

defined localized reconnection layer.

The situation is even more drastic in the case with α = −0.7 shown in Fig. 10. Most of the

initially regular surfaces are quickly destroyed and large regions of stochastic field lines are

observed. Though, a small coherent structure can still be devised even at times of strong

activity (the saturation of the instability takes place at t = 100). After the instability saturation

the toroidal modes decay and new regular nested flux surfaces are formed (t = 200).

Fig. 9. Poincaré maps showing the evolution of the kink instability in the α = −0.6 case.

Fig. 10. Poincaré maps showing the evolution of the kink instability in the α = −0.7 case.

106 Topics in Magnetohydrodynamics

www.intechopen.com



Dynamics of Magnetic Relaxation in Spheromaks 23

In contrast with the marginally unstable case analyzed previously (α = −0.4) where the

activity was milder, here the larger level of fluctuations causes the field lines to wander

through the whole domain. This facilitates the helicity transfer and enable a more effective

flattening of the λ(ψ) profile (as shown in Fig. 7).

It is important to keep in mind that these stochastic regions can be produced even by relatively

low wave number magnetic fluctuations. In fact, few toroidal Fourier modes with a rather

gentle dependence along the poloidal plane are enough to produce the disorder observed in

Fig. 10 (d).

These observations are in agreement with the discussion presented in Sec. 4.2. As remarked

there, a significant amount of small scale MHD activity (fluctuations) leading to the formation

of numerous small current sheets is required to obtain the full relaxation behavior. In the

marginal unstable case (α = −0.4) the dominant kink mode produce a regular evolution in

which a single localized current sheet is observed. This is not enough to produce a complete

relaxation behavior with uniform λ in the final state, as it can be observed in Fig. 11.

Fig. 11. λ profiles at t = 0 (λ0) and at t = 100 (after reconnection, λ f ). In this plot the abscissa
measures the distance to the magnetic axis. A partial relaxation behavior is evident, since λ f

is still far away from the eigenvalue λ1.

As α is lowered (λ profile is steepened), the kink mode becomes stronger and activates higher

order modes. Only when a significant level of activity is induced the Taylor’s relaxation

theory becomes applicable to obtain a good approximation of the final state of the system.

Interestingly, the full relaxation behavior is recovered even for a modest separation of scales

(Garcia-Martinez & Farengo, 2009a);(Garcia-Martinez & Farengo, 2009b).

5.3 Kink onset and resonant surfaces

Now we focus on the partial relaxation behavior of the marginally kink unstable

configurations where relaxation theory is not applicable. A very useful concept developed

in the context of the study of MHD modes (in particular the kink mode) is the safety factor q.

The safety factor is the number of times a field line on a flux surface goes around toroidally

107Dynamics of Magnetic Relaxation in Spheromaks

www.intechopen.com



24 Will-be-set-by-IN-TECH

for a single poloidal turn. Based on the equation for a field line

rdθ

ds
=

Bθ

Bp
(51)

where ds is the distance in the poloidal direction while moving a toroidal angle dθ, the safety

factor can be defined as

q =
1

2π

∮

1

r

Bθ

Bp
ds (52)

where the integral is taken over a single poloidal circuit. Note that q adopts the same value

for every field line lying on the same flux surface and thus it is a flux function q = q(ψ). In

Fig. 12. (a) Safety factor profiles for several configurations. Note that configurations having a
q = 1 surface are unstable. (b) Poincaré map showing ten field lines during the instability
onset in the α = −0.4 case. The dashed line shows the q = 1 surface, where the formation of a
magnetic island is observed.

Fig. 12 (a) the q profiles for several configurations are shown. We already mentioned that

the kink instability threshold lies between α = −0.3 and α = −0.4. In Fig. 12 (a) we can

see that the kink instability is associated to the appearance of a rational surface with q = 1.

Rational surfaces are those where q = m/n being m and n integer numbers and thus q has a

rational value. The field lines lying in such surfaces can not span a closed toroidal surface and

are particularly prone to develop different MHD modes. That is why these surfaces are also

called resonant surfaces. In Fig. 12 (b) we clearly see that it is at the q = 1 surface where the

first modification to the flux surfaces occurs. This crescent shaped structure (which shows the

onset of the island observed in Fig. 8) has a n = 1 toroidal dependence.

Note that, in the α = −0.4 case, all the relevant MHD activity triggered by the kink takes place

inside the q = 1 surface of the initial condition (Fig. 8). Thus, we can not expect this evolution

to cause a complete relaxation process. However, some partial relaxation occurs due to the
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magnetic reconnection of flux surfaces having different λ values, as confirmed in Fig. 11. The

magnetic reconnection process is further studied in the next Section.

5.4 Magnetic reconnection process

Here we describe the magnetic reconnection process that redistributes currents in the case

with α = −0.4. Consider the Poincaré map inside the box shown in Fig. 8 (a). This is

Fig. 13. (a) Poincaré map inside the box shown in Fig.8 (a). Two points, one red and one blue,
are manually selected. (b) The same Poincaré plot including two additional magnetic lines
followed from the selected points. (c) n = 1 component of the poloidal velocity (black
vectors) and the two field lines also shown in (b).

shown in Fig. 13 (a). A reconnection layer is clearly identified, in the middle of which we

have drawn a point (in red). We follow the magnetic field line that passes through this point

for a long distance (ten thousand times the cylinder radius). The results for this single line

are shown in Fig. 13 (b) and (c) (the red points) and in Fig. 14. The flow induced by the

instability, shown with vectors in Fig. 13 (c), produces the helical distortion of the central flux

surfaces. Eventually, one (or more) of these surfaces gets in contact with an outer surface. This

is clearly observed in Fig. 14 where a single field line spans both surfaces. Note that the inner

surface has a lower λ value than the outer one. At the helical reconnection layer λ adopts an

intermediate value.

As a result of this reconnection a new magnetic structure is formed. This structure has

a crescent shape cross section as shown by the blue dots in Fig. 13 (b) and (c). This is

basically the closed surface that encloses the volume between the two reconnecting toroidal

flux surfaces. Fig. 15 shows another visualization of this new magnetic entity. It has been

constructed by following the magnetic field line that passes through the blue point indicated

in Fig. 13 (a). It is interesting to note that this surface has a lower λ value in its inner face
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Fig. 14. A single magnetic field line showing two reconnecting flux surfaces. Its color is
proportional to the local λ value (the color scale is indicated on right). The outer surface has a
higher λ than the inner surface. The helical reconnection layer adopts an intermediate value.

Fig. 15. Magnetic structure formed by the reconnection of the flux surfaces shown in Fig. 14.
The color scale indicates local λ value.

(corresponding to the λ value of the original inner flux surface) and a higher λ value in its

outer face. This clearly shows that the reconnection is a localized process. It is also evident

that the mean λ value of this structure will lie between the λ values of the original surfaces.

With these considerations in mind we can reinterpret Fig. 8. The motion of the island toward

the magnetic axis involves the reconnection of inner and outer surfaces having low and high λ

values, respectively. The new surfaces formed adopt intermediate λ values. The result of this

redistribution is shown in Fig. 11. Note that all this activity takes place in the region where

ψ ≥ 0.8 (the region inside the original location of the q = 1 surface). In Fig. 6 (a) we see that

within this region λ � 4 and thus we can not expect a full relaxation process.

A final comment is made regarding the symmetry of this process. The kink mode has a n = 1

toroidal dependence and thus the reconnection layer shown in Fig. 13 has a dominant helical

shape. However, we want to mention that there are also higher harmonics (n > 1) present

in the reconnection process. This can be observed in Fig. 16 where the inner flux surface

of Fig. 14 is shown. The high λ region (mainly yellow) shows the reconnection layer. It
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Fig. 16. Inner reconnecting magnetic flux surface. A zoom near the zone of higher λ value
reveals the presence of higher toroidal harmonics (n > 1).

has a mainly helical structure, however, a zoom around the region with the highest λ values

(shown in red) reveals the presence of higher toroidal components. It is not clear, at this point,

if higher harmonics play an important role or this process could be recovered considering a

two dimensional problem with helical symmetry.

5.5 Reconnection model for the resistive kink mode

The magnetic reconnection process described so far leads to a flux rearrangement in the region

where q > 1. This process involves a rather regular evolution of the magnetic surfaces with

only one helical current sheet. Without a significant level of MHD activity the magnetic

relaxation theory becomes inapplicable. Now we seek for a simple but adequate model to

describe the final state of the non-linear evolution of the resistive kink.

In the context of tokamak research, the evolution of the resistive kink has been intensively

studied. In particular, it is believed that this mode is responsible for a phenomenon called

sawtooth oscillations that limits in practice the maximum temperature reachable at the core.

One of the first models to describe the final state of the non linear resistive kink mode was

proposed by Kadomtsev (1975) (see also the explanation of Wesson (2004)). In this Section we

describe the Kadomtsev’s model and discuss its applicability to the results of our simulations.

Then, a modification to the model that significantly improves the agreement with our results

will be introduced.

The magnetic field lines on the q = 1 surface form a helix around the magnetic axis. The

Kadomtsev’s model describes the reconnection process in terms of the flux perpendicular to

this helix, called helical flux ψh. This flux can be computed from the helical magnetic field

Bh = Bz(1 − q) (53)

as

ψh(r) = 2π
∫ rma

r
Bz(x, zma)(1 − q)xdx (54)
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where (rma, zma) is the position of the magnetic axis and this definition is to be used with

r ≤ rma. In what follows we will use the minor radius r̃ = rma − r as the abscissa. In order to

r
1 r

K

r
in

r
out

r
f

(c) Before reconnection

(d) After reconnection
r

1

r
K

Fig. 17. (a) Initial q and poloidal field (Bz) profiles. (b) Initial (ψ0
h) and final (ψK

h ) helical flux

predicted by Kadomtsev’s model. ψK
h is obtained by assuming that the area enclosed by the

two reconnecting surfaces before reconnection (c) is equal to the area inside the final
reconnected surface (d).

not overload the notation we will drop the tilde. Fig. 17 (a) shows q and Bz as a function of

the minor radius. Note that Bh changes its sign at r1, where q = 1, producing a minimum in

ψ0
h as shown in Fig. 17 (b). The Kadomtsev’s model model provides a simple way to compute

the helical flux after reconnection ψK
h (see Fig. 17 (b)) from which one can readily obtain the

reconnected poloidal field profile.

The reconnection begins at the minimum value of ψ0
h, i.e. at ψ0

h(r1). It is assumed that this flux

surface will form the new centre of the plasma and thus ψK
h (0) = ψ0

h(r1). The reconnection

then proceeds merging each pair of flux surfaces having the same ψh value. In the particular

example of Fig. 17, the flux surfaces initially located at rin and rout will reconnect forming a

new flux surface at rf. The position of the final surface rf is given by toroidal flux conservation.

Assuming that the toroidal field does not change during the process, the area enclosed by the

two initial surfaces should be equal to the area inside the final surface (see Fig. 17 (c) and (d)).

This means that

r2
f = r2

out − r2
in (55)

where we have simplified the problem by considering flux surfaces with circular cross section.

The reconnection process ends at ψh = 0 so that the flux surfaces located outside rK remain

unaffected.
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Several aspects of this model are in close agreement with the evolution of the marginally

unstable case shown in Fig. 8. First of all, the fact that the reconnection process is restricted

to the core, i.e. the region q � 1, and does not affect the whole configuration (as assumed

by relaxation theory). Secondly, in Fig. 8 we effectively see that the small island formed at r1

(q = 1) moves until it occupies the position of the magnetic axis. Thirdly, in our simulation we

also observe what is called a complete reconnection process. Note that since ψK
h is monotonic

this means that Bh after reconnection does not change its sign. This means in turn that q

does not cross 1 (in fact q is equal to 1 at r = 0). The absence of q = 1 surfaces prevents

the appearance of magnetic islands just after the reconnection and thus it is said that the

Kadomtsev’s model predicts complete reconnection. Accordingly, we do not observe any

island (other that the magnetic axis) after the reconnection (see Fig. 8) and the resulting q

profile does not cross 1, as observed in Fig. 18 (a). Despite this agreement in the overall

r
1

(c) Before reconnection

(d) After reconnection
r

1

r
f

r
0

r
η

Fig. 18. (a) Initial (solid) and reconnected, i.e. at t = 100, (dashed) q and toroidal field profiles.
(b) Several helical fluxes profiles: initial (ψ0

h), final (ψf
h), predicted by Kadomtsev (ψK

h ),
predicted by the modified model (ψm

h ) and predicted by the modified model with correction

due to resistive decay (ψ
η
h ). The modified model proposed involves the reconnection of the

surface at r0 (c) with the surface at rf (d). The shaded regions have the same area.

behavior we will show that the results of the α = −0.4 case are better described by introducing

a modification to the Kadomtsev’s model. In Fig. 18 (b) the initial helical flux ψ0
h and the final

ψK
h predicted by Kadomtsev are compared with the actual final helical flux ψf

h (the red curve)

obtained at t = 100 for the α = −0.4 case. Note that the agreement is not good.

A better approximation can be obtained by looking at Fig. 8 more carefully and noting that the

reconnection process takes place inside the q = 1 surface. Since little or no effect is observed

outside r1 we propose a modified procedure for the construction of the reconnected helical

flux ψm
h . Again, the flux surface at r1 is reconnected with the magnetic axis so ψm

h (0) = ψ0
h(r1).
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Then, the flux surface initially placed at r0, see Fig. 18 (c), reconnects and ends at rf , Fig. 18

(d), in such a way that

r2
f = r2

1 − r2
0 (56)

which expresses the conservation of the area of the shaded regions of Fig. 18 (c) and (d). With

the initial helical flux ψ0
h and Eq. (56) it is possible to compute the reconnected helical flux

predicted by the modified model ψm
h . This is shown by the green curve of Fig. 18 (b). While

this prediction is much closer than the Kadomtsev’s model to the actual final state there is still

a significant difference. In what follows we will show that this difference is due to resistive

dissipation.

Relations (55) and (56) express the toroidal flux conservation assuming that it does not decay,

i.e. the toroidal fluxes inside rK and r1 do not change. However, as can be observed in

Fig. 18 (a), the toroidal magnetic field is visibly reduced due to resistivity. One way to take

into account this resistive decay is to change the reference radius with which we make the

construction of ψm
h given by Eq. (56). In particular, we define rη as the radius of the circle that

contains at t = 0 the same amount of toroidal flux that is contained inside r1 at t = 100. If

we now compute the reconnected helical flux using Eq. (56) but changing r1 by rη we obtain

ψ
η
h , shown by the dashed line of Fig. 18 (b). The agreement with the actual final helical flux is

very good and this suggests that the modified model indeed captures the basic physics of the

reconnection process.

6. Conclusions

In this Chapter we have presented a general picture of the magnetic confinement of high

temperature plasmas. This has motivated the introduction of the MHD model which provides

an adequate framework to study the macroscopic dynamics of fully ionized plasmas. We

have focused our attention on the physical mechanism called plasma relaxation. In particular

we have studied the magnetic relaxation process driven by the kink instability in spheromak

configurations.

Experiments as well as previous theoretical works showed the existence of a partial relaxation

behavior for marginally unstable configurations (they do not evolve toward the minimum

energy state). This is in contrast to the well established relaxation theory that states that the

plasma should relax to the minimum energy configuration. In this work we have explored

these two regimes, namely complete relaxation and partial relaxation, by varying the slope

of the initial λ(ψ) profile. This controls the degree of instability of the initial configuration as

well as the position of the rational surface having safety factor equal to one. The relevance

of the position of this rational (or resonant) surface to the partial relaxation behavior was

discussed. In particular, we showed that in marginally unstable cases this surface is not far

from the magnetic axis and the MHD activity during relaxation remains inside this resonant

surface (which is no longer resonant after relaxation). These results suggest that the q = 1

surface plays a major role in the evolution of spheromaks during sustainment because in that

situation they operate around the kink instability threshold.

The analysis of more unstable cases showed that the full relaxation process predicted by the

relaxation theory is only achieved when the magnetic fluctuations produce stochastic field

line regions of size comparable of that of the whole system. This result clearly indicates that
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the relaxation theory as formulated by Taylor (1974) is applicable to highly unstable plasmas

but it becomes useless to study the operation of configurations near an instability threshold.

The kink instability produces the helical deformation of the flux surfaces near the magnetic

axis. This drives the reconnection of the inner flux surfaces with the outer ones. This process

has been studied in detail. The reconnection layer has been identified as well as the new

structure resulting from the reconnection of the two flux tubes. Taking the low (high) λ value

of the inner (outer) tube on its inner (outer) side, these crescent shaped structures average

the λ value inside the q = 1 surface. Even when the flux surfaces remain regular during this

evolution, the process involves the full reconnection of all the magnetic tubes inside the q = 1

surface. This is of course undesired from the point of view of confinement and could partially

explain the poor performance of spheromak operation (compared to tokamaks and RFP’s).

However further studies are required on this topic regarding the coupled dynamics between

the kink and the external driving of the system. This could be done by applying appropriate

boundary conditions to model the injection of helicity from a source (Garcia-Martinez &

Farengo, 2010).

Finally, models for the reconnection process driven by the kink mode were discussed. The

Kadomtsev’s model was presented and showed to give a poor description of the actual

simulation results. A modification to this model that greatly improves the agreement with

simulations was proposed. A method to incorporate the correction due to the resistive decay

of the configuration was described.

7. References

Bellan, P. (2000). Spheromaks: a practical application of magnetohydrodynamic dynamos and plasma

self-organization, Imperial College Press, London.

Biskamp, D. (2000). Magnetic reconnection in plasmas, Cambridge University Press,

Cambridge/New York.

Braginskii, S. (1965). Transport processes in a plasma, Reviews of Plasma Physics, 1: 205-311.

Finn, J. & Antonsen, T. (1985). Magnetic helicity: what it is, and what it is good for?, Comments

Plasma Phys. Controlled Fusion, 33: 1139.

Friedberg, J. (1987). Ideal MHD, Plenum Press, New York.

Garcia-Martinez, P. & Farengo, R. (2009a). Selective decay in a helicity-injected spheromak, J.

Phys.: Conf. Ser., 166: 012010.

Garcia-Martinez, P. & Farengo, R. (2009b). Non-linear dynamics of kink-unstable spheromak

equilibria, Phys. Plasmas, 16: 082507.

Garcia-Martinez, P. & Farengo, R. (2010). Spheromak formation and sustainment by tangential

boundary flows, Phys. Plasmas, 17: 050701.

Hasegawa , A. (1985). Self-organization processes in continuous media, Adv. Phys., 34: 1-42.

Heyvaerts J. & Priest, E. (1984). Coronal heating by reconnection in DC current systems: a

theory based on Taylor’s hypothesis. Astron. Astrphys., 137: 63-78.

Jarboe, T. (2005). The spheromak confinement device, Phys. Plasmas, 12: 058103.

Kadomtsev, B. (1975). Disruptive instabilities in tokamaks, Sov. J. Plasma Phys., 1: 389-391.

Kitson, D. & Browning, P. (1990). Partially relaxed magnetic field equilibria in a gun-injected

spheromak, Plasma Phys. Controlled Fusion, 32 (14): 1265-1287.

115Dynamics of Magnetic Relaxation in Spheromaks

www.intechopen.com



32 Will-be-set-by-IN-TECH

Knox, S., Barnes, C., Marklin, G., Jarboe, T., Henins, I., Hoida, H. & Wright, B. (1986).

Observations of spheromak equilibria which differ from the minimum-energy state

and have internal kink distortions, Phys. Rev. Lett., 56: 842-845.

Moffat, H. (1978). Magnetic field generation in electrically conducting fluids, Cambridge University

Press, London/New York.

Montgomery, D., Turner, L. & Vahala, H. (1978). Three-dimensional magnetohydrodynamic

turbulence in cylindrical geometry. Phys. Fluids, 21: 757-764.

Priest, E. & Forbes, T. (2000). Magnetic reconnection: MHD theory and applications, Cambridge

University Press, New York.

Rosenbluth, M. & Bussac, M. (1979). MHD stability of spheromak, Nuc. Fusion, 19: 489-498.

Taylor, J. (1974). Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys.

Rev. Lett., 33: 1139-1141.

Taylor, J. (1986). Relaxation and magnetic reconnection in plasmas, Rev. Mod. Phys., 58:

741-763.

Wesson, J. (2004). Tokamaks (Third Edition), Clarendon Press - Oxford, New York.

Willett, D., Browning, P., Woodruff, S. & Gibson, K. (1999). The internal magnetic structure and

current drive in the SPHEX spheromak, Plasma Phys. Controlled Fusion, 41: 595-612.

Woltjer, L. (1958). A theorem on force-free magnetic fields, Proceedings of the National Academy

of Science, 44: 489-491.

Zheng, L. & Furukawa, M. (2010). Current-interchange tearing modes: Conversion of

interchange-type modes to tearing modes, Phys. Plasmas, 17: 052508.

116 Topics in Magnetohydrodynamics

www.intechopen.com



Topics in Magnetohydrodynamics

Edited by Dr. Linjin Zheng

ISBN 978-953-51-0211-3

Hard cover, 210 pages

Publisher InTech

Published online 09, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

To understand plasma physics intuitively one need to master the MHD behaviors. As sciences advance, gap

between published textbooks and cutting-edge researches gradually develops. Connection from textbook

knowledge to up-to-dated research results can often be tough. Review articles can help. This book contains

eight topical review papers on MHD. For magnetically confined fusion one can find toroidal MHD theory for

tokamaks, magnetic relaxation process in spheromaks, and the formation and stability of field-reversed

configuration. In space plasma physics one can get solar spicules and X-ray jets physics, as well as general

sub-fluid theory. For numerical methods one can find the implicit numerical methods for resistive MHD and the

boundary control formalism. For low temperature plasma physics one can read theory for Newtonian and non-

Newtonian fluids etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Pablo L. Garcia-Martinez (2012). Dynamics of Magnetic Relaxation in Spheromaks, Topics in

Magnetohydrodynamics, Dr. Linjin Zheng (Ed.), ISBN: 978-953-51-0211-3, InTech, Available from:

http://www.intechopen.com/books/topics-in-magnetohydrodynamics/dynamics-of-magnetic-relaxation-in-

spheromaks



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


