
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



0

Overview of Magnetohydrodynamics Theory
in Toroidal Plasma Confinement

Linjin Zheng
Institute for Fusion Studies

University of Texas at Austin, Austin, Texas
United States of America

1. Introduction

In this chapter we address magnetohydrodynamics (MHD) theory for magnetically confined
fusion plasmas. To be specific we focus on toroidal confinement of fusion plasmas, especially
tokamak physics.

The biggest challenges mankind ever faces are falling energy sources and food shortages. If
controlled nuclear fusion were achieved with net energy yield, the energy source problem
would be solved. If natural photosynthesis were reproduced, food shortage concern would
be addressed. Though both nuclear fusion and photosynthesis are universal, the difficulties to
achieve them are disproportionally great. Instead, those discoveries harmful to nature, though
naturally unpopular, are invented relatively easily. This tendency reminds us of a bible verse
(Genesis 3:19): "In the sweat of thy face shalt thou eat bread". This verse basically sketches the
dependence of efforts (sweat) demanded for scientific discoveries on the usefulness (bread) of
the discoveries to mankind (see Fig. 1). The more the discovery is relevant to mankind, the
more the sweat is needed for that discovery. This may explain why controlled nuclear fusion
is so difficult and its underlying plasma physics is so complicated.

Fig. 1. Schematic interpretation of Genesis 3:19: the dependence of efforts (sweat) demanded
for scientific discoveries on the usefulness (bread) of the discoveries to mankind.

1

www.intechopen.com



2 Will-be-set-by-IN-TECH

When God created universe each day, He always claimed "it was so" and "it was good"
(Genesis 1). The hard aspect of fusion plasma physics lies in that we often miss simplicity
(it was so) and beauty (it was good) in theoretical formalism. MHD theory seems to be unique
in plasma physics. Though many charged particle system, with long mean free path and
long range correlation, is intrinsically complicated, MHD theory is relatively simple and,
nonetheless, gives rise to rather relevant theoretical predictions for experiments: Tokamaks
are designed according to MHD equilibrium theory and nowadays none would expect that
a magnetic confinement of fusion plasmas could survive if MHD theory predicted major
instabilities. As one will see even with MHD description the theoretical formulation of
magnetically confined plasmas in toroidal geometry can still be hard to deal with. Thanks to
decades-long efforts many beautiful MHD theoretical formulations for toroidal confinement
of fusion plasmas have been laid out. In this chapter we try to give a comprehensive review
of these prominent theories. Four key types of modes: interchange/peeling modes Mercier
(1962) Greene & Johnson (1962) Glasser et al. (1975) Lortz (1975) Wesson (1978), ballooning
modes Connor et al. (1979) Chance et al. (1979), toroidal Alfvén egenmodes (TAEs) Cheng et al.
(1985) Rosenbluth et al. (1992) Betti & Freidberg (1992) Zheng & Chen (1998), and kinetically
driven modes, such as kinetic ballooning modes (KBMs) Tsai & Chen (1993) Chen (1994)
and energetic particle driven modes (EPMs) Zheng et al. (2000), are addressed. Besides, we
also describe an advanced numerical method (AEGIS Zheng & Kotschenreuther (2006)) for
systematically investigating MHD stability of toroidally confined fusion plasmas. Description
of global formulation used for numerical computation can also provide an overall picture of
MHD eigen mode structure for toroidal plasmas.

MHD theory is a single fluid description of plasmas. Fluid approach is based on the
assumption that particle movements are spatially localized so that a local thermal equilibrium
can be established. In the conventional fluid theory particle collision is the ingredient for
particle localization. However, for magnetically confined fusion plasmas collision frequency
usually is low. One cannot expect particle collisions to play the role for localizing particles
spatially. The relevance of partial fluid description of magnetically confined fusion plasmas
relies on the presence of strong magnetic field. Charged particles are tied to magnetic field
lines due to gyro-motions. Therefore, in the direction perpendicular to magnetic field lines
magnetic field can play the role of localization, so that MHD description becomes relevant at
least in lowest order. One can expect that perpendicular MHD description needs modification
only when finite Larmor radius effects become significant.

In the direction parallel to magnetic field, however, particles can move rather freely. Collision
frequency is not strong enough hold charged particles together to establish local thermal
equilibrium. One cannot define local thermal parameters, such as fluid density, velocity,
temperature, etc. The trapped particle effect, wave-particle resonances, and parallel electric
field effects need to be included. Plasma behavior in parallel direction is intrinsically non-fuild
and needs kinetic description. Surprisingly, even under this circumstance MHD description
still yields valuable and relevant theoretical predictions without major modifications in the
concerned low (ω ≪ ωsi) and intermediate (ωsi ≪ ω ≪ ωse) frequency regimes, where ω is
mode frequency, ωsi and ωse represent respectively ion and electron acoustic frequencies. In
the low frequency regime coupling of parallel motion results only in an enhanced apparent
mass effect; while in the intermediate frequency regime kinetic effects only gives rise to a new
phenomenological ratio of special heats in leading order.

2 Topics in Magnetohydrodynamics
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This chapter is arranged as follows: In Sec. 2 the basic set of ideal MHD equations is described;
In Sec. 3 MHD equilibrium is discussed; In Sec. 4 analytical or semi-analytical theories for
four types of major MHD modes are presented; In Sec. 5 the formulation of global numerical
analyses of MHD modes are given; In the last section the results are summarized. Gyrokinetic
and resistive effects are also discussed in this last section.

2. Basic set of ideal MHD equations

The basic set of ideal MHD equations are derived from single fluid and Maxwell’s equations.
They are given as follows

ρ
dv

dt
= −∇P + J × B, (1)

E = −v × B, (2)

∂P

∂t
= −v · ∇P − ΓP∇ · v, (3)

∂ρm

∂t
= −v · ∇ρm − ρm∇ · v, (4)

μ0J = ∇ × B, (5)

∂B

∂t
= ∇ × E, (6)

where ρm is mass density, v denotes fluid velocity, P is plasma pressure, Γ represents the
ratio of specific heats, E and B represents respectively electric and magnetic fields, J is current
density, μ0 is vacuum permeability, and bold faces denote vectors.

The MHD equations (1)-(6) can be linearized. For brevity we will use the same symbols
for both full and equilibrium quantities. Perturbed quantities will be tagged with δ, unless
specified. Equilibrium equations are

J × B = ∇P, (7)

∇ × B = μ0J, (8)

∇ · B = 0. (9)

The linearized perturbed MHD equations become

− ρmω2ξ = δJ × B + J × δB −∇δP, (10)

δB = ∇ × ξ × B, (11)

μ0δJ = ∇ × δB, (12)

δP = −ξ · ∇P − ΓP∇ · ξ, (13)

where ξ = v/(−iω) represents plasma displacement, and the time dependence of perturbed
quantities is assumed to be of exponential type exp{−iωt}. Inserting Eqs. (11)-(13) into
Eq. (10), one obtains a single equation for ξ:

− ρmω2ξ =
1

μ0
∇ × (∇ × ξ × B) × B + J × ∇ × ξ × B +∇ (ξ · ∇P + ΓP∇ · ξ) . (14)

We have not included toroidal rotation effects in the linearized equations (10)-(13). For most
of tokamak experiments rotation is subsonic, i.e., the rotation speed is much smaller than

3Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement
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ion thermal speed. In this case the centrifugal and Coriolis forces from plasma rotation is
smaller than the effects from particle thermal motion — plasma pressure effect. Therefore,
rotation effect can be taken into account simply by introducing the Doppler frequency shift:
ω → ω+nΩnot in MHD equation (14), where Ωrot is toroidal rotation frequency and n denotes
toroidal mode number Waelbroeck & Chen (1991) Zheng et al. (1999).

3. Tokamak MHD equilibrium

In this subsection we discuss tokamak equilibrium theory. MHD equilibrium has been
discussed in many MHD books. Here, we focus mainly on how to construct various flux
coordinates from numerical solution of MHD equilibrium equations.

We first outline the derivation of Grad-Shafranov equation Grad & Rubin (1958) Shafranov
(1966). The cylindrical coordinate system (X, Z, φ) is introduced, where X is radius
from axi-symmetry axis of plasma torus, Z denotes vertical coordinate, and φ is toroidal
axi-symmetric angle. We introduce the vector potential A to represent magnetic field B =
∇ × A. Due to toroidal symmetry φ is an ignorable coordinate. Using curl expression
in cylinder coordinates and noting that ∂AX/∂φ = ∂AZ/∂φ = 0, one can prove that the
vector potential A in X and Z directions (AXZ) can be expressed through the single toroidal
component: Aφ. Without losing generality one can express Aφ = −χ∇φ. Therefore, total
equilibrium magnetic field can be expressed as, by adding (X, Z) components and toroidal
component,

B = ∇× Aφ + XBφ∇φ = ∇φ × ∇χ + g∇φ, (15)

where Bφ is toroidal component of magnetic field and g = XBφ. From Eq. (15) one can prove
that B · ∇χ = 0 and therefore χ = const. labels magnetic surfaces. Equation (15) can be used
to show that 2πχ is poloidal magnetic flux. One can also define the toroidal flux 2πψT(χ).
The safety factor is then defined as q = dψT/dχ, which characterizes the field line winding on
a magnetic surface.

Using Ampere’s law in Eq. (8) one can express equilibrium current density as follows

μ0J = ∇g × ∇φ + X2∇ ·
(∇χ

X2

)

∇φ. (16)

Here, we have noted that ∇φ · ∇ × (∇φ × ∇χ) = ∇ · (∇χ/X2) and ∇θ · ∇ × (∇φ × ∇χ) =
∇χ · ∇ × (∇φ × ∇χ) = 0.

Inserting Eqs. (15) and (16) into force balance equation (7) one obtains

μ0∇P = −∇ ·
(∇χ

X2

)

∇χ − 1

X2
g∇g +∇φ∇g × ∇φ · ∇χ. (17)

From Eq. (7) one can prove that B · ∇P = 0. Therefore, one can conclude that plasma pressure
is a surface faction, i.e., P(χ). From Eq. (17) one can further determine that g is a surface
function as well, through projecting Eq. (17) on ∇φ. Therefore, Eq. (17) can be reduced to the
so-called Grad-Shafranov equation

X2∇ ·
(∇χ

X2

)

= −μ0X2P′
χ − gg′χ. (18)

4 Topics in Magnetohydrodynamics
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Here and later on we use prime to denote derivative with respect to flux coordinate chosen.
This is a nonlinear equation for χ for given functions P(χ) and g(χ). It generally needs
numerical solution. Since it is a two dimensional problem, one needs to introduce a poloidal
angle coordinate θeq around magnetic axis of plasma torus in addition to radial coordinate χ.
The solution is usually given in (χ, θeq) grids for X(χ, θeq), Z(χ, θeq), or inversely, in (X, Z)
grids for χ(X, Z), θeq(X, Z).

Instead of physical cylinder coordinates (X, Z, φ) or (χ, θeq, φ), magnetic flux coordinates
are often used in theoretical analyses, which is characterized by that the magnetic field line
is straight in the covariant representation of coordinate system. Note that the coordinate
system (ψ, θeq, φ) usually is not a flux coordinate system. In most equilibrium codes θeq is
just an equal-arc length poloidal coordinate. One of flux coordinate systems is the so-called
PEST coordinate system Grimm et al. (1976) (χ, θpest, φ), where θpest is generalized poloidal
coordinate, such that the equilibrium magnetic field can be represented as

B = χ′ (∇φ × ∇ψpest + q∇ψpest × ∇θpest
)

. (19)

By equating Eqs. (19) and (15) one can find that the Jacobian of PEST coordinates should be

Jpest ≡
1

∇ψpest × ∇θpest · ∇φ
=

qχ′X2

g
. (20)

In PEST coordinate system the flux coordinate is chosen as

ψpest =
2πX0

cpest

∫ χ

0
dχ

q

g
, cpest =

X0

2π

∫

v
dτ

1

X2
,

where X0 is major radius at magnetic axis and
∫

v dτ denotes volume integration over entire
plasma domain. The PEST poloidal angle θpest can be related to physical angle coordinate θeq

as follows. Using Eq. (20), one can determine poloidal angle in PEST coordinate

θpest =
1

q

∫ θeq

0
dθeq

gJeq

X2
,

where Jeq = 1/∇χ × ∇θeq · ∇φ, which can be computed from equilibrium solution. Here,
the integration is along the path of constant χ and φ.

Next, we discuss construction of general flux coordinates. The covariant type of
representation as in Eq. (19) is not unique. It is preserved under the following coordinate
transforms

ζ = φ + ν(ψ, θ), θ = θpest + ν(ψ, θ)/q, (21)

such that

B = χ′ (∇ζ × ∇ψ + q∇ψ × ∇θ) . (22)

Here, θ and ζ are referred to as generalized poloidal and toroidal angles, respectively. PEST
coordinates are characterized by its toroidal angle coordinate being axisymmetric toroidal
angle. In this general case, by equating Eqs. (22) and (15) in ∇φ projection one can find that

∂ν

∂θeq

∣

∣

∣

∣

ψ,φ

1

Jeq
+ g

1

X2
= χ′q

1

J , (23)

5Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement
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where J = 1/∇ψ × ∇θ · ∇ζ. Using Jeq and J definitions, one can prove that

∂θ

∂θeq

∣

∣

∣

∣

ψ,φ

=
χ′Jeq

J . (24)

One can solve Eq. (23), yielding

ν(ψ, θ) =
∫ θeq

0
dθeqJeq

(

χ′q
1

J − g
1

X2

)

= qθ −
∫ θeq

0
dθeq

gJeq

X2
, (25)

where Eq. (24) has been used.

Equations (21)-(25) can be used to construct various types of flux coordinate systems. There
are two classes of them: One is by specifying Jacobian (e.g., Hamada coordinates Hamada
(1962) and Boozer coordinates Boozer (1982)) and the other by directly choosing generalized
poloidal angle (e.g., equal arc-length coordinate). In the Hamada coordinates the volume
inside a magnetic surface is used to label magnetic surfaces, i.e., ψ = V, and Jacobian
Jh = 1/∇V · ∇θh × ∇ζh is set to be unity. With Jacobian specified, Eq. (24) can be used to
solve for θh at given (V,φ). With ν determined by Eq. (25) the definition Eq. (21) can be used to
specify ζh. In the Boozer coordinates Jacobian is chosen to be JB = V′ 〈B2

〉

s /(4π2B2), where
〈·〉s represents surface average. The procedure for specifying Boozer poloidal and toroidal
coordinates θB and ζB is similar to that for Hamada coordinates. In the equal-arc-length
coordinates poloidal angle is directly specified as equal-arc-length coordinate θe. In this case,
Jacobian Je can be computed through Eq. (24). With ν determined by Eq. (25) the definition
Eq. (21) can be used to specify ζe.

We can also express current density vector in covariant representation with generalized flux
coordinates. Using Ampere’s law in Eq. (8) for determining J · ∇θ and Eq. (7) for J · ∇ζ, one
can also express equilibrium current density in covariant representation

J = − 1

μ0
g′ψ∇ζ × ∇ψ −

(

q

μ0
g′ψ +

P′
ψ

χ′
ψ

J
)

∇ψ × ∇θ. (26)

This general coordinate expression for J can be alternatively obtained from PEST
representation in Eq. (16) and Grad-Shafranov equation (18) through coordinate transform.
Equation (26) is significantly simplified in the Hamada coordinates. Due to J = 1, Eq. (26)
can be expressed as

J = J′V∇ζ × ∇V + I′V∇V × ∇θ, (27)

where I(V) and J(V) are toroidal and poloidal current fluxes, I′ = −g′V/μ0, and J′ =
−qg′V/μ0 − P′

V/χ′
V . The force balance equation (7) can be simply expressed as

μ0P′
V = J′Vψ′

V − I′Vχ′
V . (28)

It is also interesting to discuss diamagnetic current and Pfirsch-Schlüter current in plasma
torus. Due to the existence of plasma pressure there is diamagnetic current in tokamak
system. The diamagnetic current alone is not divergence-free and is always accompanied
by a return current in the parallel direction, i.e., the so-called Pfirsch-Schlüter current. The
total equilibrium current is therefore can be expressed as

J =
dP

dχ

(

2λB +
B × ∇χ

B2

)

, (29)

6 Topics in Magnetohydrodynamics
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where the second term is diamagnetic current and the first term denotes the Pfirsch-Schlüter
current. We can determine the Pfirsch-Schlüter current from ∇ · J = 0,

λ = − 1

2χ

∫ θ

0
∇ × B

B2
· ∇χdθ + λ0, (30)

where λ0 is the integration constant and can be determined by Ohm’s law in the parallel
direction.

4. Linear MHD instabilities

In this subsection we overview the linear MHD stability theories in toroidal geometry. We
will detail major analytical techniques developed in this field in the past decades, such as
interchange, ballooning, TAE, and EPM/KBM theories. Due to space limitation, we focus
ourselves on ideal MHD theory.

4.1 Decomposition of linearized MHD equations, three basic MHD waves

There are three fundamental waves in magnetic confined plasmas. The compressional Alfvén
mode characterizes the oscillation due to compression and restoration of magnetic field. It
mainly propagates in the derection perpendicular to magnetic field. Since plasmas are frozen
in magnetic field, such a magnetic field compression also induces plasma compression. Note
that the ratio of plasma pressure to magnetic pressure (referred to as plasma beta β) usually
is low. The compression and restoration forces mainly result from magnetic field energy. The
shear Alfvén wave describes the oscillation due to magnetic field line bending and restoration.
It mainly propagates along the magnetic field lines. Since long wave length is allowed for
shear Alfvén wave, shear Alfvén wave frequency (or restoration force) is usually lower than
that of compressional Alfvén wave. Therefore, shear Alfvén wave is often coupled to plasma
instabilities. Another fundamental wave in magnetic confined plasmas is parallel acoustic
wave (sound wave). Since plasma can move freely along magnetic field lines without being
affected by Lorentz’s force. Parallel acoustic wave can prevail in plasmas. The various types
of electrostatic drift waves are related to it. Due to low beta assumption, the frequency of ion
sound wave is lower than that of shear Alfvén wave by oder

√

β. The behaviors of these three
waves in simplified geometry have been widely studied in many MHD books. Here, we focus
on toroidal geometry theories. MHD equation (14) in toroidal geometry can be hard to deal
with. One usually needs to separate the time scales for three fundamental waves to reduce the
problem. This scale separation is realized through proper projections and reduction of MHD
equation (14).

There are three projections for MHD equation, Eq. (14). We introduce three unit vectors: eb =
B/B, e1 = ∇ψ/|∇ψ|, and e2 = eb × e1 for projections. The e2 projection of the MHD equation
(14) gives

e1 · ∇ × δB = − gP′

B2
e1 · δB − g′e1 · δB +

1

B
e2 · ∇

(

P′|∇ψ|e1 · ξ
)

+ΓP
1

B
e2 · ∇ (∇ · ξ) +

ρmω2

B
e2 · ξ. (31)

7Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement
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Similarly, the e1 projection of the MHD equation (14) yields

e2 · ∇ × δB = − gP′

B2
e2 · δB − g′e2 · δB − P′|∇ψ|

B2
eb · δB − 1

B
e1 · ∇

(

P′|∇ψ|e1 · ξ
)

−ΓP
1

B
e1 · ∇ (∇ · ξ)− ρmω2

B
e1 · ξ. (32)

The eb projection of MHD equation (14) can be reduced to, using ∇ · ξ as an independent
unknown,

ΓPB · ∇
(

1

B2
B · ∇∇ · ξ

)

+ ρmω2∇ · ξ = ρmω2∇ · ξ⊥. (33)

Noting that δJ and δB are determined completely by ξ⊥, one can see that the set of equations
(31) - (33) is complete to determine two components of ξ⊥ and scalar unknown ∇ · ξ.

Two perpendicular equations of motion, Eqs. (31) and (32), result from perpendicular
projections of MHD equation (10) and therefore contain restoration force due to excitation
of compressional Alfvén wave. To suppress compressional Alfvén wave from consideration,
one can apply the operator ∇ · (B/B2) × (· · · ) on Eq. (10), yielding

∇ · B

B2
× ρmω2ξ = B · ∇B · δJ

B2
+ δB · ∇σ − J · ∇B · δB

B2
+∇ × B

B2
· ∇δP, (34)

where σ = J · B/B2. Note that compressional Alfvén wave results from the term δJ × B +
J × δB +∇δP → ∇(B · δB + δP) in Eq. (10). Therefore the curl operation in deriving Eq. (34)
can suppress compressional Alfvén wave. Equation (34) is often referred to as shear Alfvén
law or vorticity equation.

Equations (34), (31), and (33) characterize respectively three fundamental MHD waves:
shear Alfvén, compressional Alfvén, and parallel acoustic waves. From newly developed
gyrokinetic theory Zheng et al. (2007) two perpendicular equations (31) and (32) are fully
recovered from gyrokinetic formulation, expect the plasma compressibility effect.

4.2 Singular layer equation: interchange and peeling modes

Interchange modes are most fundamental phenomena in magnetically confined plasmas. It
resembles to the so-called Rayleigh-Taylor instability in conventional fluid theory. Through
interchange of plasma flux tubes plasma thermal energy can be released, so that instability
develops. Perturbation of magnetic energy from field line bending is minimized for
interchange instability. In slab or cylinder configurations such an interchange happens due
to the existence of bad curvature region. In toroidal geometry with finite q value, however,
the curvature directions with respect to plasma pressure gradient are different on high and
low field sides of plasma torus. Good and bad curvature regions appear alternately along
magnetic field line. Therefore, one needs to consider toroidal average in evaluating the change
of plasma and magnetic energies. This makes interchange mode theory in plasma torus
become complicated. The interchange mode theory is the first successful toroidal theory in
this field. It includes the derivations of the so-called singular later equation and interchange
stability criterion, i.e., the so-called Mercier criterion Mercier (1962) Greene & Johnson (1962).

Early derivation of singular layer equation relies on the assumption that the modes are
somewhat localized poloidally. This assumption was released in a later paper by Glasser

8 Topics in Magnetohydrodynamics
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et al Glasser et al. (1975). However, the details have been omitted in this paper and direct
projection method, alternative to the original vorticity equation approach, is used. Here,
we detail the derivation of singular layer equation by vorticity equation approach. These
derivation can tell analytical techniques to separate the compressional Alfvén wave from low
frequency interchange mode and to minimize field line bending effects due to shear Alfvén
mode. The singular equation will be used to derive stability criterion for interchange and
peeling modes.

In order to investigate the modes which localize around a particular rational (or singular)
magnetic surface V0, we specialize the Hamada coordinates to the neighborhood of mode
rational surface V0 and introduce the localized Hamada coordinates x, u, θ as usual, where
x = V − V0 and u = mθ − nζ. In this coordinate system the parallel derivative becomes
B · ∇ = χ′(∂/∂ζ) + (Λx/Ξ)(∂/∂u), where Λ = ψ′χ′′ − χ′ψ′′ and Ξ = ψ′/m = χ′/n.

Using the coordinates (x, u, θ), we find that, in an axisymmetric torus, equilibrium scalars
are independent of u, and therefore perturbations can be assumed to vary as exp{ikuu} with
ku = 2πn/χ′. As in Refs. Johnson & Greene (1967) and Glasser et al. (1975), ξ and δB are
projected in three directions as follows:

ξ = ξ
∇V

|∇V|2 + μ
B × ∇V

B2
+ ν

B

B2
,

δB = b
∇V

|∇V|2 + v
B × ∇V

B2
+ τ

B

B2
.

We consider only singular modes whose wavelength across the magnetic surface λ⊥ is much
smaller than that on the surface and perpendicular to magnetic field line λ∧. This leads us to
choose following ordering scheme as in Ref. Glasser et al. (1975):

x ∼ ǫ,
∂

∂V
∼ ǫ−1,

∂

∂u
∼ ∂

∂θ
∼ 1, (35)

where ǫ ≪ 1, being a small parameter. Furthermore, we consider only the low-frequency
regime

|ω/ωsi| � 1. (36)

where ωsi is parallel ion acoustic frequency.

Since the modes vary on a slow time scale, they are decoupled from compressional Alfvén
wave. It can be verified a posteriori that we can make following ordering assumptions:

ξ = ǫξ(1) + · · · , μ = μ(0) + · · · , δP(2) = ǫ2δP(2) + · · · ,

b = ǫ2b(2) + · · · , v = ǫv(1) + · · · , τ = ǫτ(1) + · · · ,

where δP(2) = −ΓP∇ · ξ. These ordering assumptions are the same as those in Ref.

Glasser et al. (1975), except that we use δP(2) as unknown to replace ν. With these ordering
assumptions we can proceed to analyze the basic set of linearized MHD equations. As usual,
perturbed quantities are separated into constant and oscillatory parts along the field lines:
ξ = ξ̄ + ξ̃, where ξ̄ = 〈ξ〉 ≡

∮

ξ dl/B/
∮

dl/B, l is arc length of magnetic field line, and
ξ̃ = ξ − 〈ξ〉.

9Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement
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The condition that δB be divergence free, as required by Eq. (11), yields

∂b(2)

∂x
+

1

Ξ

∂

∂u
v(1) +

∂v(1)

∂θ

B × ∇V · ∇θ

B2
+ v(1)∇ · B × ∇V

B2
+ χ′ ∂

∂θ

τ(1)

B2
= 0.

It can be reduced to

∂b(2)

∂x
+

1

Ξ

∂

∂u
v(1) +

J′

P′
∂v(1)

∂θ
− χ′

P′
∂σv(1)

∂θ
+ χ′ ∂

∂θ

τ(1)

B2
= 0. (37)

After surface average it gives

∂b̄(2)

∂x
+

1

Ξ

∂v̄(1)

∂u
= 0. (38)

The two significant orders of induction equation, Eq. (11), in the ∇V–direction are

0 = χ′ ∂ξ(1)

∂θ
, (39)

b(2) = χ′ ∂ξ(2)

∂θ
+

Λx

Ξ

∂ξ(1)

∂u
. (40)

The component of Eq. (11) in the ∇u–direction, in lowest order, yields

χ′ ∂μ(0)

∂θ
= 0. (41)

To satisfy the component of Eq. (11) along the magnetic field line, one must set

(∇ · ξ⊥)
(0) + 2κ · ξ(0) =

∂ξ(1)

∂x
+

1

Ξ

∂μ(0)

∂u
= 0. (42)

where Eq. (41) and ∇ · (B × ∇V/B2) = 2B × κ · ∇V/B2 have been used, and κ = b · ∇b is
magnetic field line curvature.

Next, we turn to momentum equation (14). The two components perpendicular to B of the
momentum equation (14) both lead, in lowest order, to

τ(1) − P′ξ(1) = 0. (43)

This is consistent to Eq. (42). Since both components yield the same information, we can
directly work on the vorticity equation Eq. (34) and obtain

χ′ ∂

∂θ

(

|∇V|2
B2

∂v(1)

∂x

)

+ χ′ ∂σ

∂θ

∂ξ(1)

∂x
= 0, (44)

−ω2 Ni Mi|∇V|2
B2

∂μ(0)

∂x

= −χ′ ∂

∂θ

(

|∇V|2
B2

∂v(2)

∂x
− v

B

B2
· ∇ × B × ∇V

B2
− τ

B

B2
· ∇ × B

B2
+

J′

χ′ τ(1)

)

−v(1)
(

J′

P′ −
χ′

P′ σ

)

∂σ

∂θ
− τ(1) χ′

B2

∂σ

∂θ
− Λx

|∇V|2
ΞB2

∂

∂u

∂v(1)

∂x
+

P′

ΞB2

∂τ(1)

∂u

+P′∇V · ∇(P + B2)

ΞB2|∇V|2
∂ξ(1)

∂u
− χ′ ∂σ

∂θ
Θ

∂ξ(1)

∂u
+

χ′

P′
∂σ

∂θ

∂

∂x

(

δP(2) − P′ξ(2)
)

. (45)
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We will derive the singular layer equation by averaging this equation. Therefore, it is needed

to express unknowns in this equation in terms of ξ(1).

It is trivial to get μ(0) from Eqs. (41) and (42), and τ(1) from Eq. (43). The rest can be obtained

as follows. From Eqs. (39) and (40) one can find that b̄(2) = (Λx/Ξ)(∂ξ(1)/∂u). With b̄(2)

obtained one can determine v̄(1) from Eq. (38):

v̄(1) = −Λ
∂

∂x
(xξ(1)). (46)

Using Eq. (46) to determine integration constant, Eq. (44) can be solved, yielding that

∂v(1)

∂x
= −

(

B2σ

|∇V|2 −
〈

B2σ/|∇V|2
〉

〈B2/|∇V|2〉
B2

|∇V|2

)

∂ξ(1)

∂x
− Λ

B2/|∇V|2
〈B2/|∇V|2〉

∂2

∂x2
(xξ(1)).

From Eqs. (40) and (37) one obtains

−χ′ ∂2ξ(2)

∂θ∂x
=

1

Ξ

∂ṽ(1)

∂u
+

J′

P′
∂v(1)

∂θ
− χ′

P′
∂σv(1)

∂θ
+ χ′ ∂

∂θ

τ(1)

B2
.

We need also to solve the equation of parallel motion, Eq. (33). Taking into consideration of
low frequency assumption in Eq. (36) and the result in Eq. (42), the equation of parallel motion
can be reduced to

χ′2 ∂

∂θ

(

1

B2

∂

∂θ
δP(2)

)

= i
ρmω2

kuΓP

B × ∇V

B2
· κ

∂ξ(1)

∂x
. (47)

Noting that B × ∇V · κ/B2 = χ′(∂σ/∂θ), equation (47) can be solved to yield

χ′ ∂

∂θ
δP(2) = i

ρmω2

kuΓP

(

B2σ −
〈

B2σ
〉

〈B2〉 B2

)

∂ξ(1)

∂x
.

Inserting these results into Eq. (45) and averaging over l, one obtains the singular layer
equation

∂

∂x

(

x2 − Mω2
) ∂ξ(1)

∂x
+

(

1

4
+ DI

)

ξ(1) = 0, (48)

where the total mass parameter M = Mc + Mt,

DI ≡ E + F + H − 1

4
,

E ≡
〈

B2/|∇V|2
〉

Λ2

(

J′ψ′′ − I′χ′′ + Λ

〈

σB2
〉

〈B2〉

)

,

F ≡
〈

B2/|∇V|2
〉

Λ2

(

〈

σ2B2

|∇V|2
〉

−
〈

σB2/|∇V|2
〉2

〈B2/|∇V|2〉 + P′2
〈

1

B2

〉

)

,
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H ≡
〈

B2/|∇V|2
〉

Λ

(

〈

σB2/|∇V|2
〉

〈B2/|∇V|2〉 −
〈

σB2
〉

〈B2〉

)

,

Mc ≡ Ni Mi

k2
uΛ2

〈

B2

|∇V|2
〉〈 |∇V|2

B2

〉

,

Mt ≡
Ni Mi

k2
uΛ2P′2

〈

B2

|∇V|2
〉

(

〈

σ2B2
〉

−
〈

σB2
〉2

〈B2〉

)

.

Here, the mass factor Mc results from perpendicular motion and Mt from parallel motion due
to toroidal coupling. Mt is often referred to as apparent mass. In the kinetic description the
apparent mass is enhanced by the so-called small parallel ion speed effect. In the large aspect
ratio configurations this enhancement factor is of order

√
R/a, where R and a are respectively

major and minor radii Mikhailovsky (1974) Zheng & Tessarotto (1994b).

From Eq. (48) one can derive the Mercier criterion, i.e., the stability criterion for localized
interchange modes in toroidal geometry. In the marginal stability ω2 = 0, Eq. (48) becomes
the Euler differential equation. Its solution is

ξ = ξ0x−
1
2 ±

√
−DI . (49)

The system stability can be determined by Newcomb’s theorem 5 Newcomb (1960): system is
unstable, if and only if the solution of Eq. (48) vanishes two or more points. From the solution
in Eq. (49) one can see that if −DI < 0 ξ becomes oscillated. Therefore, interchange mode
stability criterion is simply −DI > 0.

Interchange modes are internal modes. When internal modes are stable, it is still possible to
develop unstable external modes. For external modes one needs to consider the matching
condition between plasma and vacuum solutions. As discussed in conventional MHD books,
these matching conditions are: (1) the tangential magnetic perturbation (δBt) should be
continuous; and (2) total magnetic and thermal force (B · δB + δP) should balance across
plasma-vacuum interface in the case without plasma surface current. It can be proved that for
localized modes the vacuum contribution is of order ǫ2 and therefore can be neglected Lortz
(1975). Consequently, the boundary condition becomes that total magnetic and thermal forces
on the plasma side of the plasma-vacuum interface should vanish. This gives the necessary
and sufficient stability condition for peeling modes

[

x2

2

(

ξ∗
dξ

dx
+ ξ

dξ∗

dx

)

+

(

∆ +
1

2

)

x|ξ|2
]

x=b

> 0, (50)

where b is the coordinate of plasma-vacuum interface, relative to the rational surface, and

∆ =
1

2
+ S−1

〈

B2σ

|∇V|2
〉

, S = χ′ψ′′ − ψ′χ′′.

Note that the stability condition Eq. (50) can be alternatively obtained by the approach of
minimization of plasma energy Lortz (1975) Wesson (1978).

One can derive the peeling mode stability criterion by inserting Eq. (49) into Eq. (50) Wesson
(1978). In the derivation of peeling stability criterion we assume system to be Mercier stable,
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i.e., −DI > 0. For the case with ∆ < 0 we assume that rational surface resides inside plasma
region, so that b > 0. In this case the stability condition becomes

√

−DI + ∆ > 0. (51)

For the case with ∆ > 0 we assume that rational surface resides outside plasma region, so that
b < 0. In this case the stability condition becomes

√

−DI − ∆ > 0. (52)

Note that −DI ≡ ∆2 − Λp, where Λp = S−2
〈

J2|∇V|2 + I′ψ′ − J′χ′′〉 〈B2|∇V|−2
〉

. Therefore,
both cases, Eqs. (51) and (52), give rise to the same stability criterion for peeling mode: ΛP < 0.
This is more stringent than the Mercier criterion.

4.3 Ballooning modes

In this section we review high-n ballooning mode theory. The stability criterion for
interchange modes takes into account only average magnetic well effect. As it is well-known
tokamak plasmas have good and bad curvature regions, referring to whether pressure
gradient and magnetic field line curvature point in same direction or not. Usually bad
curvature region lies on low field side of plasma torus; good curvature region on high field
side. Although tokamaks are usually designed to have average good curvature, i.e., Mercier
stable, the ballooning modes can still develop as soon as the release of plasma thermal energy
on bad curvature region is sufficient to counter the magnetic energy resulting from field line
bending Connor et al. (1979) Chance et al. (1979). In difference from interchange modes
ballooning modes have high toroidal mode number n, while interchange modes can be either
low and high n. Also, ballooning modes allow normal and geodesic wave lengths to be of
same order λ⊥ ∼ λ∧, but both of them are much smaller than parallel wave length λ‖.

We first derive ballooning mode equation. In high n limit, both components of perpendicular
momentum equation, Eqs. (31) and (32), give the same result

B · δB + δP = −(B2 + ΓP)∇ · ξ + B · ∇
(

B · ξ

B2

)

− 2κ · ξ = 0. (53)

In lowest order, one has ∇ · ξ⊥ ∼ ξ/R. This allows to introduce the so-called stream function
δϕ Chance et al. (1979): ξ⊥ = B × ∇δϕ/B2. Equation (34) then becomes,

B · ∇ 1

B2
∇ ·
(

B2∇⊥
B · ∇δϕ

B2

)

+∇ ·
(

ρω2 ∇⊥δϕ

B2

)

+P′
ψ∇ × B

B2
· ∇
(

B × ∇ψ

B2
· ∇δϕ

)

+ ΓP∇ × B

B2
· ∇∇ · ξ = 0. (54)

Equation (33), meanwhile, can be reduced to

ΓPB · ∇
(

1

B2
B · ∇∇ · ξ

)

+ ρmω2∇ · ξ = ρmω2 2B × κ

B2
· ∇δϕ, (55)

where Eq. (53) has been used.

The key formalism to ballooning mode theory is the so-called ballooning representation Lee
& Van Dam (1977) Connor et al. (1979). Here, we outline its physics basis and derivation,
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especially to explain the equivalence of two kinds of representations in Refs. Lee & Van Dam
(1977) and Connor et al. (1979). In tokamak geometry one can introduce the following Fourier
decomposition:

δϕ(nq, θ, ζ) =
+∞

∑
m=−∞

δϕm(nq) exp{−inζ + mθ}. (56)

For simply to describe ballooning mode representation we have used nq as flux surface label.
This is allowed for systems with finite magnetic shear, in which the ballooning representation
applies. For high n modes the distance of mode rational surfaces is of order 1/n, which is
much smaller than equilibrium scale length. Therefore, in lowest order we can neglect the
spatial variance of equilibrium quantities and require mode Fourier harmonics to have the
so-called ballooning invariance:

δϕm(nq) = δϕ(nq − m), (57)

so that the Fourier decomposistion in Eq. (57) can be expressed as

δϕ(nq, θ, ζ) =
+∞

∑
m=−∞

δϕ(nq − m) exp{−inζ + mθ}. (58)

We can further introduce the Laplace tranform

δϕ(nq) =
1

2π

∫ +∞

−∞
δϕ(η) exp{inqη}dη. (59)

Using this transform Eq. (58) can be written as

δϕ(nq, θ, φ) =
1

2π
exp{−inζ}

∫ +∞

−∞
δϕ(η)∑

m
exp{im(θ − η)}dη. (60)

Noting that

1

2π

+∞

∑
m=−∞

exp{im(θ − η)} =
+∞

∑
j=−∞

δ(η − θ − j2π),

Equation (60) is transformed to

δϕ(nq, θ, ζ) =
+∞

∑
j=−∞

δϕ(θ + j2π) exp{−in(ζ − q(θ + j2π))}. (61)

This indicates that we can represent high n modes at a reference surface as

δϕ(nq, θ, ζ) = δϕ(θ) exp{−inβ} (62)

without concern of periodicity requirement. Here, β ≡ ζ − qθ. The periodic eigenfunction
can always be formed through the summation in Eq. (61). This representation characterizes
the most important feature of ballooning modes in a plasma torus that perpendicular wave
number is much larger than parallel one: k⊥ ≫ k‖. This reduction shows the equivalence of
two kinds of representations in Eqs. (58) and (61) Lee & Van Dam (1977) Connor et al. (1979).
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Uniqueness and inversion of ballooning mode representation were proved in Ref. Hazeltine
et al. (1981).

With ballooning mode representation described, we can proceed to derive ballooning mode
equation. It is convenient to use the so-called Celbsch coordinates (ψ, β, θ) to construct
ballooning mode equations. In this coordinates ∇ → −in∇β and B · ∇ = χ′(∂/∂θ). Applying
Eq. (62) to Eqs. (54) and (55) and employ the high n ordering, one can obtain following coupled
ballooning mode equations

χ′ ∂

∂θ

(

|∇β|2χ′ ∂

∂θ
δϕ

)

+ P′∇ × B

B2
· ∇βδϕ + ΓP∇ × B

B2
· ∇βδΞ

+
ω2

ω2
A

|∇β|2δϕ = 0, (63)

ΓPχ′ ∂

∂θ

(

1

B2
χ′ ∂

∂θ
δΞ

)

+ ρmω2δΞ = ρmω2 2B × κ

B2
· ∇βδϕ, (64)

where δΞ = i∇ · ξ/n. These two equations are coupled second order differential equations.
The derivatives here are along a reference magnetic field line labeled by ψ and β. The
boundary conditions are δϕ, δΞ → 0 at θ → ±∞ to guarantee the convergence of the Laplace
transform in Eq. (59).

In studying ballooning stability at finite beta equilibrium, the so called
steep-pressure-gradient equilibrium model is often used Connor et al. (1978) Greene &
Chance (1981). In this model, finite beta modification is only taken into account for magnetic
shear, while others remain to their low beta values. This model has been proved to be
successful for ballooning mode studies. Here, we outline the formulation in Ref. Berk et al.
(1983). Noting that β = ζ − qθ, one can see that the magnetic shear effect resides at the
quantity ∇β in the ballooning mode equations (63) and (64). From Eq. (22) one can prove that

∇β = Λs∇χ +
B × ∇χ

|∇χ|2 , (65)

where Λs is the so-called shear parameter and can be obtained by applying operator
B × ∇χ · ∇ × · · · on Eq. (65),

χ′ dΛs

dθ
= −B × ∇χ · ∇ × (B × ∇χ)

|∇χ|4 . (66)

We need to determine finite beta modification to Λ. We assume that χ = χ0 + χ1 and β =
β0 + β1, where χ0 and β0 are low beta values and χ1 and β1 represent finite beta modifications.
The linearized Ampere’s law can be written as follows:

∇ × (∇χ0 × ∇β1 +∇χ1 × ∇β0) = J =
∂P

∂χ

(

2λ∇χ0 × ∇β0 +
B0 × ∇χ0

B2

)

. (67)

Noting that in the curl operation on left hand side only the gradient component in ∇χ
direction needs to be taken, i.e., ∇ × → ∇χ0∂/∂χ×, equation (67) can be solved

2Pλ∇β0 + B0P +∇Q = ∇χ0 × ∇β1 +∇χ1 × ∇β0, (68)
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where ∇Q is integration factor. Taking the divergence of Eq. (68) for only ∂{P, Q}/∂χ large
gives

2λ
∂P

∂χ
(∇χ0 · ∇β0) +

∂2Q

∂χ2
|∇χ0|2 = 0,

and therefore

∂Q/∂χ = −2λP∇χ · ∇β/|∇χ|2. (69)

Now taking the dot product of Eq. (68) with ∇β0 gives

2Pλ|∇β0|2 + (∇χ0 · ∇β0)
∂Q

∂χ
= −χ′ ∂β1

∂θ
,

We can remove subscript 0 afterward for brevity. Now substituting Eq. (69) for ∂Q/∂χ and
noting that ∂β1/∂χ ≡ Λs1, one finds that

χ′ ∂Λs1

∂θ
= −2λ

∂P

∂χ

B2

|∇χ|2 .

Therefore, the shear parameter can be evaluated as follows

χ′ dΛs

dθ
= −B × ∇χ · ∇ × (B × ∇χ)

|∇χ|4 − 2λ
∂P

∂χ

B2

|∇χ|2 . (70)

The second term here gives rise to the finite beta modification to shear parameter Λs in steep
pressure gradient model. The rest parameters here and in ballooning equations (63) and (64)
can be evaluated with low beta values.

We now consider tokamak model equilibrium with circular cross section, low beta, and large
aspect ratio (i.e., 1/ǫ = R/a ≫ 1). The magnetic field in this model can be expressed as
B = Bφ(r)/(1 + ǫ cos θ)eφ + Bθ(r)eθ . The shear parameter can be expressed as Λs = s(θ −
θk)− α sin θ. Here, α = −(2Rq2/B2)(dP/dr), s = d ln q/d ln r, and θk is integration constant.
Therefore, ballooning equations (63) and (64) can be reduced to

d

dθ

(

(1 + Λ2
s )

dδϕ

dθ

)

+ α(cos θ + Λs sin θ)δϕ +
2ΓRrqP

B
(cos θ + Λs sin θ)δΞ

+
ω2

ω2
A

(1 + Λ2
s )δϕ = 0, (71)

ΓP

R2q2

∂2δΞ

∂θ2
+ ρmω2δΞ = −2ρmω2

R2Bθ
(cos θ + Λs sin θ)δϕ. (72)

To further analyze this set of equations it is interesting to consider two limits: the low
frequency (ω ≪ ωsi) and intermediate frequency limit (ωsi ≪ ω ≪ ωse). In the low frequency
limit the second term on left hand side of Eq. (72) can be neglected and inertia term is only
important in the outer region θ → ∞. Equation (72) can be solved to yield

δΞ =
2ρmq2ω2

ΓPBθ
sθ sin θδϕ. (73)
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Here, it has been considered that in sound wave scale the slow variable sθ can be regarded as
constant. Inserting Eq. (73) into Eq. (71) yields that

d

dθ

(

(1 + Λ2
s )

dδϕ

dθ

)

+ α(cos θ + Λs sin θ)δϕ +
ω2

ω2
A

(1 + 2q2)s2θ2δϕ = 0. (74)

Here, we see that the sound wave coupling results in the so-called apparent mass effect: i.e.,
the inertia term is enhanced by a factor (1 + 2q2) Greene & Johnson (1962). In the kinetic
description the 2q2 term is further boosted by the so-called small particle speed effect to
become of order 2q2/

√
r/R for large aspect ratio case Mikhailovsky (1974) Zheng & Tessarotto

(1994b). In the marginal stability ω2 = 0 the ballooning stability can be determined by
Newcomb’s theorem 5 Newcomb (1960): system is unstable, if and only if the solution of
Eq. (48) vanishes two or more points. Refs. Connor et al. (1978) and Lortz & Nührenberg
(1978). have obtained the stability boundaries for ballooning modes.

In the intermediate frequency regime the first term in Eq. (72) can be neglected and therefore
one obtains

δΞ = − 2

R2Bθ
(cos θ + Λs sin θ)δϕ. (75)

Inserting Eq. (75) into Eq. (71) yields Tang et al. (1980)

d

dθ

(

(1 + Λ2
s )

dδϕ

dθ

)

+ α(cos θ + Λs sin θ)δϕ − 4Γq2P

B2
(cos θ + Λs sin θ)2δϕ

+
ω2

ω2
A

(1 + Λ2
s )δϕ = 0. (76)

The sound wave coupling term (3rd term) results in the so-called second harmonic TAE in the
circular cross section case Zheng et al. (1999).

4.4 Toroidal Alfvén eigen modes

In this subsection we review TAE theory. In the last two subsections we see that interchange
and ballooning modes are characterized by having only single dominant or resonant mode at
resonance surfaces. In particular their resonance surfaces locates at mode rational surface
where m − nq = 0. TAEs are different from them. TAEs involve two mode coupling.
In particular, the first TAEs are centered at the surface where q = (m0 + 1/2)/n. Two
neighboring Fourier modes (m0 and m0 + 1) propagate roughly with same speed vA/2Rq
but in opposite directions. They form a standing wave. The toroidal geometry can induce
the first frequency gap so that the standing wave becomes an eigen mode, i.e., TAEs Cheng
et al. (1985) Rosenbluth et al. (1992). In the second TAE case, although they have same mode
resonance surfaces as interchange and ballooning modes, m0 ± 1 mode coupling is involved
to form standing 2nd TAEs. The frequency gap for second TAEs in circular cross section case
is due to plasma compressibility effect Zheng & Chen (1998).

To explain two mode coupling picture, we consider tokamak model equilibrium with circular
cross section, low beta, and large aspect ratio (i.e., 1/ǫ = R/a ≫ 1). There is a review paper
on TAEs Vlad et al. (1999). Here, we describe the local dispersion relation for even and odd
modes and explain the 2nd TAEs together with the 1st TAEs. The magnetic field in this model
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can simply be expressed as B = Bφ(r)/(1 + ǫ cos θ)eφ + Bθ(r)eθ . The general case will be
addressed in Sec. 5 with AEGIS code formalism. Since their frequency is much larger than
shear Alfvén mode frequency, the compressional Alfvén modes are decoupled. Therefore,
we can use Eqs. (54) and (55) as starting equations for TAE investigation. Noting that Alfvén
frequency is much larger than sound wave frequency, the first term in Eq. (55) can be dropped.
Adopting the Fourier decomposition in Eq. (56), the sound wave equation (55) becomes

i(∇ · ξ)m =
1

BR

(

dϕm+1

dr
− dϕm−1

dr

)

.

Using this solution for ∇ · ξ, Eq. (54) can be reduced to Zheng et al. (1999)

d

dr

[

r3

(

1

q
− n

m

)2 d

dr
Em

]

− d

dr

(

r3 R2ω2

m2v2
A

d

dr
Em

)

− ǫ

(

r3 R2ω2

m2v2
A

d2

dr2
Em+1

)

−ǫ

(

r3 R2ω2

m2v2
A

d2

dr2
Em−1

)

+
ΓPr3

B2m2

d2Em+2

dr2
+

ΓPr3

B2m2

d2Em−2

dr2
− wEm

− αr2

2mq2

dEm+1

dr
+

αr2

2mq2

dEm−1

dr
− αr

2q2
Em+1 +

αr

2q2
Em−1 = 0, (77)

where Em = ϕm/r, v2
A = B2

0/ρm, B0 denotes magnetic field at magnetic axis, and w represents
the rest magnetic well terms.

We first examine singular layer physics. In this layer only terms contains second order
derivative in r need to be taken into consideration. From the first six terms in Eq. (77) one can
see that the 2nd TAEs (coupling of Em−1 and Em+1) have structure similarity to the 1st TAEs
(coupling of Em and Em+1). The 1st TAE coupling is due to finite value of aspect ratio; while
the 2nd TAE coupling is due to finite beta value. For brevity we focus ourselves to discuss the
1st TAE case. Denoting ω0 = ωA/2, q0 = (m + 1/2)/n, δω = ω − ω0, and δq = q − q0, the
singular layer equations describing the coupling of m and m + 1 modes becomes

∂

∂δq

[

δω

2ω0
−
(

1 − 1

2m + 1

)

nδq

]

∂

∂δq
δφm = − ǫ

4

∂2

∂δq2
δφm+1,

∂

∂δq

[

δω

2ω0
+

(

1 +
1

2m + 1

)

nδq

]

∂

∂δq
δφm+1 = − ǫ

4

∂2

∂δq2
δφm.

Introducing even and odd modes: δφ± = δφm ± δφm+1, these two equations become

∂

∂δq

(

δω

2ω0
+

1

2m0 + 1
nδq

)

∂

∂δq
δφ+ − ∂

∂δq
nδq

∂

∂δq
φ− = − ǫ

4

∂2

∂δq2
δφ+,

∂

∂δq

(

δω

2ω0
+

1

2m0 + 1
nδq

)

∂

∂δq
δφ− − ∂

∂δq
nδq

∂

∂δq
φ+ =

ǫ

4

∂2

∂δq2
δφ−.

Integrating once one obtains

D

⎛

⎝

∂δφ+

∂δq
∂δφ−
∂δq

⎞

⎠ ≡
(

δω
2ω0

+ 1
2m0+1 nδq + ǫ

4 −nδq

−nδq δω
2ω0

+ 1
2m0+1 nδq − ǫ

4

)

⎛

⎝

∂δφ+

∂δq
∂δφ−
∂δq

⎞

⎠ =

(

A+

A−

)

, (78)
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where D is 2 × 2 matrix and A± are integration constants. Integration of Eq. (78) across
singular layer (i.e., from δq− to δq+) one obtains the dispersion relation

⎛

⎝

δφ+|δq+

δq−

A+
−
∫ δq+

δq−

D22dδq

det |D|

⎞

⎠

⎛

⎝

δφ−|δq+

δq−

A−
−
∫ δq+

δq−

D11dδq

det |D|

⎞

⎠ =

(

∫ δq+

δq−

D12dδq

det |D|

)2

. (79)

Here, Dij are D matrix elements and two parameters ∆± ≡ δφ±|δq+

δq− /A± are determined by

the outer solutions to the left and right of singular layer. As soon as ∆± are computed from
outer regions, Eq. (79) can be used to determine the frequency. In general this frequency can
be complex.

The denominators of integrations in Eq. (79) involve det |D|. The singularity emerges at
det |D| = 0. In this case the Landau integration orbit needs to be used, as in the case for
particle-wave resonances, and continuum damping occurs Berk et al. (1992). The so-called
1st TAE frequency gap, in which eigen modes can exit without continuum damping, can be
determined by condition det |D| = 0, i.e.,

(

δω

2ω0
+

1

2m + 1
nδq +

ǫ

4

)(

δω

2ω0
+

1

2m + 1
nδq − ǫ

4

)

= n2δq2.

Its solution is

[

1 −
(

1

2m0 + 1

)2
]

n2δq =
δω

2ω0(2m0 + 1)
±

√

√

√

√

(

δω

2ω0

)2

− ǫ2

16

[

1 − 1

(2m + 1)2

]

. (80)

To exclude real δq solution for detD = 0, mode frequency must fall in the gap between δω±,
i.e., ω− < ω < ω+, where

δω± = ± ǫ

2
ω0

√

1 − 1/(2m + 1)2.

One can obtain the gap width ∆ω = δω+ − δω− = ǫω0

√

1 − 1/(2m + 1)2. The 1st TAEs are
Alfvén eigen modes with frequency inside this gap. They are marginally stable and tend to
be excited by resonances with energetic particles. Note that the gap width is proportional to
ǫ. In cylinder limit the gap vanishes. Therefore, existence of TAEs is due to toroidal effects.
Also, we note that the dispersion relation, Eq. (79), allows two types of TAEs: even and odd
types (ϕ±), depending on the values of ∆±.

We have discussed the 1st TEA theory through coupling of neighboring modes. In similar
way one can also develop the 2nd TAE theory through coupling of m ± 1 modes Zheng &
Chen (1998). If FLR effects are taken into consideration, the Alfvén types of singularities can
be resolved, so that discrete modes can emerge in the continuum. This types of modes are
referred to as kinetic TAEs (i.e., KTAEs). Due to correction of gyrokinetic theory Zheng et al.
(2007), several missing FLR effects are recovered. Consequently, KTAE theories by far need to
be reevaluated.
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4.5 Kinetically driven modes: KBMs, EPMs, etc.

In this subsection we describe the kinetically driven modes (KDMs), such as KBMs, EPMs, etc.
The frequencies of these modes usually reside in continuum spectrum. Therefore, they are
generally damped without driving effects. Unlike KTAEs, for which FLR effects are taken into
account to resolve singularity, for KDMs strong kinetic effects from wave-particle-resonances
are included to overcome continuum damping. That is why they are referred to as kinetically
driven modes. Energetic particle drives to marginal stable TAEs can instantly lead unstable
TAEs, but the drives to KDMs need to accumulate sufficient energy to overcome continuum
damping for unstable KDMs to develop Tsai & Chen (1993) Zheng et al. (2000). In Secs. 4.3 and
4.4 one has seen that there are two types of modes: ballooning and TAEs. Therefore, KDMs
also have two types. Those related to ballooning modes are referred to as KBMs, while EPMs
are related to TAEs and usually driven by wave-energetic-particle resonances. We employ
ballooning representation formalism to discuss them.

We start with the ballooning mode equation in intermediate frequency regime, Eq. (76),
with energetic particle effects included. Introducing the transformation ζ = ϕp1/2, Eq. (76)
becomes

∂2ζ

∂θ2
+ Ω2(1 + 2ǫ cos θ)ζ +

α cos θ

p
ζ − (s − α cos θ)2

p2
ζ

−4Γg2

p2
+

1

p1/2

∫

dεdμB

|v‖|
ωdδgh = 0, (81)

v‖ · ∇δgh − iωδgh = iω
(

μB + v2
‖
) ∂F0h

∂ε
(κr + κθΛ)p−1/2ζ, (82)

where p = 1 + Λ2
s , g = cos θ + Λ sin θ, δgh is perturbed distribution functions for hot ions,

κr and κθ are respectively radial and poloidal components of magnetic field line curvature
κ, Ω = ω/ωA, ωd is magnetic drift frequency, v is particle speed, the subscripts ⊥ and ‖
represent respectively perpendicular and parallel components to the equilibrium magnetic
field line, ε = v2/2 is particle energy, μ = v2

⊥/2B is magnetic moment, and F0h is equilibrium
distribution function for hot ions. For simplicity we have neglected the finite Larmor radius
effects and only take into account the kinetic effects from energetic ions.

To study KDMs one need to investigate singular layer behavior. In ballooning representation
space, singular layer corresponds to θ → ∞ limit. Again, we exclude the 2nd TAE from
discussion (i.e., assuming Γ = 0). Equation (81) in θ → ∞ limit becomes:

∂2ζ

∂θ2
+ Ω2(1 + 2ǫ cos θ)ζ = 0. (83)

This is the well-known Mathieu equation. According to Floquet’s Theorem, its solution takes
following form

ζ(θ) = P(θ) exp{iγθ},

where P(θ + 2π) = P(θ). Since modes with longer parallel-to-B wavelengths tend to be more
unstable, we shall examine solutions corresponding to the two lowest periodicities. The first
one is related to KBMs Tsai & Chen (1993) and the second one is related to EPMs Zheng et al.
(2000).

20 Topics in Magnetohydrodynamics

www.intechopen.com



Overview of Magnetohydrodynamics Theory

in Toroidal Plasma Confinement 21

We first discuss KBMs. The KBM-type solution is given by

ζK = exp{iγKθ}(A0 + A2 cos θ + · · · ). (84)

Inserting Eq. (84) into Eq. (83), one obtains, noting ǫ ≪ 1,

γ2
K ≈ Ω2(1 + 2ǫ2Ω2),

A2

A0
≈ 2ǫΩ2.

Therefore, at leading order, one has

ζK = exp{iΩ|θ|}, (85)

where ℑm{Ω} > 0 for causality. Note here that Eq. (85) is valid for general Ω, so that
frequency at continuum is allowed, as soon as causality condition is satisfied.

Next, we discuss TAE-type KDMs, e.g., EPMs. This type of solutions can be expressed as
Zheng et al. (2000)

ζT = exp{iγTθ}[A1 cos(θ/2) + B1 sin(θ/2) + · · · ]. (86)

Inserting Eq. (86) into Eq. (83), one obtains, for
∣

∣Ω2 − 1/4
∣

∣ ∼ O(ǫ) and ǫ ≪ 1,

γT =
[

(Ω2 − Ω2
+)(Ω

2 − Ω2
−)
]1/2

,
B1

A1
=

(

Ω2 − Ω2
−

Ω2
+ − Ω2

)1/2

, (87)

and Ω2
+,− = 1/4 ± ǫΩ2. The leading order solution can, therefore, be expressed as

ζT = exp

{

i
[

(Ω2 − Ω2
+)(Ω

2 − Ω2
−)
]1/2

|θ|
}

⎡

⎣cos(θ/2) +

(

Ω2 − Ω2
−

Ω2
+ − Ω2

)1/2

sin(θ/2)

⎤

⎦ . (88)

The causality condition is ℑm
{

[

(Ω2 − Ω2
+)(Ω

2 − Ω2
−)
]1/2
}

< 0. Equation (88) can describe

both TAEs and KDMs of TAE type (e.g., EPMs). Existence of TAE solution requires mode
frequency to fall in the gap: Ω− < Ω < Ω+, as shown by the TAE theory in configuration
space in Sec. 4.4. For KDMs mode frequency can be in the continuum, i.e., outside the gap
as soon as causality condition is satisfied. For TAEs ζT contains an O(1) back scattering
and, hence, the continuum damping is either suppressed or much reduced. On the other
hand, for KDMs ζK contains no back scattering from periodic potential in Eq. (83), and,
consequently, there is significant mount of continuum damping. Note that in principle both
types of solutions can co-exist at |Ω| ≈ 1/2 . However, the TAE solution tends to be more
unstable in this case than KDMs, since its continuum damping is much less or absent while
the instability drives are generally comparable.

With outer solutions given by Eq. (85) or Eq. (88), one can obtain the corresponding dispersion
relation by matching outer and inner solutions. For KBMs Eq. (81) can be used to construct
the following quadratic form in inner region:

2 ζ∗
dζ

dθ

∣

∣

∣

∣

+∞

−∞

+ δW f + δWk = 0, (89)
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where

δW f =
∫ +∞

−∞
dθ

{

∣

∣

∣

∣

∂ζ

∂θ

∣

∣

∣

∣

2

−
[

α cos θ

p
− (s − α cos θ)2

p2

]

|ζ|2
}

,

δWk =
∫ +∞

−∞
dθζ∗

1

p1/2

∫

dεdμB

|v‖|
ωdδgh.

Here, the superscript ∗ represents complex conjugate. Matching inner (Eq. (89)) and outer
(Eq. (85)) solutions one obtains the dispersion relation Tsai & Chen (1993)

− iΩ + δW f + δWK = 0. (90)

Here, we note that kinetic effects from core plasma should also be taken into account in outer
region. As proved in Ref. Zheng & Tessarotto (1994a) this results in the so-called apparent
mass effect and leads Ω in the first term of Eq. (90) to become complicated function of actual
mode frequency.

Similarly, for KDMs of TAE type, for example EPMs, one need to consider even and odd
modes. For even modes the dispersion relation is given by Refs. Zheng et al. (2000) and Tsai
& Chen (1993)

− i

(

Ω2
− − Ω2

Ω2
+ − Ω2

)2

+ δTf + δTK = 0, (91)

where δTf represents MHD fluid contribution and δTK is energetic-particle contribution to the
quadratic form in inner region.

The dispersion relations in Eqs. (90) and (91) extend respectively MHD ballooning modes in
diamagnetic gap and TAEs in Alfvén gap to respective continua. Kinetic drives are the causes
to make causality conditions satisfied.

5. Global numerical analyses of MHD modes: AEGIS code formalism

In Sec. 2.3 analytical or semi-analytical theories are presented to describe four types of
MHD modes in toroidal geometry. Due to the developments of modern numerical method
and computer hardware, conventional asymptotic expansion methods for global modes have
become outdated and been substituted by direct numerical computation. Several excellent
numerical codes have been developed in the past to study linear MHD stability of toroidally
confined plasmas, such as such as PEST Grimm et al. (1976) Chance et al. (1978), GATO
Bernard et al. (1981), DCON Glasser (1997), AEGIS Zheng & Kotschenreuther (2006), etc. In
this section we focus on description of AEGIS code, in view of that AEGIS is an adaptive MHD
shooting code capable to study MHD continuum Zheng et al. (2005). Through describing
AEGIS formalism, we can further explain the general features of MHD eigen modes in
toroidally confined plasmas.

Let us first describe the toroidal system to be investigated. The core part is plasma torus,
which is surround by a resistive wall; Between plasma torus and resistive wall there is inter
vacuum region and outside the resistive wall there is outer vacuum region, which extends to
infinity. For simplicity, it is assumed that the wall is thin. We denote respectively the interfaces
between plasma torus and inner vacuum region, inner vacuum region and wall, and wall and
outer vacuum region as ψa, ψb−, and ψb+.
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5.1 MHD equations and numerical solution method for plasma region

In this subsection we describe how to reduce MHD equations for global mode analyses. The
starting equation is the single fluid MHD equation (14). This is a vector equation and can be
projected onto three directions to get scalar equations. The parallel projection has be derived
in Eq. (33). From parallel equation one can solve for ∇ · ξ, which is the only unknown needed
for two-perpendicular equations to become a complete set of equations. In principle the
parallel motion can not be described by MHD model, since particles are not localized along
magnetic field line. There are wave-partcle resonance, trapped particle, and so-called small
parallel particle speed effects, etc. Nevertheless, from analyses in Sec. 4.3 one can see that in
low frequency regime the parallel coupling results only in the so-called apparent mass effect,
while in intermediate regime the parallel coupling mainly gives rise to the 2nd TAEs. Note
that apparent mass effect can be absorbed by rescaling mode frequency and inclusion of the
2nd TAE effect is straightforward as discussed in Sec. 4.4. For brevity we limit ourselves to
treat only two perpendicular components of Eq. (14) with Γ set to zero. AEGIS-K code has
been developed to include parallel dynamics using kinetic description Zheng et al. (2010).

Using general flux coordnates in Eq. (22), the magnetic field line displacement is decomposed
as follows

ξ × B = ξs∇ψ + ξψχ′(∇ζ − q∇θ). (92)

Since we deal with linear problem, the Fourier transform can be used to decompose perturbed
quantities in poloidal and toroidal directions,

ξ exp{−inζ} =
∞

∑
m=−∞

ξm
1√
2π

exp{i (mθ − nζ)}, (93)

with ξm =
∫ π
−π dθξ exp{−imθ}/

√
2π. With the toroidal symmetry assumed, only a single

toroidal Fourier component needs to be considered. As usual, equilibrium quantities can be
decomposed as matrices in poloidal Fourier space, for example

Jmm′ =
1

2π

∫ π

−π
dθ J(θ)ei(m′−m)θ .

In the poloidal Fourier decomposition, the Fourier components are cut off both from lower
and upper sides respectively by mmin and mmax. Therefore, the total Fourier component
under consideration is M = mmax − mmin + 1. We also use bold face (or alternatively [[· · · ]])
to represent Fourier space vectors, and calligraphic capital letters (or alternatively 〈· · ·〉) to
represent the corresponding equilibrium matrices (e.g., J for J) in poloidal Fourier space.

To get scalar equations, we project Eq. (14) respectively onto two directions
J2∇θ × ∇ζ · B × [· · · × B]/B2 and (1/qχ′)J2∇ζ × ∇ψ · B × [· · · × B]/B2, and then
introduce the Fourier transformation in Eq. (93) to two projected equations. These procedures
lead to the following set of differential equations in matrices

(

B†ξs +Dξ′ψ + Eξψ

)′
−
(

C†ξs + E†ξ′ψ +Hξψ

)

= 0, (94)

Aξs + Bξ′ψ + Cξψ = 0. (95)
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Here, the equilibrium matrices contain two parts: plasma/field force and inertia
contributions, e.g., A = Ap + γNAi, where

Ap = n(nG22 + G23M) +M(nG23 + G33M),

Bp = −iχ′ [n(G22 + qG23) +M(G23 + qG33)] ,

Cp = −i
[

χ′′(nG22 +MG23) + (qχ′)′(nG23 +MG33)
]

−χ′(nG12 +MG31)Q+ i(g′Q− μ0nP′J /χ′),

Dp = χ′2 [(G22 + qG23) + q(G23 + qG33)] ,

Ep = χ′ [χ′′(G22 + qG23) + (qχ′)′(G23 + qG33)
]

− iχ′2(G12 + qG31)Q+ μ0P′J ,

Hp = χ′′ [χ′′G22 + (qχ′)′G23

]

+ (qχ′)′
[

χ′′G23 + (qχ′)′G33

]

+iχ′ [χ′′(MG12 − G12M) + (qχ′)′(MG31 − G31M)
]

+χ′2QG11Q+ μ0P′χ′′J /χ′ + μ0P′J ′ − g′q′χ′I ,

Ai =
B2

0

X2
0q2

0

〈

J ρN

B2
|∇ψ|2

〉

,

Ci =
B2

0

X2
0q2

0

〈

χ′J ρN

B2
(∇ψ · ∇ζ − q∇ψ · ∇θ)

〉

,

Hi =
B2

0

X2
0q2

0

〈

χ′2J ρN

B2
(|∇ζ|2 + q2|∇θ|2 − 2∇θ · ∇ζ)

〉

,

Bi = Di = Ei = 0, Mmm′ = mImm′ , Qmm′ = (m − nq)Imm′ , γN denotes the dimensionless
growth rate normalized by the Alfvén frequency at magnetic axis, ρN is the dimensionless
mass density normalized by the mass density at magnetic axis, subscript "0" refers to
quantities at magnetic axis, and

G11 = 〈J(∇θ × ∇ζ) · (∇θ × ∇ζ)〉 ,

G22 = 〈J(∇ζ × ∇ψ) · (∇ζ × ∇ψ)〉 ,

G33 = 〈J(∇ψ × ∇θ) · (∇ψ × ∇θ)〉 ,

G12 = 〈J(∇θ × ∇ζ) · (∇ζ × ∇ψ)〉 ,

G31 = 〈J(∇ψ × ∇θ) · (∇θ × ∇ζ)〉 ,

G23 = 〈J(∇ζ × ∇ψ) · (∇ψ × ∇θ)〉 .

We can reduce the set of equations (94) and (95) into a set of first order differential equations
as in the DCON formalism Glasser (1997). By solving Eq. (95), one obtains

ξs = −A−1Bξ′ψ −A−1Cξψ.

Inserting this solution into Eq. (94), we get

d

dψ

(

Fξ′ +Kξ
)

−
(

K†ξ′ + Gξ
)

= 0, (96)
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where F = D − B†A−1B, K = E − B†A−1C, and G = H− C†A−1C. These matrices can be
further simplified as follows Glasser (1997)

F =
χ′2

n2

{

QG33Q+ γ2
NAi −

[

γ2
NAi +Q(nG23 + G33M)

]

×A−1
[

γ2
NAi + (nG23 +MG33)Q

]

}

, (97)

K =
χ′

n

{

i
[

γ2
NAi +Q(nG23 + G33M)

]

A−1C

−Q
[

χ′′G23 + (qχ′)′G33 − iχ′G31Q− g′I
]

− iγ2
NCi

}

. (98)

Introducing the expanded 2M unknowns u =

(

ξ

u2

)

, where u2 = Fξ′ + Kξ, Eq. (96) is

reduced to the set of 2M first order equations

u′ = Lu, (99)

where 2M × 2M matrix

L =

(

−F−1K F−1

G −K†F−1K K†F−1

)

.

We note that ξ and u2 in plasma region are related to the magnetic field and pressure as follows

[[J∇ψ · δB]] = iQξ,

− [[J (B · δB − ξ · ∇P)]] = u2.

The set of eigen mode equations in Eq. (99) can be solved numerically by independent solution
method together with multiple region matching technique as described in Ref. Zheng &
Kotschenreuther (2006). With M boundary conditions imposed at magnetic axis, there remain
only M independent solutions:

(

Ξp

W2

)

≡
(

ξ1, · · · , ξM

u1
2, · · · , uM

2

)

,

where the superscripts are used to label independent solutions. We use the cylinder limit to
describe the boundary condition at magnetic axis, i.e., ξψ,m ∝ rm. The general solution can be
then obtained as a combination of the M independent solutions,

(

ξ

u2

)

= i

(

Ξp

Wp

)

cp, (100)

where cp is a constant vector with M elements. Without loss of generality (by defining cp =

Ξ−1
p cnew

p and Wnew
p = WpΞ−1

p ), we can set Ξp to be unity I at plasma edge. Therefore, at
plasma-vacuum interface ψa we have

[[J∇ψ · δB]] = −Qcp, (101)

− [[J (B · δB − ξ · ∇P)]] = iWpcp. (102)
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5.2 The solution of vacuum region

For completeness, in this subsection we briefly review the vacuum solutions in Ref. Zheng &
Kotschenreuther (2006). The vacuum regions are described by the Laplace equation

∇2u = 0, (103)

where u is the magnetic scalar potential and is related to the perturbed magnetic field by
δB = −∇u. Here, we note that this representation of vacuum magnetic field, although being
simple, excludes the consideration of n = 0 modes. To study n = 0 modes, one more scalar
is needed to represent the vacuum magnetic field. For the sake of conciseness, we outline the
general solutions for inner and outer vacuum regions simultaneously.

As in the plasma region, Fourier decompositions are introduced for both poloidal and toroidal
directions to solve Eq. (103). Then Eq. (103) becomes a set of second-order differential
equations of number M for u. This set of second-order differential equations can be
transformed into a set of first-order differential equations of number 2M, by introducing an
additional field v = −[[J∇ψ · δB]], which is related to the magnetic scalar potential in Fourier
space as follows:

v =
〈

J |∇ψ|2
〉 ∂u

∂ψ
+ 〈iJ∇ψ · ∇θ〉Mu.

There are 2M independent solutions for Eq. (103), which can be used to construct the following
independent solution matrices:

(

U1

V1

)

≡
(

u1, · · · , uM

v1, · · · , vM

)

,

(

U2

V2

)

≡
(

uM+1, · · · , u2M

vM+1, · · · , v2M

)

.

The general solutions in the vacuum regions can be expressed as a linear combination of the
independent solutions:

(

u

v

)

=

(

U1

V1

)

cv +

(

U2

V2

)

dv, (104)

where cv and dv are constant vectors in the independent solution space. To distinguish the
inner and outer vacuum solutions, we let cv1 and dv1 denote the constants for inner vacuum
region and cv2 and dv2 for outer vacuum region.

In the outer vacuum region, the scalar potential u is subjected to M boundary conditions
at infinite ψ. With these M boundary conditions imposed, there are only M independent
solutions left. Without loss of generality, we can set cv2 to be zero in this case. Consequently,
eliminating dv2 in Eq. (104), we obtain

u|ψb+
= T v|ψb+

,

where the M × M matrix T is given by T = U2V−1
2 |ψb+

. The matrix T can be computed by
means of the Green function method Chance (1997).
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In the inner vacuum region, the independent solutions can be constructed, for example, with
the use of an inward numerical shooting Zheng & Kotschenreuther (2006), with the following
boundary conditions imposed at ψb−:

(

U1

V1

)

ψb−

=

(

I
O

)

, (105)

(

U2

V2

)

ψb−

=

(

T
I

)

, (106)

where O is M × M zero matrix. Since the boundary conditions in Eq. (105) give δB · ∇ψ = 0
at wall, these conditions correspond to a set of solutions that corresponds to the perfectly
conducting wall type. On the other hand, since the boundary conditions in Eq. (106)
guarantee that the independent solutions to be continuous with outer vacuum solutions,
these conditions correspond to a set of solutions that corresponds to the no-wall type. Using
the general expression for the solutions in Eq. (104), we can express the normal and parallel
magnetic fields at the plasma-vacuum interface as follows:

[[J∇ψ · δB]] = −V1cv1 − V2dv1, (107)

−[[J B · δB]] = iQ (U1cv1 + U2dv1) . (108)

5.3 Eigenvalue problem

The solutions in the plasma and vacuum regions described in the last two subsections can
be used to construct the eigen value problem Zheng & Kotschenreuther (2006). The normal
magnetic field component and the combined magnetic and thermal pressures are required to
be continuous at the plasma-vacuum interface. Matching plasma [Eqs. (101) and (102)] and
vacuum [Eqs. (107) and (108)] solutions at the interface ψa gives

dv1 = F−1
1 δWbδW−1

∞ F2cv1, (109)

where δW∞ = Wp −Q[U2V−1
2 ]ψaQ, δWb = Wp −Q[U1V−1

1 ]ψaQ, F1 = Q
[

U2 − U1V−1
1 V2

]

ψa

,

and F2 = Q
[

U1 − U2V−1
2 V1

]

ψa

. Note that δW∞ and δWb correspond to the energy matrices

without a wall and with a perfectly conducting wall at ψb, respectively, as can be seen from
the boundary conditions in Eqs. (105) and (106).

We now consider the matching across the thin resistive wall. For the radial magnetic field, the
Maxwell equation ∇ · δB = 0 and the thin wall assumption lead to

v|ψb− = v|ψb+
= dv1.

The current in the resistive wall causes a jump in the scalar magnetic potential. This can be
obtained from the Ampére law

∇ × ∇ × δB = −γμ0σδB, (110)
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where σ is the wall conductivity. Equation (110) can be reduced to

V
(

u|ψb+
− u|ψb−

)

= τwγNdv1, (111)

where τw = μ0σdb/τA, d is the wall thickness, b is the average wall minor radius, and

V = M
〈

J |∇ψ||∇θ| − J |∇ψ · ∇θ|2/(|∇ψ||∇θ|)
〉

M

+n2
〈

J |∇φ|2|∇ψ|/|∇θ|
〉

.

Since cv2 = 0, we find that Eqs. (104) - (106) yield

u|ψb+
− u|ψb− = −cv1. (112)

From Eqs. (109), (111), and (112) we find the eigen mode equations

D0(γN)dv1 ≡ τwγNdv1 + VF−1
2 δW∞δW−1

b F1dv1 = O.

The dispersion relation for this eigen value problem is given by the determinant equation
det |D0(γN)| = 0. In general the Nyquist diagram can be used to determine the roots of
this dispersion relation. For RWMs, however, the growth rate is much smaller than the

Alfvén frequency. Therefore, the growth rate dependence of δW∞δW−1
b can be neglected

for determining the stability condition. Consequently, one can use the reduced eigen value
problem

− VF−1
2 δW∞δW−1

b F1dv1 = τwγNdv1, (113)

with the RWM mode growth rate γN on the right hand side of this equation used as the eigen
value to determine the stability.

5.4 Discussion

Now let us discuss the connection of current global theory with localized analytical theories
described in Sec. 4. The singular layer equation in Eq. (48) is derived by employing mode
localization assumption. Only localized mode coupling is considered. The general eigen
mode equation Eq. (96) in plasma region contains all side band couplings. Noting that Q ∝ x,
one can see from Eqs. (97) and (98) that F ∝ x2 and K ∝ x at marginal stability ω = 0.
We can therefore see the root of Eq. (48) in Eq. (96). If ballooning invariance in Eq. (57) is
introduced, the set of matrix Eq. (96) can be transformed to a single ballooning equation. The
TAE theory in Sec. 4.4 uses just two Fourier components to construct eigen modes. The general
Alfvén gap structure can be determined by det |F | = 0. Note that, if an analytical function is
given on a line on complex ω plane, the function can be determined in whole domain through
analytical continuation by using the Cauchy-Riemann condition. Note also that one can avoid
MHD continuum by scanning the dispersion relation with real frequency ℜe{ω} for a small
positive growth rate ℑm{ω}. Using the scan by AEGIS one can in principle find damping
roots through analytical continuation. Due to its adaptive shooting scheme AEGIS can be
used to compute MHD modes with very small growth rate. It has successfully computed
Alfvén continuum damping rate by analytical continuation based on AEGIS code Chen et al.
(2010).
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6. Summary and discussion

In this chapter we have given an overview of MHD theory in toroidal confinement of
fusion plasmas. Four types of fundamental MHD modes in toroidal geometry: interchange,
ballooning, TAEs, and KDMs, are discussed. In describing these modes we detail some
fundamental analytical treatments of MHD modes in toroidal geometry, such as the average
technique for singular layer modes, ballooning representation, mode coupling treatment in
TAEs/KDMs theories. Note that analytical approach is often limited for toroidal plasma
physics. Global numerical treatment of MHD modes is also reviewed in this chapter,
especially the AEGIS code formalism. These theories are reviewed in ideal MHD framework.
Here, we briefly discuss kinetic and resistive modifications to ideal MHD, as well as the
connection of MHD instabilities to transport.

Let us first discuss kinetic effects. Since strong magnetic field is used to contain plasmas in
magnetically confined fusion experiments, MHD theory can be rather good to describe fusion
plasmas in the direction perpendicular to magnetic field. This is because strong magnetic
field can hold plasmas together in perpendicular movement. Therefore, MHD is a very good
model to describe perpendicular physics, if FLR effects are insignificant. However, in parallel
direction the Lorentz force vanishes and particle collisions are insufficient to keep particles
to move collectively. Consequently, kinetic description in parallel direction is generally
necessary. Kinetic effect is especially important when wave-particle resonance effect prevails
in the comparable frequency regime ω ∼ ωsi Zheng & Tessarotto (1994a). In the low frequency
regime ω ≪ ωsi, wave-particle resonances can be so small that kinetic description results
only in an enhancement of apparent mass effect. Kinetic effect in this case can be included
by introducing enhanced apparent mass. Another non-resonance case is the intermediate
frequency regime ωsi ≪ ω ≪ ωse. In this regime kinetic description results in a modification
of ratio of special heats. By introducing proper Γ MHD can still be a good approximation.
Recovery of perpendicular MHD from gyrokinetics has been studied in details in Ref. Zheng
et al. (2007).

Fig. 2. CITM physics picture. The dot-dashed line represents mode rational surface.
Perturbed current at rational surface due to interchange modes leads to field line
reconnection and formation of magnetic islands.
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Next, let us discuss resistivity effects. Resistivity usually is small in magnetically confined
fusion plasmas. Due to its smallness resistivity effects are only important in the singular layer
region. With ideal MHD singular layer theory detailed in Sec. 4.2 one can rederive resistive
singular layer equations given in Ref. Glasser et al. (1975). However, it should be pointed
out that, when kinetic enhancement of apparent mass effect is taken into account, the ratio of
resistivity and inertia layer widths changes. This leads kinetic description of resistive MHD
modes to become substantially different from fluid description Zheng & Tessarotto (1996)
Zheng & Tessarotto (1995). Kinetic analysis of low frequency resistive MHD modes becomes
necessary.

The driving force for ideal MHD instabilities is related to pressure gradient. Resistivity can
instead cause field line reconnection and induce the so-called tearing modes. It is important
to note that if current gradient is taken into account pressure driven modes and tearing modes
are coupled to each other. The underlying driving mechanism for pressure driven modes is
the release of plasma thermal energy from the interchange of magnetic flux tubes. Actually,
interchange-type modes exchange not only thermal and magnetic energies between flux tubes,
but also current. In a plasma with a current (or resistivity) gradient, such an interchange
can create a current sheet at a mode resonance surface and result in the excitation of current
interchange tearing modes (CITMs) as shown in Fig. 2 Zheng & Furukawa (2010).

Instabilities of interchange type have been widely used to explain anomalous transport in
tokamaks in terms of the formation of turbulent eddies through nonlinear coupling. However,
the explanation for experimental observations that the electron energy transport is much
larger than what one would expect from diffusive process due to Coulomb collisions is still
unsatisfactory. The electron Larmor radius is much smaller than ion one. Nonetheless, the
electron thermal transport often is stronger than ion transport. In Ref. Rechester & Rosenbluth
(1978), the broken magnetic surfaces due to formation of magnetic island and stochastic
field lines are used to explain the enhanced electron transport. But, how magnetic islands
are formed in axisymmetric tokamak plasmas has not been given. CITM theory shows that
interchange-type instabilities can directly convert to current interchange tearing modes. This
helps to clarify the source of electron transport in tokamaks.

Another transport issue we need to discuss is the so-called flow shear de-correlation of
turbulences. This concept has been widely used for explaining suppression of plasma
turbulences. In fact, this picture is not right for systems with magnetic shear. We use Fig.
3 to explain it (L. J. Zheng and M. Tessarotto, private communication). In Fig. 3, the dashed
long arrow represents a magnetic field line on a given magnetic surface ψ0, and two solid
long arrows denote the magnetic field lines respectively at two time sequences t0 and t0 + ∆t
on an adjacent magnetic surface ψ1. Let us examine the correlation pattern in the local frame
moving together with equilibrium velocity of the dashed long arrow on surface ψ0. The modes
are supposed to locate around the point “O” initially at t = t0. After a time interval ∆t, the
field line on surface ψ1 moves relatively to the dashed long arrow on the surface ψ0 due to flow
shear. From Fig. 3 one can see that the fixed pattern has not been de-correlated by flow shear,
instead the pattern just propagates from point “O” at time t = t0 to point “O′” at subsequent
time t = t0 + ∆t. This indicates that flow shear does not de-correlate turbulence eddies. Only
flow curvature can result in the de-correlation. This resembles to ballooning mode behavior
in rotating plasmas with Cooper representation Waelbroeck & Chen (1991).
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Fig. 3. Schematic explanation for why flow shear does not de-correlate turbulence eddies.

In conclusion significant progresses have been made for linear ideal MHD theories and
numerical codes in the past dacades. However, the kinetic effects on MHD remains
considerably open. Although correction of gyrokinetics theory has been made recently Zheng
et al. (2007), the applications of the new gyrokinetics theory remain to be worked out. The
theories for FLR effects on ballooning modes, KTAEs, energetic particle effects, etc. need
to be modified with newly corrected gyrokinetics theory. The extension of toroidal resistive
MHD theory Glasser et al. (1975) to take into account the small parallel ion speed effect
Zheng & Tessarotto (1996) and current interchange effects Zheng & Furukawa (2010) is under
consideration.
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