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1. Introduction 

Idiopathic Parkinson’s disease (IPD), first described by James Parkinson in 1817, is a 

sporadic neurodegenerative disorder. The main clinical features include masked face, 

resting tremor, bradykinesia, rigidity, festinating gait, and loss of postural reflexes. The 

clinical features are most insidious and usually asymmetric at onset. The asymmetry may 

persist even in a late stage and progress slowly. The pathological findings are characterized 

by loss of pigmented dopamine neurons in the substantia nigra, particularly the pars 

compacta and locus ceruleus, and the presence of Lewy bodies. The cause of IPD remains 

unknown. 
Parkinsonism (PM) is not a single disease but a common clinical presentation. The clinical 
syndrome is characterized by tremors, bradykinesia, rigidity, and postural instability. 
Exposure to toxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which 
was sold as “synthetic heroin,” manganese (Mn), carbon disulfide (CS2), carbon monoxide 
(CO), methanol, cyanide, and other organic solvents may cause brain damage, leading to 
features similar to PM. Many neurodegenerative disorders may present with PM, including 
progressive supranuclear palsy (PSP), multiple system atrophy (MSA), spinocerebellar 
atrophy (SCA), and corticobasal sundrome (CBS). Several genetic diseases, including dopa-
responsive dystonia (DRD), Wilson’s disease (WD), and Huntington’s disease (HD), may 
cause degeneration in the basal ganglia or affect the dopaminergic pathway. Furthermore, 
some dementia syndromes may be associated with PM, including vascular parkinsonism 
(multiple infarct parkinsonism), dementia with Lewy bodies (DLB), and frontotemporal 
dementia, and parkinsonism linked to chromosome 17 (FTD-17).  
The main treatment of IPD includes the use of dopamine, dopamine agonists, monoamine 
oxidase inhibitors, and catechol-o-methyltransferase inhibitors. The above medications are 
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usually effective in IPD patients, whereas their effects are usually limited in patients with 
secondary parkinsonism. Although definite diagnosis of IPD is based on typical 
pathological findings, early diagnosis is very important as it leads to early treatment. 
IPD and PM are distinguished on the basis of the onset of symptoms, symmetry of clinical 
features, characteristics of tremors, rigidity, bradykinesia, and other associated symptoms, 
such as cognitive impairment, limitation of eye ball movement, ataxia, and autonomic 
dysfunction. In addition, information concerning family history, smoking and alcohol 
exposure, diabetes with hypertension, and exposure to toxic substances are also essential for 
diagnosis. Despite differences in the clinical features of IPD and PM, definite diagnosis may 
be difficult; therefore, reliable imaging is helpful for early and accurate diagnosis. 

2. Dopamine transporter (DAT) scan 

Dopamine transport is one of the primary mechanisms that can modulate the dopaminergic 

tone via an active transport system that involves the re-uptake of dopamine. Cocaine 

analogues including (1r) 2-carbomethoxy-3-(4-iodophenyl) tropane (-CIT), and 123I-FP-

CIT have been developed as single photon emission computed tomography (SPECT) 

imaging agents. Both agents can bind at the DAT site of dopamine neuron terminals in 

normal human subjects and IPD patients. In addition, 99mTc-TRODAT-1 is a promising 
99mTc-labelled radiotracer for imaging DAT in the human brain. Since a cyclotron and well-

trained radiochemists are required for clinical usage of 123I--CIT and 123I-FP-CIT SPECT, 

they are more difficult to use in clinical settings. 99mTc-TRODAT-1 is much easier to prepare 

and can be made in many nuclear medicine departments. Previous studies have shown that 
99mTc-TRODAT-1 is very reliable in detecting dopamine neurons in the striatum; therefore, it 

is an important tool for understanding the role of DAT in various neurological diseases. 

3. DAT scan in IPD 

Similar to 123I--CIT and 123I-FP-CIT, 99mTc-TRODAT-1 activity in the basal ganglia can 
demonstrate a stable target/non-target ratio, and at a reduced level in IPD patients than in 
healthy volunteers. Serial 99mTc-TRODAT-1 SPECT images taken 2, 3, and 4 h after injection 
of 925 MBq 99mTc-TRODAT into healthy volunteers show a consistent increase of the uptake 
with time. Furthermore, the relative concentration of 99mTc-TRODAT-1 in the basal ganglia 
regions decreases significantly with age in healthy volunteers. The rate of decline is 
significantly faster in young individuals than in the elderly. The effect seems to occur during 
young adulthood, particularly in individuals younger than 40 years. The putamen/occipital 
and caudate/occipital ratios show a statistically significant difference between IPD patients 
and healthy volunteers. 

4. Secondary parkinsonism 

4.1 Toxin-induced PM 
4.1.1 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

MPTP is a byproduct of a meperidine analogue, 1-methyl-4-proprion-oxypeperidine 
(MPPP), which is a synthetic heroin. Injection of the contaminated synthetic drug may cause 
the victims to develop acute severe parkinsonian features such as bradykinesia and severe 
rigidity in about 7 days. Since its discovery, MPTP has been used in animal models of 
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parkinsonism, which is responsive to dopamine and dopamine agonist treatment. Although 
dementia and autonomic dysfunction, typical dyskinesia, prominent wearing off 
phenomena, and psychiatric impairments in MPTP victims occur more rapidly than in 
subjects with IPD, the clinical features of these individuals are indistinguishable from those 
of IPD patients. The MPTP toxin may damage the dopamine neurons in the substantia nigra 
via 1-methyl-4-phenyl-pyridinium (MPP+), a metabolite of MPTP, that may inhibit the 
production of ATP and stimulate the formation of superoxide radicals. The neurotoxic effect 
of MPTP is permanent, even though the patients have an excellent response to levodopa 
treatment. 6F-Dopa positron emission tomography (PET) of the brain showed that a 
subclinical exposure to MPTP might result in a reduction of fluorodopa uptake in the 
striatum. In some experimental studies that used brain SPECT, 99m Tc-TRODAT-1 binding 
was significantly lower in the MPTP-treated monkeys than in the control monkeys. 

4.1.2 Manganese (Mn) intoxication 

Chronic exposure to manganese may induce parkinsonism similar to IPD. However, the 

clinical features of manganism, including lower body parkinsonism, frequent gait 

disturbance (particularly cock gait), increased dystonia, and reduced action tremor, also 

differ from IPD. In addition, in Mn-induced PM, a reduced response to anti-parkinsonian 

drugs, gait-freezing during turns, and difficulty in walking backwards were also noted. 

Although relative symmetry was noted, clinical asymmetry was also reported. Unlike 

patients with multiple system atrophy, patients with manganism did not show postural 

hypotension, sexual dysfunction, and sphincter disturbance. 

Brain magnetic resonance imaging (MRI) is a promising technique to demonstrate the 

presence of manganese in the brain. T1-weighted MR images showed an increased intensity 

in the globus pallidus area of welders, smelters, patients undergoing parenteral nutrition, 

and in patients with hepatic failure. However, the increase in signal intensity in T1-

weighted MR images only indicates an exposure to manganese in recent months but does 

not indicate manganism. 

Previous PET scans with 6-FD had shown a normal nigrostriatal dopaminergic uptake in the 

caudate or putamen in manganism patients. In addition, brain PET scans with raclopride 

showed a mild decrease (less than 20%) of caudate dopamine D2 receptors. However, the 

minimal decrease of D2 receptor density could not account for the prominent clinical 

features in manganese intoxication patients. 

Both 6-FD PET and DAT are sensitive detectors for dopamine neurons. In a previous study, 

DAT density with 123I--CIT SPECT was decreased in PM patients with manganese 

exposure. However, these findings seemed to be more consistent with IPD than with Mn-

induced parkinsonism. The brain 99mTc-TRODAT-1 SPECT showed no significant changes in 

the putamen and the putamen/caudate ratio of manganism patients and normal controls. 

However, a statistically significant decrease was noted in the uptake of 99mTc-TRODAT-1 in 

the putamen area of IPD patients than in the manganism patients. Figure 1 shows the DAT 

findings in a manganism patient, an IPD patient, and a normal control. The data indicate 

that presynaptic dopaminergic terminals are not the main targets of chronic manganese 

intoxication. Pathologic changes in monkeys after manganese chloride injection included 

prominent gliosis in the globus pallidus and in the substantia nigra pars reticularis that 

differs from the target lesion-substantia nigra pars compacta in IPD.  
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Fig. 1. The uptakes of 99mTc -TRODAT-1 brain SPECT were decreased in the corpus striatum 
particularly in the left side in a PD patient (A), and nearly normal in a patient with chronic 
manganism (B) and a normal control (C). r=right. 

4.1.3 Carbon disulfide (CS2) intoxication 

CS2 is a colorless liquid organic solvent frequently used in the production of viscose rayon 
fibers and cellophane films. Acute exposure to CS2 may cause psychosis, delirium, seizures,  
 

 

Fig. 2. Normal DAT bindings with 99mTc -TRODAT-1 brain SPECT were noted in 2 
patients with CS2 intoxication (A), and (B) but a decreased DAT binding in another 
patient who had IPD with CS2 exposure (C), as compared with those of a normal control 
(D) and a PD patient (E). r=right. 
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and even death. Chronic exposure to CS2 manifests as a diffuse encephalopathy including 
parkinsonism, intention tremor, emotional lability, and neurobehavioral disorders as well 
as polyneuropathy. Brain MRI may reveal diffuse hyperintense lesions in T2-weighted 
images in the subcortical white matter, basal ganglia, and brainstem. A brain CT 
perfusion study showed a decrease of regional cerebral flow and prolonged regional 
mean transit time in the subcortical white matter and the basal ganglia. The diffuse white 
matter lesions are better explained by vascular insufficiency than demyelination. In CS2 
intoxicated patients with parkinsonism, brain 99mTc-TRODAT-1 SPECT showed a normal 
uptake of the dopamine transporter, indicating a normal presynaptic dopaminergic 
pathway (Figure 2). Therefore, CS2 intoxication-induced parkinsonism is probably due to 
post-synaptic lesions in the basal ganglia rather than the presynaptic dopaminergic 
pathway. 

4.1.4 Carbon monoxide (CO) intoxication 

Acute CO intoxication may induce hypoxic changes in the brain with variable degree of 

consciousness disturbance from confusion, delirium, and stupor to deep coma. Most 

patients recover after appropriate oxygen therapy; however, sequelae such as dystonia 

and cognitive impairment may persist. Approximately 0.2–40% of survivors developed 

delayed encephalopathy within 2 months. The common manifestations include cognitive 

changes, sphincter disturbance, akinetic mutism, and parkinsonian features. Brain MRI 

studies showed hyperintense lesions in the basal ganglia, particularly in the globus 

pallidus and subcortical white matter. A steady improvement was found after 1–2 years of 

supportive therapy; however, residual parkinsonism may develop in some patients. 

Moreover, a poor response to levodopa is noted. Brain 99mTc-TRODAT-1 may show a 

normal uptake in the basal ganglia, indicating that the presynaptic pathway of the 

nigrostriatral system is normal.  

4.1.5 Others: Methanol and cyanide 

Acute intoxication with methanol may cause metabolic acidosis and severe anionic gaps, 

leading to blindness and parkinsonism including masked face, rigidity, bradykinesia, gait 

disturbance, and dystonia. Brain MRI may show damage in the bilateral putaminal areas. 

Acute cyanide intoxication may also cause parkinsonism such as hypomimia, rigidity, and 

gait disturbance within a few days, and subsequent dystonia and dementia. The response to 

levodopa therapy is usually disappointing. Table 1 summarizes the clinical features and 

DAT findings in toxin-induced PM. 

4.2 Other neurodegenerative parkinsonian syndromes  
4.2.1 Progressive supranuclear palsy (PSP) 

PSP, first described in the early 1900s, is a devastating neurodegenerative disease. In 1963, 
Steele, Richardson, and Olszewski reported a series of patients with pathologically 
confirmed heterogeneous system degeneration. The syndrome is characterized by 
parkinsonism, axial rigidity, frequent falls, vertical gaze palsy, pseudobulbar palsy, and 
dementia. In addition, atypical features include asymmetrical parkinsonism, dystonia, 
tremor, apraxia, and pure akinesia. The pathological changes include neuronal loss, 
neurofibrillary tangles, and gliosis in the basal ganglia, brainstem, and cerebral cortex. The 
response to levodopa treatment for parkinsonian symptoms is usually poor. The most 
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common subtypes of PSP syndrome include Richardson’s syndrome (RS) and progressive 
supranuclear palsy-parkinsonism (PSP-P). The clinical features of RS are similar to the 
classic type of PSP, whereas PSP-P has features similar to IPD, such as asymmetric onset of 
symptoms, tremor, and initial response to levodopa. 
 

 MPTP Mn CS2 CO Methanol 

Clinical features       

Parkinsonism + + + + + 

 Rigidity + + + + + 

 Tremor + Less - - - 

 Bradykinesia + + + + + 

 Loss of postural 

reflex 

+ + + + + 

 Mental disorders + + + + + 

 Cerebellar sign - Less + - - 

 Polyneuropathy - - + - - 

 Autonomic 

dysfunction 

+ + + - - 

Neuroimaging       

 Brain CT/MRI N/N N/+  

(T1 high) 

+/+ 

(Vascular 

changes) 

+/+  

(GP) 

+/+ 

(Putamen 

lesion) 

 DAT uptake in 

striatum (99mTc-

TRODAT-1 SPECT)

Decrease 

(in 

monkey) 

N N N NA 

 Prognosis Permanent Deterioration Poor Partial 

recovery 

Blindness 

 Response to 

Levodopa  

Good No No No Poor 

 Source of exposure Synthetic 

heroin 

Smelter, 

miner, welder

Viscose 

rayon 

worker 

Accidental, 

suicidal 

attempts 

Accidental 

+: presence; -: absence; GP: globus pallidus; N: normal; NA: not available 

MPTP: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; Mn: manganese; CS2: carbon disulfide; CO: 

carbon monoxide. 

Table 1. Toxins induced secondary parkinsonism 

Dopamine transporter (DAT) scans with 123I--CIT showed a reduction of DAT activities in 
the caudate and putamen areas, particularly the caudate areas in PSP patients. However, the 
dopamine D2 receptor images with IBZM were variable. The inconsistent findings are 
probably because of the grouping of both RS and PSP-P types. In our previous studies with 
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99mTc-TRODAT-1 scans, the mean striatal uptake was reduced in the RS group than in the 
PSP-P group, even though uptake did not reach statistical significance. The 
putamen/caudate ratios were significantly different between IPD and PSP patients. 
However, there was no difference between RS and PSP-P patients. In the IBZM scan, the 
uptake was significantly reduced in the RS group, but mildly increased in the PSP-P group. 
The data indicate that DAT imaging is helpful to distinguish PSP-P from IPD patients in the 
early stages. DAT activities showed a greater decrease in the RS group than in the PSP-P 
group. In addition, activities of the D2 receptor were reduced in the RS group but not in the 
PSP-P group. 

4.2.2 Multiple system atrophy (MSA) 

Multiple system atrophy (MSA) was originally described as 3 distinct disorders: 
olivopontocerebellar atrophy (OPCA), Shy–Drager syndrome (SDS), and striatonigral 
degeneration (SND). MSA is a sporadic progressive neurodegenerative disease 
characterized by variable degrees of parkinsonism, cerebellar ataxia, and autonomic 
dysfunction. According to the motor dysfunction, MSA can be divided into 2 subtypes: 
parkinsonian type (MSA-P) and cerebellar type (MSA-C). The pathologic changes reveal a 
variable involvement of neuronal loss in the corpus striatum, globus pallidus, substantia 
nigra, locus ceruleus, Edinger–Westphal nucleus, olivary nuclei, cerebellar peduncles, 
cerebellar Purkinje cells, intermediolateral column, and Onuf’s nucleus of the spinal cord. 
The diagnosis of MSA is still based on clinical criteria. The clinical distinction between MSA-
P and IPD is sometimes difficult, particularly in the early stages, because both have a good 
response to levodopa. 
In IPD patients, a severe reduction of DAT uptake in the putamen and relative sparing of 
the caudate nucleus is noted. However, a variable uptake of 6-18F-fluorodopa was noted in 
MSA patients. 99mTc-TRODAT-1-brain SPECT revealed a more symmetrical reduction of the 
striatal binding in MSA-P and MSA-C patients; this was in contrast with the greater 
asymmetric reduction seen in IPD patients. In addition, the reduction of P/O and S/O ratios 
is greater for the MSA-P patients than for the MSA-C patients. P/C ratios showed that MSA-
P and IPD patients have a similar pattern of nigral involvement but that MSA-C patients 
had a different pattern. 

4.2.3 Spinocerebellar degeneration (SCA) 

Hereditary ataxias are a clinically and genetically heterogeneous group of disorders 
transmitted most frequently as autosomal dominant or autosomal recessive traits. Three 
common phenotypes including SCA1, SCA2 and SCA3 (Machado–Joseph disease, MJD) are 
characterized by variable degrees of cerebellar signs, pyramidal dysfunction, anterior horn 
cell involvement, and/or peripheral neuropathy but some patients may develop 
parkinsonian symptoms, which may also respond to levodopa treatment.  

4.2.3.1 SCA1  

The early pictures include cerebellar syndrome and upper motor neuron signs. Later, 
ophthalmoplegia, slow saccades, and a sensory predominant polyneuropathy, amyotrophy, 
chorea, and dystonia may develop. Dysarthria, dysphagia, and cognitive impairment are 
also noted. The gene mutation is an unstable CAG expansion in the ataxin 1 gene on 
chromosome 6p. Brain 99mTc-TRODAT-1 SPECT imaging revealed a decrease of dopamine 
transport in the striatum. 
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4.2.3.2 SCA2 

SCA2 has a wider phenotypical spectrum than SCA1. The presence of slow saccades and 

peripheral neuropathy early in the disease may lead to the diagnosis of SCA2. In addition, 

dystonia, levodopa-responsive parkinsonism, and cognitive decline are also noted. The 

mutation is a CAG expansion in the ataxin 2 gene on chromosome 12 with alleles ranging 

from 32–64 (normal, 15–31). 99mTc-TRODAT-1 SPECT of the brain showed a significantly 

asymmetric reduction of the striatal dopamine transporter in these patients; this was similar 

to the finding in IPD patients. The presynaptic impairment of nigrostriatal function is 

probably the reason for levodopa responsiveness. 

4.2.3.3 SCA3 

This is the most prevalent type of spinocerebellar ataxia. The clinical manifestations include 
cerebellar and brainstem signs such as facial and tongue fasciculations or myokymia, with 
facial atrophy, and dysphonia. Non-cerebellar eye signs such as slow saccades, impairment 
in conjugate eyeball movement, ophthalmoparesis, ptosis, eyelid retraction, and 
blepharospasm have also been reported. Dystonia is commonly seen. In addition, the 
parkinsonian features may respond to dopamine therapy. The mutation is an unstable CAG 
expansion in the ataxia 3 gene on chromosome 14 with 53–86 CAG repeats (normal limit < 
47). 99mTc-TRODAT-1 scan of the brain revealed a significant decrease in the uptake of 
tracers in MJD patients than in healthy controls. The decreased uptakes of 99mTc-TRODAT-1 
indicated a defect in the nigrostriatal dopaminergic pathway in symptomatic MJD patients 
with and without extrapyramidal signs. However, the severity of the DAT abnormality did 
not correlate well with the length of the CAG repeat, age at disease onset, or disease 
duration. 

4.2.4 Corticobasal syndrome (CBS) 

Corticobasal syndrome was first described in 1967 in 3 patients who had asymmetric motor 

symptoms with an involvement of frontoparietal atrophy and neuronal loss at autopsy. CBS 

is an adult onset and slowly progressive degeneration with asymmetric akinetic-rigid 

syndrome. A limited response to levodopa treatment is noted in such patients. Some other 

extrapyramidal symptoms include tremor, dystonia, cortical dysfunction, cortical sensory 

impairment, apraxia, and alien hand phenomenon. Brain MRI may show focal cortical 

atrophy, particularly in the parietal lobe. Brain 18F-FDG PET reveals a frequently 

asymmetric hypometabolism in both the cerebral hemispheres. Brain 99mTc-TRODAT SPECT 

reveals an asymmetric involvement in the corpus striatum with equal involvement in both 

caudate and putamen regions.  

The clinical and DAT findings in the above-described neurodegenerative diseases are shown 
in Table 2. 

4.3 Gene-related parkinsonism/dystonia degenerative diseases 
4.3.1 Dopa-responsive dystonia (DRD) 

Dopa-responsive dystonia, also known as Segawa’s disease, is characterized by foot 

dystonia since childhood, diurnal fluctuation, and a dramatic and sustained response to 

low-dosage levodopa. Some patients with DRD may also show adult-onset parkinsonism 

similar to IPD. Pathologic degeneration of dopaminergic nigral cells is found in IPD, 

whereas synthesis defects in dopamine neurons without cell loss are noted in DRD. 
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 PSP MSA SCA CBS 
 RS PSP-P MSA-P MSA-C SCA1 SCA2 SCA3  
Clinical features  
 Parkinsonism  +(sym) +(asym) + + + + + + (asym) 
  Rigidity +(axial) +(axial) + + + + + + (asym) 

  Tremor - + + + 
+ 

(action)
+ 

(action)
+ 

(action) 
+ 

  Bradykinesia + + + + + + + - 
  Loss of 
postural reflex 

+ + + + + + + - 

  Akinetic- rigid 
syndrome 

+ - + - - - - + 

  Dystonia +(facial) +(facial) - - + + + + 

  Retrocollis + + 
-

(anticollis)
- - - - - 

  Cognitive 
dysfunction 

+ + + - + - - + 

  Alien hand - - - - - - - + 
  Cortical 
sensory 
impairment 

- - - - - - - + 

  Cerebellar sign - - + + + + + - 
  Ataxia - - - + + + + - 
  Slow saccade - - - + + + - 
  Peripheral  
neuropathy 

- - - - + + - - 

  Autonomic 
dysfunction 

+ + + + - ? ? ? 

  EOM limitation + (VGP) + (VGP) - - + - + - 
  Ptosis - - - - - - + - 
  Fasciculation - - - - - - + - 
     Face - - - - - - + - 
     Tongue - - - - - - + - 
  Dysarthria + + + + + + + - 
  Dysphagia + + + + + + + - 
  Apraxia - - - - - - - + 
  Response to 
Levodopa 

Poor 
Initial 
good

Initial 
good

Partial Partial
Initial 
good

Partial 
+ 

(limited) 
Neuroimaging  
  CT/MRI +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ 

  DAT uptake D D D (sym) D (sym) D 
D 

(asym)
D D (asym) 

  IBZM uptake D 
Increase
(mild)

Possible
D

Possible
D

NA NA NA D 

 6 FD-PET uptake NA NA D D NA NA NA D (asym) 

+: presence; -: absence; D: decrease; I: increase; sym: symmetrical; asym: asymmetrical; VGP: vertical 
gaze palsy; NA: not available 

Table 2. Clinical features and DAT data in neurodegenerative diseases 
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Molecular genetic studies revealed a mutation in GTP cyclohydrolase 1 (GCH1) in 
autosomal-dominant inherited DRD and mutations in tyrosine hydroxylase (TH) in 
autosomal-recessive inherited DRD. In DRD patients, 18F-Dopa PET reveals normal uptakes 
in the corpus striatum; these findings may distinguish DRD from IPD, which reveals a 
decreased uptake even in the early stage of IPD patients. Dopamine transporter images with 
99mTc-TRODAT-1 SPECT also show a normal uptake in DRD, indicating that presynaptic 
nigrostriatal dopaminergic terminals are normal (Figure 3). 
 

 

Fig. 3. The 99mTc -TRODAT-1 brain SPECT shows a normal uptake in the putamen and 
caudate in a patient with DRD (B) compared with those in a normal control (A) and a PD 
patient (C). A reduction of the uptake in the corpus striatum, particularly in the right side 
was observed in the PD patient. r=right. 

4.3.2 Wilson’s disease (WD) 

Wilson’s disease, hepatolenticular degeneration, is an autosomal recessive disorder 
characterized by a decreased serum concentration of ceruloplasmin, low serum copper 
concentration, and excessive deposition of copper in the liver, brain, and other organs. 
The most common neurological manifestations include akinetic-rigid syndrome, dystonia, 
and cerebellar ataxia with action tremor. Pathologically, the most severely affected lesions 
include the basal ganglia involving the putamen, caudate, and globus pallidus. A brain CT 
scan may show low-density lesions with cystic degeneration in the basal ganglia, 
particularly the putamen and globus pallidus, as well as cortical atrophy and ventricular 
enlargement. Brain MRI reveals increased signal intensities in T2-weighted images of the 
lenticular nuclei, thalamus, and brainstem including the pons, midbrain, and even the 
substantia nigra. Occasionally, double panda signs were found in the brainstem. A poor 
therapeutic response to levodopa is noted in WD patients. However, brain 6F-DOPA PET 
studies have shown an involvement of the nigrostriatal presynaptic dopaminergic pathway. 
In addition, SPECT with 123I-iodobenzamide (123I-IBZM) and PET images with 18F-
methylspiperone have showed a reduction of postsynaptic striatal D2 receptor, reflecting 

striatal neuronal damage. Some DAT studies with 123I--CIT SPECT disclosed a severe or 
differential loss of the DAT in the striatum of WD patients, indicating a presynaptic defect in 
the terminals of the nigrostriatal dopaminergic neurons. However, in some WD patients 
with akinetic-rigid syndrome, a normal presynaptic dopaminergic pathway may occur; 
brain MRI also reveals the involvement of substantia nigra in these patients. (Figure 4). 
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Fig. 4. Demonstration of 99mTc-TRODAT-1 uptake in an age-matched normal control (A), a 
WD patient (B) and a PD patient (C). Normal uptake of 99mTc-TRODAT-1 in the putamen 
and caudate nucleus was noted in a normal control and a WD patient (A and B). In PD 
patient, there was an asymmetrically decreased 99mTc-TRODAT-1 uptake, predominantly in 
the putamen (C). r=right. 

4.3.3 Huntington’s disease (HD, Westphal type) 

Huntington’s disease, the most common cause of hereditary chorea, is an autosomal 

dominant disorder caused by an expansion of an unstable trinucleotide repeat in 

chromosome 4. The most striking feature is the appearance of chorea movements that seem 

purposeless and abrupt. However, some patients may present with the so-called akinetic-

rigid variant form (Westphal variant). This form of the disease is rapidly progressive with a 

fatal outcome in less than 10 years after the onset of symptoms. Brain CT/MRI show 

enlarged ventricles with atrophy of the caudate nucleus. MRI of patients with the a kinetic-

rigid form of the disease may reveal T2 hyperintense lesions in the striatum. FDG-PET may 

show hypometabolism in the caudate and putamen regions.  

The clinical features and neuroimages of DRD, WD, and HD with Westphal variant are 

summarized in Table 3. 

4.4 Dementia syndromes with parkinsonism 
4.4.1 Vascular parkinsonism (VP) or multiple infarct parkinsonism 

Vascular parkinsonism is characterized by clinical symptoms of gait disturbance with 

freezing, lower body parkinsonism, and loss of postural reflexes. Tremor is rarely seen. The 

onset is usually insidious and the course is progressive. Brain MRI usually reveals 

hyperintense T2-weighted signals in the basal ganglia and/or white matter; these findings 

are compatible with those of multiple infarctions. Hypertension is a common risk factor for 

the disorder. A poor or insufficient response to anti-parkinsonian drugs is also noted in 

these patients. Early diagnosis of VP is important because the prognosis and response to 

treatment in these patients are different from those of patients with IPD. However, VP may 

have a wide spectrum of clinical features, which make the differential diagnosis of these 

diseases difficult. A study using DAT with 99mTc-TRODAT-1 showed that specific binding in 

the putamen and caudate areas was slightly lower in VP patients than in healthy 

individuals; however, a significant decrease in the uptake of 99mTc-TRODAT-1 in the 
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striatum was noted in IPD patients. A significant striatal asymmetry was observed in IPD 

patients but not in VP patients. 

 

 DRD WD HD (Westphal) 

Clinical features    

Diurnal fluctuation + - - 

Chorea - - + 

Dystonia + + + 

Parkinsonism + + + 

Cerebellar sign - + - 

Cognitive impairment - + + 

Liver dysfunction - + - 

Autonomic dysfunction - + - 

Response to levodopa Excellent Partial No 

Neuroimaging    

CT/MRI N/N Abn/Abn Abn/Abn (caudate 

atrophy) 

DAT-SPECT N Abn NA 

FDG-PET N Abn Abn 

6 FD-PET N Abn NA 

+: presence; -: absence; N: normal; Abn: abnormal; NA: not available 

Table 3. Clinical features and DAT findings in gene- related PM/dystonia degenerative 

diseases  

4.4.2 Dementia with Lewy bodies (DLB) 

DLB is the second most common cause of neurodegenerative dementia after Alzheimer’s 

disease (AD). The diagnostic criteria of DLB were established by the consensus conference 

for DLB in 2005. In the early stage of DLB, deficits in attention, executive function, and 

visuospatial ability are very prominent. The core clinical features include fluctuation of 

cognition, visual hallucination, and spontaneous parkinsonism. Recent suggestive 

features include REM sleep behavioral disorder, severe neuroleptic sensitivity, and low 

dopamine transporter uptake in the basal ganglia on SPECT or PET imaging. Supportive 

features of DLB diagnosis include repeated falls, syncope, transient loss of consciousness, 

autonomic dysfunction, depression, systematized delusions, or hallucinations. In brain 

MRI, atrophy of the cortical or hippocampus is lower in DLB patients than in AD patients. 

In 18F-FDG PET or SPECT, maximal hypometabolism was noted in the parieto-occipital 

area in DLB patients; however, maximal hypoperfusion was noted in the tempo-parietal 

cortex in AD patients. 

Serial DAT with I-123 -CIT brain SPECT also demonstrated progressive striatal 

dopaminergic loss in DLB and Parkinson’s disease with dementia, but not in AD. These 

findings have a high specificity (94%) in distinguishing between DLB and AD. 

A brain DAT with TRODAT-1 SPECT also demonstrated a decreased uptake in the striatum, 

including the putamen and caudate regions, but the DLB patients had relatively symmetric 

lesions and IPD patients had asymmetric lesions. 
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4.4.3 Frontotemporal dementia with parkinsonism-17 (FTDP-17) 

Frontotemporal dementia (FTD) can be divided into 3 major subtypes, including 

frontotemporal lobe dementia (FTLD), semantic dementia (SD), and progressive nonfluent 

aphasia (PNFA). The characteristic behavior changes include disinhibition, social 

withdrawal, diminished insight, loss of empathy, perseverance, and stereotypic behaviors. 

Semantic dementia may present with progressive loss of semantic knowledge, and although 

speech remain fluent, it becomes empty. Semantic dementia usually manifests as a fluent  

  

 VaD DLB FTDP-17 

Clinical features    

Parkinsonism + + + 

Rigidity + + + 

Tremor - - - 

Bradykinesia + + + 

Lose of postural 

reflex 
+ + + 

Language problem + - + 

Focal sign + - + 

Dysarthria + - - 

Dysphagia + - - 

Dementia + + + 

Hallucination + + - 

Cognitive fluctuation - + - 

Personality changes + + + 

Syncope - + - 

Autonomic 

dysfunction 
- + - 

Response to 

levodopa 
Poor Poor Poor 

Neuroimages    

  CT/MRI Abn/Abn Abn/Abn Abn/Abn 

DAT-TRODAT Normal Abn NA 

FDG-PET Abn Abn Abn 

6FD-PET NA Abn NA 

+: Presence; -: absence; Abn: abnormal; NA: not available 

Table 4. Clinical features and DAT findings in dementia syndromes 
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dysphasia with impairment in semantic verbal memory and an associative agnosia in 

individuals with more left temporal lobe involvement. Prosopagnosia may occur with right 

temporal damage. Progressive non-fluent aphasia is characterized by aphasia with 

stuttering and agrammatism. The executive function and working memory are usually 

impaired. The typical neuroimaging findings are asymmetrical atrophy of the anterior  

temporal lobe in SD and atrophy of the left inferior frontal lobe and anterior insular cortex 

in PNFA. In addition, there is overlap of clinical manifestations between AD and FTD. These 

3 subtypes of FTD often overlap motor syndromes such as amyotrophic lateral sclerosis 

(ALS) and parkinsonism.  

FTDP-17 is a distinct disease characterized by personality changes, executive dysfunction, 

memory deterioration, and parkinsonism. Motor disturbances include bradykinesia, axial 

and limb rigidity, and postural instability. Early manifestations include behavioral changes 

such as disinhibition, impaired social function, judgment and planning, and global 

dementia. Parkinsonism in FTDP-17 is unresponsive to levodopa. Table 4 summarizes the 

clinical manifestations in vascular parkinsonism, DLB, and FTDP-17. 

5. Conclusion 

The clinical features of IPD and PM are very similar, but some manifestations differ. The 

treatment and prognosis also differ. The response to treatment with levodopa is variable; 

therefore, definite diagnosis is very important. Early and accurate differentiation between 

IPD and PM has been markedly improved by recent developments in neuroimaging, 

particularly the 99mTc-TRODAT-1 SPECT, which is not only easy and economical to 

prepare and use in a wide variety of applications but also reliable in understanding the 

role of DAT in various neurological diseases. Most importantly, early and correct 

diagnosis leads to earlier and, therefore, more effective treatment with levodopa, when 

appropriate. 

Abbreviations: 

CBS: corticobasal syndrome 

-CIT: (1r) 2-carbomethoxy-3-(4-iodophenyl) tropane  

CO: carbon monoxide 

CS2: carbon disulfide 

DAT: dopamine transporter 

DRD: dopa-responsive dystonia 

DLB: dementia with Lewy bodies 

6-FD: 6-fluorodopa 

FDG: fluorodeoxyglucose  

FTD: frontotemporal dementia 

FTDP-17: frontotemporal dementia with parkinsonism linked to chromosome 17 

HD: Hungtington’s disease 
123I-IBZM scan: I-123–iodobenzamide D2 receptor scan 

IPD: idiopathic Parkinson’s disease 

MJD: Machado–Joseph disease 

Mn: manganese  

MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine  
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MSA: multiple system atrophy 

MSA-C: multiple system atrophy-cerebellar subtype  

MSA-P: multiple system atrophy-parkinsonism subtype  

PET: positron emission tomography 
PM: Parkinsonism  
PSP: progressive supranuclear palsy  
PSP-P: progressive supranuclear palsy-parkinsonism 
RS: Richardson syndrome 
SCA: spinocerebellar atrophy  
SPECT: single photon emission computed tomography 
99mTc-TRODAT-1: Tc-99m labeled radiotracer for imaging DAT  
VP: vascular parkinsonism  
WD: Wilson’s disease 
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