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The Role of Chemokines and Cytokines 
 in the Pathogenesis of Periodontal and 

Periapical Lesions: Current Concepts 

Gustavo P. Garlet et al.* 
Department of Biological Sciences, School of Dentistry of Bauru, 

 Universidade de São Paulo  
Brazil 

1. Introduction 

The oral cavity is a complex environment that may harbor more than 750 bacterial species. 
Proper oral hygiene is essential to maintain the equilibrium of microbial community and 
oral health. The ecological balance can be compromised in inadequate microbial control 
situations and an oral infection can be evoked. The bacteria can aid in the formation of 
dental plaque and caries, leading to periodontal disease (PD) and periapical lesion (PL). PD 
is the most common chronic inflammatory disorder of microbial origin that affects tooth-
supporting tissues including the periodontal ligament and the alveolar bone. Dental caries is 
characterized by demineralization of enamel and dentine produced by microorganisms’ 
acids. This process can cause pulp necrosis and root canal infection  and  the progression 
through the root apex can induce PL. PD and PLs constitute inflammatory and immune 
response against oral pathogens. Both processes encompass pathogenic mechanisms of 
inflammation-mediated soft tissue destruction and bone resorption. The etiopathogenesis of 
these diseases have been extensively investigated over the last decades and the role of 
several cell types, cytokines and pathways has been described (Graves, 2008, Graves et al., 
2011a, Nair, 1997). 
Last decades research have documented the importance and commitment of immune 
system to protect the host from pathogen and also the paradoxical effect accounting for the 
bone resorption observed in these diseases. More recently, the pattern of immune cell 
response involved in the lesions progression (i.e. Th1, Th2, Th17, Th9 or T regulatory) has 
received particular attention (Cardoso et al., 2009, Colic et al., 2009a, Gaffen & 
Hajishengallis, 2008, Ohlrich et al., 2009, Queiroz-Junior et al, 2011). Although chemokines 
and cytokines are pivotal to determine these Th patterns, not much is known regarding the 
expression of these markers in the regulation of bone resorption in sites of PD and PL. This 
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chapter will cover the findings regarding the pathways involved in soft and mineralized 
tissue destruction and present hypotheses that integrate this information into a context of 
inflammatory/immune host response. 

2. Periodontal and periapical lesions etiology: Similarities and peculiarities 

The oral cavity is replete with surface-associated communities of microorganisms – the 
biofilms – colonizing mucous membranes, dental materials and teeth, and these oral 
biofilms are strongly associated with the etiology of oral inflammatory diseases, such as PD 
and PL (Beikler & Flemming, 2011). Despite this association, bacteria alone are not sufficient 
to cause disease. Both lesions of periodontal and endodontic origin involve the host 
response to bacteria and the formation of osteolytic lesions. Also, additional factors that 
benefit the microbial community or make the host more susceptible are determinant for PD 
and PL to develop and progress (Graves, 2008, Nair, 1997). 
PDs are the pathological manifestation of the host response against the bacterial challenge 
from the dental biofilm (Sanz & van Winkelhoff, 2011). PD is a chronic inflammatory 
condition of the attachment structures of the teeth – alveolar bone, periodontal ligament, 
connective tissues of gingiva – initiated and perpetuated by predominantly Gram-negative, 
anaerobe or microaerophilic bacteria that colonize subgingival area – such as Porphyromonas 
gingivalis, Tannerella forsythia and Aggregatibacter actinomycetemcomitans. These bacteria trigger 
the destruction of tooth supporting tissues leading to the formation of periodontal pockets, 
conversion of junctional epithelium to pocket epithelium which culminate with tooth loss 
(Page et al., 1997). But bacteria mostly cause such tissue destruction indirectly, through the 
perturbation of the homeostasis between the subgingival microbiota and the host defenses in 
susceptible individuals. Although bacteria are essential, they are insufficient for the disease to 
occur (Graves, 2008). For PD, both endogenous risk factors – genetics (Michalowicz et al., 
2000), diabetes mellitus (Emrich et al., 1991), rheumatic disorders (Pablo et al., 2009) – and 
exogenous risk factors – cigarette smoking (Bergström, 2004) and psychological stress 
(Monteiro da Silva et al., 1996) – may even outweigh the bacteria as determinants of whether 
the disease occurs and of the severity of clinical outcome.  
In the presence of the microbial challenge, the susceptible host responds with an immediate 
inflammatory and immune response in order to control the challenge. The initial host 
response comprises an innate recognition of microbial components – lipopolysaccharides 
(LPS), bacterial DNA – by host cells of the gingiva and the subsequent production of 
inflammatory mediators, such as eicosanoids (Offenbacher et al., 1986), reactive oxygen 
species (Chapple, 1997), matrix metalloproteinases (MMPs) (Garlet et al., 2006), chemokines 
(Silva et al., 2007) and cytokines (Garlet, 2010), which are directly responsible for PD 
pathogenesis. In addition, periodontal bacteria also lead to the polarization and activation of 
antigen-specific lymphocytes and migration of other inflammatory cells to periodontal 
tissues, characterizing an adaptive response (Cutler & Jotwani, 2004). In fact, the 
development of the PDs seems to be related to the progression of the inflammatory cell 
infiltrate into the deeper periodontal tissues since the blockade of such inflammation 
reduces disease process (Graves et al., 1998). These responses, although directed against 
bacteria, perpetuate and mediate the destruction of connective and mineralized periodontal 
tissues, being the main responsible for periodontal breakdown (Garlet, 2010). 
As for PD, mounting evidence indicate that PLs are also biofilm-induced diseases influenced 
by the host immune response (Nair, 1997). The distinction for PD is that PLs are initiated as 
a response to microorganisms present inside the tooth, specifically in the dental pulp 
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(Ricucci & Siqueira, 2010). Thus, lesions of endodontic origin pose a particular challenge 
since that bacteria persist in a protected reservoir that is not readily accessible to the 
immune defenses. In healthy conditions, dental pulp is protected from microorganisms of 
the oral cavity by enamel and dentin. The exposure of dental pulp to microorganisms as a 
consequence of dental caries, fractures or operative procedures triggers a local inflammatory 
response. The progression of such infection and inflammation results in necrosis of the pulp 
and involvement of periapical tissues, generating a PL (Nair, 1997). An initial acute 
inflammatory response induces tissue changes in the apical region, such as hyperemia and 
neutrophil recruitment, which can shift to the formation of a granulation tissue with chronic 
inflammatory cells and fibroblasts, the apical granuloma. A granuloma can remain latent or 
be converted to an epithelium lined cavity, the inflammatory cysts. These pathological 
changes in periapical tissues are the clinical consequence of the host defensive reaction 
against bacterial products that egress through apical foramen from infected dental pulp 
(Nair, 1997), but inhibition of this inflammation tends to aggravate the formation of 
osteolytic lesions through impairment of the antibacterial activity of the host response, that 
is critical in endodontic lesions (Graves et al., 2000). Similarly to PD, this response is 
characterized by the persistent release of inflammatory mediators, such as chemokines and 
cytokines (Kawashima et al., 2007, Nair, 1997, Silva et al., 2007, Queiroz-Junior et al., 2011, 
Vernal et al., 2006), and migration of inflammatory cells (Liapatas et al., 2003, Stashenko et 
al., 1992) to infected sites (as stated in Table 1). It largely prevents microbial invasion into 
periapical tissues (Liapatas et al. 2003, Nair, 1997), but it also induces the resorption of the 
periapical alveolar bone (Stashenko et al., 1992). Although the commitment of immune cells 
and production of inflammatory mediators protect the host from pathogen invasion, it also 
accounts for periapical bone resorption (Nair, 1997, Takahashi, 1998). 
 
Cytokine / 
Chemokine 

Cellular 
Source Receptor Function 

Levels in
Reference 

Homeostasis Inflammation 

IL-1ǃ 

Phagocytes
(Neutrophils, 
Macrophages)
Epithelial cells
Fibroblasts

IL-1R1 
IL-1R2 

Induces inflammatory cell 
migration 
Induces bone resorption 

Absent or 
low 

Increased in 
chronic 
inflammation 

Bloemen et 
al., 2010 

IL-4 Th2 cells IL-4R 

Prototypical Th2 cytokine
Anti-inflammatory 
properties 
Induces IL-10 production 
B cell stimulatory factor 
Humoral immune response 
Suppressing the 
polarization of Th1 cells 
Inhibit the transcription of 
pro-inflammatory 
cytokines 
Inhibits production of 
MMPs and RANKL 
Induces the upregulation 
of its respective inhibitors 
TIMPs and OPG

Absent or 
low 

Low to high, 
depending on 
the nature of 
inflammatory 
immune 
response 

Cronstein, 
2007 
Kawashima 
et al., 1999 
Fukada et 
al., 2009 
Ihn et al., 
2002 
Pestka et 
al., 2004 
Agnello et 
al., 2003, 
Appay et 
al., 2008, 
Bluestone 
et al., 2009 

IL-6 

Phagocytes
(Neutrophils, 
Macrophages)
T and B cells 
Epithelial cells

IL-6R 

Osteoclastogenesis 
processes 
Promotes bone resorption 
Pro-inflammatory 
properties

Absent or 
low 

Increased in 
chronic 
inflammation 

Pestka et 
al., 2004 
Cronstein, 
2007 
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Cytokine / 
Chemokine 

Cellular 
Source Receptor Function 

Levels in
Reference 

Homeostasis Inflammation 
Fibroblasts
Osteoblasts 

Inflammatory cell 
migration 
Humoral immune 
response

IL-9 Th2 cells 
 IL-9R 

Promotes allergic 
inflammation associated 
with various Th2 
responses  
Promotes Th17 cells 
development 
Increasing the activity of 
Treg cells

Absent or 
low 

Low to high, 
depending on 
the nature of 
inflammatory 
immune 
response 

Hauber et 
al., 2009 
Elyaman et 
al., 2009, 
Novak et 
al., 2009 

IL-10 Th2 cells 
Treg cells 

IL-10R1 
IL-10R2 

Anti-inflammatory 
properties 
Protective role in tissue 
destruction 
Stimulates OPG 
production

Absent or 
low Increased 

Pestka et 
al., 2004 
Chou et al., 
2006 
Zhang & 
Teng, 2006 

IL-12 
Monocytes/ 
Macrophages 
Dendritic cells

IL-12Rǃ1 
IL-12Rǃ2 

Mediates alveolar bone 
resorption via IFN-Ǆ 
Inhibits osteoclast 
activation in vitro 

Absent or 
low 

Low to high, 
depending on 
the nature of 
inflammatory 
immune 
response

Sasaki et 
al., 2008 
Queiroz-
Junior et al., 
2010 

IL-17 
T cells 
Th17 cells 
Mast cells 

IL-17RA/
IL-17R 
IL-17RB/
IL-15R 
IL-17RC 
IL-17RD/
SEF 
IL-17RE

Osteoclastogenic 
properties 
Upregulates IL-1ǃ and 
TNF-ǂ 
Inducer of RANKL 
production 
Neutrophil mobilization 

Absent or 
low 

Low to high, 
depending on 
the nature of 
inflammatory 
immune 
response 

Yago et al., 
2009 
Kotake et 
al., 1999 
Sato et 
al.,2006 
Yu et al., 
2007  

IL-22 T cells 
Dendritic cells IL-22Rǂ1 

Anti-inflammatory 
properties 
Positively correlated to 
OPG, IL-10 and TGF- 
Participates in adaptive 
response

Absent or 
low 

Low to high, 
depending on 
the nature of 
inflammatory 
immune 
response 

Brand et 
al., 2006 
Valencial et 
al., 2006 

TNF-ǂ 

Phagocytes 
(Neutrophils, 
Macrophages)
Epithelial cells
Fibroblasts 

TNFR1 
TNFR2 

Upregulates adhesion 
molecules 
Upregulates chemokine 
production 
Regulates production of 
IL-1ǃ and IL-6 
Induces cell migration 
Increases of MMPs and 
RANKL expression 
 

Absent or 
low 

Increased in 
chronic 
inflammation 

Dinarello, 
2000 
Kindle et 
al., 2006 
Garlet et 
al., 2007a 
Wajant et 
al., 2003 
Graves, 2008 
Peschon et 
al., 1998 

TGF-ǃ 
Treg cells 
Monocytes/ 
Macrophages 

TGF-ǃRI 
TGF-ǃRII 

Pleiotropic cytokine
Regulates cell growth 
Regulates differentiation 
and matrix production 
Potent 
immunosuppressive factor
Downregulates IL-1ǃ, 
TNF-ǂ, MMPs production

Increased 

Low to high, 
depending on 
the nature of 
inflammatory 
immune 
response 

Cardoso et 
al., 2008 
Okada & 
Murakami, 
1998 
Steinsvoll 
et al., 1999 
Dutzan, 
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Cytokine / 
Chemokine 

Cellular 
Source Receptor Function 

Levels in
Reference 

Homeostasis Inflammation 
Protective role against 
tissue destruction 

2009a,  
Dutzan, 
2009b 

IFN-Ǆ Th1 cells 
NK cells  

Induces inflammatory 
cytokines 
Induces chemokines 
Stimulates osteoclast 
formation 
Main phagocyte-activating 
cytokine 
bone loss described by in 
vivo 
inhibit osteoclastogenesis 
in vitro 

Absent or 
low 

Low to high, 
depending on 
the nature of 
inflammatory 
immune 
response 

Appay et 
al., 2008 
Murphy & 
Reiner, 
2002 
Garlet et 
al., 2008 
Sallusto 
and 
Lanzavecch
ia, 2011, 
Schroder et 
al., 2004 
Repeke et 
al., 2010 
Ji et al., 
2009, 
Takayanagi 
et al., 2005 

CXCL8 
(IL-8) 

Phagocytes
(Neutrophils/ 
Polymorphon
uclear 
leukocytes 
Monocytes/ 
Macrophages)
Lymphocytes, 
Mast cells 
Epithelial cells
Fibroblasts 
Endothelial 
cells, 
Osteoclasts. 

CXCR1 

Inflammatory chemokine 
Neutrophil chemotaxis 
activating factor 
(Enhances production of 
Leucotrien B4) 
Induces osteoclast 
differentiation and activity

Absent or 
low Increased 

Yoshimura 
et al., 1987 
Tonetti et 
al., 1998 
Darveau, 
2010 
Rossi, 2003 
Traves & 
Donnelly, 
2005 
Bendre et 
al., 2003 

CCL2 
(MCP-1) 

Phagocytes
(Neutrophils/ 
Polymorphon
uclear 
leukocytes 
Monocytes/ 
Macrophages)
Lymphocytes, 
Mast cells 
Epithelial cells
Fibroblasts 
Endothelial 
cells, 
Osteoblasts 
Osteoclasts.

CCR2 
CCR11 

Chemoattracts monocytes 
Inflammatory bone 
remodeling 
Limits infiltration of PMNs
Chemoattracts for 
osteoclast precursors 

Absent or 
low Increased 

Koch et al., 
1992 
Bonecchi et 
al., 2009 
Garlet et 
al., 2010 

CCL3 
(MIP-1ǂ) 

Phagocytes
(Neutrophils/ 
Polymorphon
uclear 
leukocytes 
Monocytes/

CCR1 
CCR5 

Chemotatic for 
lymphocytes, monocytes / 
macrophages, basophils, 
eosinophils, dendritic cells.
Stimulates bone resorption
Homologus chemokines 

Absent or 
low Increased 

Koch et al., 
2005 
Gemmel et 
al., 2001  
Alnaeeli et 
al., 2007 
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Cytokine / 
Chemokine 

Cellular 
Source Receptor Function 

Levels in
Reference 

Homeostasis Inflammation 
Macrophages)
Lymphocytes, 
Mast cells 
Epithelial cells
Fibroblasts 
Endothelial 
cells, 
Osteoclasts.

CCL4 and CCl5 Taub, 1996 
Repeke et 
al., 2010 
Graves et 
al., 2011 

CCL5 
(RANTES) 

Phagocytes
(Neutrophils/ 
Polymorphon
uclear 
leukocytes 
Monocytes/ 
Macrophages)
Lymphocytes, 
Mast cells 
Epithelial cells
Fibroblasts 
Endothelial 
cells, 
Osteoclasts.

CCR1 
CCR5 

Chemoattracts for 
lymphocytes, monocytes 
Induces CXCL8 and IL-6 
production 

Absent or 
low Increased 

Koch et al., 
2005 
Yu et al., 
2004 
Garlet et 
al., 2003 
Gemmel et 
al., 2001 
Gamonal et 
al., 2001 
Nanki et 
al., 2001 

MMPs 

Phagocytes
(Neutrophils/ 
Polymorphon
uclear 
leukocytes 
Monocytes/ 
Macrophages)
Lymphocytes 
Epithelial cells
Fibroblasts 
Endothelial 
cells 

TIMPs1 
Remodeling of 
extracelleular matrix  

Absent or 
low 

Increased 

Garlet, 2010 
Garlet et 
al., 2006 
Hannas et 
al., 2007 
Verstappen 
and Von, 
2006 
Birkedal-
Hansen, 
1993 

TIMPs  MMPs1 
Regulates matrix 
remodeling 

Low 
Decreased or 
Increased 

Garlet, 2010 
Garlet et 
al., 2006 
Hannas et 
al., 2007 

RANKL 

Osteoblasts2 
Osteocytes2 
Leukocytes3 
 

RANK 
Differentiation and 
activation of osteoclasts 

Low Increased 

Teitelbaum, 
200 
Katagiri and 
Takahashi, 
2002 

OPG 
T cells 
Osteoblasts 

RANKL1 
Inhibits bone resorption by 
preventing RANK-
RANKL engagement 

Low 
Decreased or 
Increased 

Teitelbaum, 
2000 
Katagiri and 
Takahashi, 
2002 

Notes: 
1 – in the absence of a “receptor”, the coupling molecules were listed 
2 – under homeostatic  conditions 
3 – under inflammatory conditions 

Table 1. Cytokines and chemokines involved in the pathophysiology of periodontal and 
periapical diseases 
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Therefore, the etiology of PD and PL shares the paradoxical condition in which the same 
host systems that provide protection against distinct pathogens are responsible for tissue 
destruction. Activation of these systems to achieve defense virtually always results in some 
degree of destruction which, if not controlled, will lead to tooth loss as the end result 
(Garlet, 2010, Nair, 1997, Page et al., 1997, Silva et al., 2007). 

3. Periodontal and periapical tissues under homeostatic and inflammatory 
conditions 

A normal periodontium is a complex and dynamic structure composed of soft and hard 
tissues, encompassed cementum and self-renewing tissues including the gingival mucosa 
(epithelium and connective), periodontal ligament, alveolar bone  which, together, provide 
attachment apparatus for teeth into the jaw (Potempa et al., 2000, Bosshardt & Lang, 2005). 
The periodontal tissues are constantly exposed to multiple assaults by microbes that live 
harmoniously in the oral niche. The homeostasis of these tissues depends on a dynamic 
equilibrium of bacteria–host interactions. Besides the overall periodontal tissues, the pulp 
tissue, usually free of microbial challenge in healthy conditions, play an important role in 
the initial host responses that can lead to the development of PLs, and therefore will be also 
considered in the sequence. 

3.1 Periodontal and pulpar tissues under homeostatic conditions 

Gingival epithelium is the first line of host defense, represented not only by its barrier 
function that physically hamper microbial invasion in gingival sulcus and periodontal soft 
and mineralized connective tissues, but also by its antimicrobial properties that biologically 
suppress the propagation of putative pathogens (Darveau et al., 1997, Lu et al., 2004, Page et 
al., 1997). This epithelium adjacent to a tooth can be classified into three anatomical types: 
the oral gingival epithelium, the sulcular epithelium, and the junctional epithelium 
(Hatakeyama et al., 2006). 
The oral gingival epithelium is composed of a keratinizing stratified epithelium and covers 
the external surface of the gingiva, while the sulcular epithelium is a nonkeratinizing 
epithelium that lines the inner aspect of the gingival sulcus. In contrast, the junctional 
epithelium is structurally and functionally unique. Namely, the junctional epithelium is 
located at a strategically important interface between the gingival sulcus and the underlying 
soft and mineralized connective tissues of the periodontium (Hatakeyama et al., 2006, 
Hormia et al., 2001), contains a nonkeratinizing epithelial layer at the free surface. The 
gingival epithelium, in particular, the junctional epithelium is highly porous and the 
epithelial cells are interconnected by a few desmosomes and the occasional gap junction, 
resulting in wider intercellular spaces that may provide a pathway for fluid and 
transmigrating leukocytes from the gingival connective tissue to the gingival sulcus 
(Hashimoto et al., 1986, Bosshardt & Lang 2005, Hatakeyama et al., 2006), and even for 
microorganisms moving in the opposite direction (Bosshardt & Lang 2005, Darveau, 2010, 
Darveau et al., 1997, Marra & Isberg, 1996, Page & Schroeder, 1976, Tonetti et al., 1998). In 
the absence of clinical signs of inflammation, approximately 30,000 polymorphonuclear 
leukocytes (PMNs) migrate per minute through the junctional epithelia of all human teeth 
into the oral cavity (Darveau, 2010, Schiött & Löe, 1970). The tissue fluid transports a variety 
of molecules through the junctional epithelium to the bottom of the gingival sulcus. These 
molecules, together with the leukocytes, represent a host defense system against the 
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bacterial challenge. Its interposition between the underlying soft and mineralized connective 
tissues of the periodontium points to its important roles in tissue homeostasis and defense 
against micro-organisms and their products (Schroeder & Listgarten, 1997). Moreover, the 
highly dynamic nature of the junctional epithelium indicates an important role for the cells 
themselves in the maintenance of tissue integrity, being essential for its protective and 
regenerative functions (Schiött & Löe, 1970). 
In health condition, the connective tissue components are subject to a tightly controlled cycle 
of synthesis and breakdown (Potempa et al., 2000). At clinically healthy sites, a balanced and 
dynamic equilibrium challenge of bacteria–host may be beneficial, resulting in resistance to 
colonization by periodontopathogens and triggering other less-well-defined responses of 
the host. By contrast, this delicate balance in connective tissue turnover continuously 
challenged by the accumulation of bacteria on the tooth surface, if excessive, can ignite an 
inflammatory reaction aimed to eradicate the microbial intruders. Although indispensable 
for host defense against pathogens, this response may upset homeostasis within the 
periodontium, leading first to gingivitis and then to periodontitis (Bosshardt & Lang, 2005, 
Potempa et al., 2000), as will be described in the sequence. In addition, the extracellular 
matrix (ECM)  and collagen type I of the connective tissue help stabilize periodontal tissues, 
and fibronectins affect cell morphology, migration and differentiation (Darveau, 2010, 
Mussig et al., 2005). The coordinated regulation of cell proliferation and differentiation 
events is controlled by host signaling mechanisms and is referred to as tissue homeostasis. 
These signaling mechanisms maintain homeostasis of the periodontal tissue by regulating 
epithelial cell functions as well as connective-tissue resident cells and hematopoietic cells 
(Darveau, 2010).  
Among the host proteases that target the ECM, the matrix metalloproteinases (MMPs) have 
been especially associated with the remodeling of periodontal tissues (Garlet, 2010, Garlet et 
al., 2006, Hannas et al., 2007, Verstappen & Von den Hoff, 2006) during different 
physiological and pathological processes (Birkedal-Hansen, 1993, Garlet, 2010, Garlet et al., 
2006). MMPs, a family of zinc- and calcium-dependent proteases, are usually found in 
balance with a group of endogenous proteins named tissue inhibitors of metalloproteinases 
(TIMPs), to keep matrix remodeling highly regulated (Garlet, 2010, Garlet et al., 2006, 
Hannas et al., 2007). In fact, MMPs and TIMPs are regularly expressed in healthy 
periodontal tissues, where they are supposed to control the ECM physiological turnover 
(Garlet et al., 2006, Gonçalves et al., 2008). It is thought that MMPs and TIMPs are involved 
in the physiological turnover of periodontal tissues, and MMPs appear to be involved in 
tissue destruction in PDs (Birkedal-Hansen, 1993, Garlet et al., 2006, Golub et al., 2001, 
Reynolds et al., 1994, Van der Zee et al., 1997). However, there are contradictory results 
regarding the balance of MMPs/TIMPs in pathological versus healthy gingival samples 
(Aiba et al., 1996, Dahan et al., 2001, Garlet et al., 2006, Garlet et al., 2004, Ingman et al., 1996, 
Kubota et al., 1996, Nomura et al., 1998). Some studies show a decrease in the levels of 
TIMPs in diseased periodontal tissues, supporting the idea that an imbalance in the levels of 
TIMPs/MMPs occurs in PDs and results in tissue destruction (Garlet et al., 2006, Soell et al., 
2002, Tuter et al., 2002). Conversely, other studies detected an increased expression of TIMPs 
in diseased periodontal tissues (Alpagot et al., 2001, Garlet et al., 2006, Garlet et al., 2004, 
Haerian et al., 1995, Nomura et al., 1998)  which could reflect an attempt to maintain the 
tissue homeostasis, in view of the increased expression of MMPs. However, such up-
regulation of TIMPs may not be enough to compensate for the even higher upregulation of 
MMPs, and such an imbalance may result in periodontal destruction. Nevertheless, 
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imbalances in the MMP/TIMP system (i.e. lower levels of TIMPs and/or higher levels of 
MMPs) are involved in the pathogenesis of several diseases including rheumatoid arthritis 
(Garlet et al., 2006, Katrib et al., 2003, Lanchou et al., 2003, Romas et al., 2002, Schulze et al., 
2003, Yoshihara et al., 2000), which share several features with PDs, including the chronic 
nature of the inflammatory reaction and tissue destruction (Garlet et al., 2006, Mercado et 
al., 2003). 
In the soft tissues context, it is also important to consider the features that characterize the 
dental pulp. The dental pulp consists of a connective tissue with a complex and rich 
neuronal and vascular networks surrounded by dentin walls, which lacks epithelium, 
differing from others connective tissues (Goldberg et al., 2004, Shroder, 1985). The pulp 
tissue is composed by heterogeneous cell populations responsible for its maintenance, 
defense, and repair. The cell types identified within the pulp include fibroblasts, which are 
the predominant cell type, as well as inflammatory and immune system cells, including 
dendritic cells, neutrophils, histiocytes/macrophages, T-/B- lymphocytes and odontoblasts 
(Izumi et al., 1995). Several niche environments for latent or dormant pulpal stem cells 
(progenitors), necessary for repair and regenerative processes, have been identified within 
the components of dental pulp (Huang et al., 2009, Shi et al., 2003, Sloan et al., 2007). 
Interestingly, while periodontal tissues are directly exposed to a microbial challenge even 
both health and disease conditions, dental pulp features comprise a special situation where 
the tissue is enclosed by a rigid, mineralized tissue shell, and thus the microbial challenge 
only will reach the host tissue after significant enamel and dentin matrix degradation, or in 
other words, in already established pathological process. While the mineralized structure 
may present an initial protective role, in the course of pathological process the tubular 
structure of dentin confers significant permeability properties on the tissue (Pashley et al., 
2002) and bacterial products may diffuse down the dentinal tubules and invoke cellular 
responses (Bergenholtz, 1990, Smith et al., 2001). After dental tissue damage by caries 
lesions, odontoblasts are the first pulp cells to encounter both products of the infectious 
process, including the invading pathogens and their components, as well as detecting 
dentine matrix constituents released during demineralization. Although odontoblasts 
provide barrier function by protecting the underlying tissue from the invading bacteria, they 
are also immunocompetent and capable of coordinating an inflammatory response 
(Veerayutthwilai et al., 2007). Progression of the carious infection deeper into the underlying 
dental tissue results in changes in the composition of the bacterial biofilm (Takahashi et al., 
2008) and also deleterious effects on the host cells, including death of pulp cells. Certainly, 
further molecular interactions between bacteria and stem cells at the core of the pulp arise, 
resulting in exacerbation of inflammatory events. 
Finally, it is important to consider the structure and properties of the periodontal ligament 
(PDL), which is responsible for supporting the teeth and can be affected by inflammatory 
conditions of periodontal and pulpar origin. The PDL is critical for teeth positioning within 
the alveolar bone and for absorbing forces generated by chewing. The main components of 
the PDL are blood vessels, fibroblasts, and collagen fibers, composed primarily of collagen 
type I. Several previous studies have demonstrated that mesenchymal stem cells associated 
with the vasculature within the PDL have the potential to differentiate into cell types that 
populate bone and cementum (McCulloch & Bordin, 1991, Trombetta & Bradshaw, 2010). 
Thereby, resident cells of the PDL are postulated to play an important role in periodontal 
health and disease by providing cellular source for regeneration of the primary tissues 
injured in PD. It is because of their ability to proliferate, migrate and synthesize several 
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components of the periodontium, and also participate in both protective and destructive 
mechanism that prevents periodontitis or impede its progression, and initiates lesions and 
promotes progressive disease by various biological mechanisms, respectively (Benatti et al., 
2009, Gemmell & Seymour, 2004). 
PDLC (periodontal ligament cells) proliferation is considered one of the major events for 
periodontal homeostasis, because of their capacity to proliferate and differentiate into all the 
other periodontal tissues (Benatti et al., 2009). Another key event critical for periodontal 
tissue homeostasis in which PDLC play a significant role is the bone remodeling process. 
PDLC play a major role in alveolar bone metabolism in periodontal health and disease, 
because of their ability to secrete factors that regulate the homeostasis of connective and 
osseous tissue, including inflammatory cytokines such as interleukins (ILs), and the major 
osteoclast regulators receptor activator of nuclear factor-kB ligand (RANKL) and 
osteoprotegerin (OPG) (Ogasawara et al., 2004, Benatti et al., 2009). 
In addition to the soft connective tissue elements, alveolar bone loss is a key structure of 
periodontal and periapical environments. Bone homeostasis depends on the maintenance of 
a delicate equilibrium between bone resorption by osteoclasts and bone formation by 
osteoblasts. The major mechanism that regulates bone remodeling is driven by the receptor 
RANK (receptor activator of nuclear factor-B, also known as TNFRSF11A), its ligand 
RANKL (also known as TNFSF11), and its soluble counterpart OPG (also known as 
TNFRSF11B) (Boyle et al., 2003, Cochran, 2008, Darveau, 2010, Garlet, 2010, Leibbrandt & 
Penninger, 2008, Nagasawa et al., 2007). RANKL binding to the receptor RANK, present on 
the surfaces of pre-osteoclasts, drives their maturation and activation, while OPG acts as a 
decoy receptor and inhibits RANK-RANKL engagement (Leibbrandt & Penninger, 2008). 
Therefore, the balance between RANKL and OPG expression is essential for bone 
remodeling, but the expression of such system is usually investigated in the viewpoint of 
pathological changes (Baud'huin et al., 2007, Garlet, 2010,  Garlet et al., 2006, Menezes et al., 
2008, Rodan & Martin, 2000, Romas et al., 2002), and the exact participation of such 
mediators in homeostatic bone remodeling of alveolar bone remain unclear. 
It is important to make clear that tissue homeostasis represents a delicate balance between 
anabolic and catabolic activities, and that a wide range of stimuli can disrupt this balance 
and compromise the tissue integrity. Along such stimuli, inflammation-related molecules 
can result in pathological changes in periodontal, periapical and pulpar tissues, as discussed 
in the next section. However, it is important to consider that even in clinical health 
conditions, the periodontium continuously expresses cytokines, chemokines and cell 
adhesion molecules, associated with a basal level of inflammation, thought to be responsible 
for providing protection against bacterial challenge without resulting in tissue damage. 
Indeed, as previously cited, periodontal tissues are directly exposed to a microbial challenge 
even in healthy subjects. To cope with such microbial stimulation, the periodontium has a 
highly orchestrated expression of select innate host defence mediators (Darveau, 2010). 
Periodontal tissue, unlike the intestine, does not have a large mucous layer to prevent 
contact between the microbial community and the epithelial cell surface (Bosshardt & Lang, 
2005, Darveau, 2010). In fact, although both periodontal and intestinal tissues are in close 
proximity to polymicrobial communities, it seems that they use two completely different 
strategies to contend with the constant presence of microbial stimulation. The intestinal 
epithelium is a single layer of cells connected by tight junctions that channels bacteria and 
their components to the highly specialized Peyers patches, where a localized, fully 
developed lamina propria can recognize microorganisms and respond accordingly 
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(Darveau, 2010, Duerkop et al., 2009). Like the intestinal epithelium, clinically healthy 
human gingival tissue expresses a wide range of toll-like receptors (TLRs), including TLR1–
TLR9 (Darveau, 2010, Mahanonda & Pichyangkul, 2007, Ren et al., 2005, Sugawara et al., 
2006,). Innate host protective mechanisms are coupled with regenerative and biomechanical 
signalling systems, resulting in tissue homeostasis. The status of healthy periodontal tissue 
results in the coordinated expression of E-selectin, intercellular adhesion molecules (ICAMs) 
and interleukin-8 (IL-8) which facilitates neutrophil transit through the tissue, where they 
form a wall between the host tissue and the dental-plaque biofilm (Tonetti et al., 1998, 
Darveau, 2010). Interestingly, some cytokines usually associated with chronic inflammation 
and tissue damage, such as IL-1, IL-6, TNF-, are found in gingival crevicular fluid from 
clinically healthy sites, but in lower levels than in diseased sites. In this context, the 
transition from a healthy-related to a disease-related inflammatory condition seems to be 
associated with quantitative and qualitative changes in the host inflammatory immune 
response, whose characteristics have been investigated usually in a pathological context, 
which will be discussed in the sequence. 

3.2 Periodontal and periapical tissues under inflammatory conditions – Pathways 
involved in tissue destruction 

Cytokines play a major role in inflammatory and immune responses within the bone 
microenvironment. The balance between pro- and anti-inflammatory mediators determines 
the outcome of resorption in bone destructive diseases, as in periodontitis (Garlet et al., 
2006, Menezes et al., 2008) and periapical granulomas (Silva et al., 2005, Silva et al., 2007) 
(Table 1). However, before specific discussion on host response to periodontal and 
periapical diseases outcome modulation, it is important to review the molecular pathways 
associated with periodontal and periapical tissues destruction. As previously considered, 
MMPs have been associated with remodeling of the periodontal tissues with special interest 
(Hannas et al., 2007, Shin et al., 2002, Verstappen & von den Hoff, 2006), and  are usually 
found in balance with TIMPs in order to keep matrix remodeling in a highly regulated 
fashion (Hannas et al., 2007). However, unbalanced MMPs/TIMPs ratio was described in 
diseased periodontal and periapical tissues, and is thought to account for the soft and 
mineralized tissue destruction associated to periodontal and periapical diseases (Garlet et 
al., 2004, Gonçalves et al., 2008, Shin et al., 2002, Verstappen & von den Hoff, 2006). In 
accordance, the disarray of the MMPs/TIMPs model is involved in the pathogenesis of 
osteolytic diseases (Malemud, 2006), and the MMPs inhibition is proposed as an adjuvant 
therapy to control PD (Giannobile, 2008). 
Besides the connective tissue destruction, alveolar bone loss is a key event in bone 
inflammatory diseases, as in periodontitis and chronic PLs. The integrity of bone tissues 
depends on the maintenance of a delicate equilibrium between osteoclasts and osteoblasts. It 
has been proposed that proinflammatory cytokines play a fundamental role in periapical 
bone destruction through the induction of RANKL, while OPG synthesis is supposed to 
attenuate lesion progression (Garlet et al., 2006, Menezes et al., 2008). As previously cited, 
the major regulatory mechanism of osteoclasts activity is driven by the receptor RANK, its 
ligand RANKL and its soluble counterpart OPG (Leibbrandt & Penninger, 2008). Being the 
balance between RANKL and OPG expression essential to determine the overall bone loss 
outcome. Regarding periodontal and periapical diseases, an increased RANKL expression in 
diseased periodontal and periapical tissues are described (Cochran, 2008, Garlet et al., 2004). 
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Interestingly, the patterns of RANKL/OPG expression present a high variation between 
inactive PD (i.e. chronic gingivitis) and active PLs (i.e. periapical granulomas) (Menezes et 
al., 2008) and also significantly differ between clinical forms of periodontitis (i.e. aggressive 
versus chronic periodontitis) (Garlet et al., 2004). For that reason, it is possible that 
RANKL/OPG balance may be associated with the stable or progressive nature of 
periodontal lesions. Previous human studies showed that RANKL/OPG balance was 
associated with osteolytic activity and the experimental disease progression (Garlet et al., 
2006). Accordingly, the blockade of RANKL by OPG leads to a reduction of alveolar bone 
loss throughout experimental PD in mice (Jin et al., 2007). Appropriately, the coupled bone 
formation, which takes place under homeostatic conditions (Parfitt, 1982), seems to 
contribute to the conventional increased bone resorption in overall bone loss in PD (Behl et 
al., 2008). It has long been assumed that the host defense against microbial invasion and 
subsequent tissue destruction involves both innate and adaptive immunity cytokines. We 
are going to discuss both immune response mechanisms, separately, in this chapter. 

4. Classic inflammatory cytokines role in periodontal and periapical 
inflammatory lesions 

As previously discussed in this chapter, the presence of pathogens is required, but not 
sufficient for bone inflammatory diseases initiation, being the host response a critical 
determinant of periodontal and periapical tissues breakdown (Graves, 2008, Nair, 2004). The 
innate host response initially involves the recognition of microbial components as “danger 
signals” by host cells and the subsequent production of inflammatory mediators. The TLRs 
are expressed by resident cells and leukocytes in periodontal habitat, and activate the innate 
immune response, binding to various bacterial components (i.e., LPS, bacterial DNA, diacyl 
lipopeptides, peptidoglycan, etc) (Mahanonda & Pichyangkul, 2007). TLR-2 and TLR-4 seem 
to participate in the recognition of periodontopathogens such as A. actinomycetemcomitans, P. 

gingivalis and T. forsythia (Nussbaum et al., 2009). After TLRs activation, an intracellular 
signaling cascade is initiated. This signalling cascade involves activation of transcription 
factors and the subsequent inflammatory cytokines expression, leukocyte migration and 
osteoclastogenesis (Lima et al., 2010, Nakamura et al., 2008, Ukai et al., 2008). In accordance, 
the absence of TLR2 or TLR4 results in reduction of alveolar bone loss in mice after P. 

gingivalis infection (Costalonga et al., 2009, Lima et al., 2010, Nakamura et al., 2008). Besides 
TLRs, the nucleotide-binding oligomerization domain (NOD) receptors and the 
inflammasome system have been described as potential accessory molecules in triggering 
innate host response against periodontal pathogens (Okugawa & Bostanci, 2009, Uehara & 
Takada, 2007). The first mediators to have their role related to PD pathogenesis were innate 
immunity cytokines produced after microbial recognition, such as TNF-, IL-1 and IL-6. 
These cytokines are produced by both resident cells (i.e. epithelial cells and fibroblasts) and 
phagocytes (i.e. neutrophils and macrophages) in periodontal environment. While the exact 
contribution of each cell type remains to be elucidated, previous studies described that a 
hyper-reactive phenotype of phagocytes is related to increased pro-inflammatory cytokines 
production in both aggressive and chronic PD (Gustafsson et al., 2006, Shaddox et al., 2010). 
Recent evidence also points to important roles of resident cells in periodontal bone loss, 
since the periodontal ligament fibroblasts and osteoclast precursors contact synergistically 
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increases the expression of genes related to osteoclastogenesis, such as RANKL, TNF- and 
IL-1 (Bloemen et al., 2010). 
TNF- is responsible for cell migration process at multiple levels, inducing the upregulation 
of adhesion molecules and the production of chemokines, which are chemotactic cytokines 
involved in cell migration to infected and inflamed sites (Dinarello, 2000, Kindle et al., 2006, 
Peschon et al., 1998, Wajant et al., 2003). TNF- is present at high levels in gingival 
crevicular fluid (GCF), diseased periodontal tissues (Garlet et al., 2004, Graves, 2008, Graves 
& Cochran, 2003), and radicular cysts (Teixeira-Salum et al., 2010), it is positively correlated 
with MMPs and RANKL expression. Supporting the data from human studies, experimental 
PD in rats and primates clearly demonstrated that TNF- plays a central role in the 
inflammatory reaction, alveolar bone resorption and in the loss of connective tissue 
attachment (Graves, 2008, Graves & Cochran, 2003). Accordingly, experimental periodontitis 
in TNF- p55 receptor deficient mice (TNFp55KO) was characterized by a significant 
decrease in MMPs and RANKL expression, which was associated with a significant decrease 
in the alveolar bone loss (Garlet et al., 2007a). 
However, recent studies from mouse models point to important roles of cytokines in the 
control of periodontal infection. While the destructive roles of TNF- in periodontal 
environment led to the proposal of anti-TNF therapies to control PD (Mayer et al, 2009), it 
was also demonstrated a dual role for TNF- in the pathogenesis of experimental PD, since 
this cytokine present an important role in the control of experimental A. 

actinomycetemcomitans infection, as demonstrated by the increased bacterial load and acute 
phase response presented by TNFp55-KO infected mice (Garlet et al., 2007a). Accordingly, 
TNFp55-KO mice characteristically present severe pathogen clearance impairment (Pfeffer 
et al., 1993). Besides its role in inflammatory cell migration previously cited, TNF- plays a 
critical role in both innate and adaptive immune responses, upregulating antigen 
presentation and the bactericidal activity of phagocytes (Dinarello, 2000). 
Besides the direct effect on the pathogenesis of periodontal and periapical diseases, TNF- 
upregulates the production of other classic pro-inflammatory innate immune cytokines, 
such as IL-1 and IL-6 (Dinarello, 2000, Garlet et al., 2007a, Graves, 2008, Okada & 
Murakami, 1998, Wajant et al., 2003,). IL-1 and IL-6 have also been characteristically 
associated with inflammatory cell migration and osteoclastogenesis processes (Graves, 2008, 
Fonseca et al., 2009). Curiously, the individual absence of innate immunity cytokines 
attenuates inflammatory bone loss; however their simultaneous inhibition results in more 
effective protection leading to almost complete remission of bone loss rate (Sartori et al., 
2009, Graves & Cochran, 2003). 
In addition to a direct action toward bone resorption, innate immune cytokines also interfere 
with the coupled bone formation process (Behl et al., 2008). In fact, recent studies confirmed 
the early hypothesis that proinflammatory cytokines inhibit osteogenic differentiation (Ding 
et al., 2009, Lacey et al., 2009), and also demonstrate that activation of TLRs in osteoblasts 
induces the production of osteoclastogenic cytokines (Bar-Shavit, 2008).  

5. T helper cytokines role in periodontal and periapical inflammatory lesions 

Complementarily to the innate immune response, periodontal and endodontic bacteria 
result in mobilization of adaptive immunity mechanisms. The host adaptive response starts 
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with the recognition of the putative pathogens (using a similar set of TLRs and NODs as 
described to innate immunity cells) by antigen presenting cells, such as dendritic cells 
(Cutler & Jotwani, 2004). After activation, mature dendritic cells express co-stimulatory 
molecules and produce distinct patterns of cytokines that will determine the subsequent 
polarization and activation of antigen specific lymphocytes (Cutler & Jotwani, 2004). The 
immune response polarization is determined by prototypical cytokines of each pattern, and 
also involves the selective migration of CD4 T helper subsets and the subsequent production 
of characteristic cytokines at the response foci (Bluestone et al., 2009, Kalinski & Moser, 2005, 
Murphy & Reiner, 2002). 
It has long been assumed that the pathogenesis of inflammatory diseases is mainly mediated 
by CD4 T cells subsets, Th1 and Th2 cells, contrasting in their pattern of cytokine production 
(Brand et al., 2006, Colic et al., 2007, Gaffen & Hajishengallis, 2008, Murphy & Reiner, 2002, 
Stashenko et al., 2008). As a general rule, immune responses mediated by T cells polarized 
into a Th1-type phenotype are characteristically cellular and pro-inflammatory, while Th2 
cells are associated with humoral immunity and present anti-inflammatory properties 
(Jankovic et al., 2001, Murphy & Reiner, 2002). This has been supported by increased levels 
of Th1 cytokines (IFN-, IL-12) in bone destruction involved in the progression of chronic 
periapical and periodontitis diseases (Kawashima et al., 1999, Trombone et al., 2010). Under 
normal condition, proinflammatory mechanisms must be controlled in order to prevent 
excessive tissue destruction and promote autoimmune processes. Th2 cytokines (IL-4, IL-10) 
are classic antagonist of Th1 responses and associated to the humoral immune response and 
antibody production, leading to the restriction of inflammatory/immune mechanisms 
(Kawashima et al., 1999, Fukada et al., 2009). 
IFN- is the signature cytokine of Th1-type responses, being considered the main phagocyte-
activating cytokine and characteristically associated with the production of inflammatory 
cytokines and chemokines (Appay et al., 2008, Murphy & Reiner, 2002, Sallusto & 
Lanzavecchia, 2011, Schroder et al., 2004). Concerning periapical diseases of endodontic 
origin and periodontitis, IFN- is present at high levels in chronic PLs, and is associated with 
progressive lesions or higher severity (Colic et al., 2006, Colic et al., 2009, Dutzan et al., 2009, 
Garlet et al., 2003, Honda et al., 2006). In agreement, studies in rodents demonstrated that 
IFN- is involved in the development of inflammatory reaction and bone resorption in 
response to A. actinomycetemcomitans and P. gingivalis (Baker et al., 1999, Garlet et al., 2008, 
Teng et al., 2005). Interestingly, a controversial role for IFN- in bone lytic lesions have been 
described, since the association with increased bone loss described in vivo (human and 
experimental) is not confirmed by in vitro experiments, in which IFN- is described to 
systematically inhibit osteoclastogenesis (Ji et al., 2009, Takayanagi et al., 2005). In fact, in 

vitro data clearly demonstrated that IFN- induces rapid degradation of the RANK adapter 
protein TRAF6 by the ubiquitin-proteasome system, resulting in the inhibition of the 
RANKL-signaling and its subsequent osteoclastogenic events (Takayanagi et al., 2000). The 
in vitro data support a previous hypothesis that Th1 cells are associated with the stable 
lesions while Th2 cells are associated with disease progression (Gemmell et al., 2007). 
However, the pro-inflammatory effect of IFN- demonstrated in vivo, leading to the 
upregulation of TNF- and IL-1 levels (and consequently RANKL) seems to overcome the 
direct anti-osteoclastogenic effect described in vitro (Gao et al., 2007, Garlet et al., 2008). In 
addition, IFN- also stimulates osteoclast formation and bone loss in vivo via antigen-driven 
T cell activation or through the chemoattraction of RANKL+ cells (Gao et al., 2007, Garlet et 
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al., 2008, Repeke et al., 2010). This finding is supported by a recent study, which 
demonstrates that Th1 cells (characterized as CD3+CCR5+CXCR3+ cells) are an important 
source of RANKL throughout experimental periodontitis (Repeke et al., 2010). An additional 
evidence of the adverse effect of Th1 response concerning periodontal tissue destruction 
indicates the role of IL-12 (the major Th1-inducing cytokine) mediating alveolar bone loss 
in mice after P. gingivalis challenge (Sasaki et al., 2008). However, as observed with IFN-, 
data from human periodontitis concerning the role of IL-12 in PD pathogenesis is 
controversial. Although studies demonstrate that IL-12 concentrations are lower within 
diseased than healthy gingival tissues (Johnson et al., 2005), a recent report showed that 
IL-12 levels decrease in gingival crevicular fluid following initial periodontal therapy 
(Thunell et al., 2009). 
Meantime, similarly as described earlier to TNFp55-KO strain, IFN-KO mice presented a 
severe impairment of protective immunity to A. actinomycetemcomitans infection, as 
demonstrated by the higher bacterial load in periodontium, increased acute phase response, 
and bacterial dissemination followed by mice death (Garlet, et al., 2008). The immune 
protection mediated by IFN- characteristically involves leukocyte recruitment and its 
subsequent activation at inflammatory foci (Schroder et al., 2004). Indeed, IFN- is 
considered the main phagocyte-activating cytokine by enhancing phagocytosis, antigen 
uptake and stimulating the production of inflammatory cytokines, chemokines and 
microbicidal molecules (Schroder et al., 2004). In fact, IFN- plays an essential role in 
clearing a wide range of infections (Schroder et al., 2004). As a result, further studies are 
required to determine the exact effect of Th1 cytokines, IFN- and IL-12, in the 
immunopathogenesis of periapical inflammatory diseases. 
An extra possibility for a destructive role for T cells all over periodontitis and periapical 
diseases brings up the Th2 subset, also present in PDs and PLs (Gemmell & Seymour, 2004). 
Th2 cells commitment and action is primarily dependent of IL-4, the prototypical Th2 
cytokine, which also acts as a B cell stimulatory factor (Appay et al., 2008, Murphy, 2002, 
Sallusto & Lanzavecchia, 2011). In addition to IL-4, IL-6 is further believed to contribute to B 
cell differentiation and antibody production (Cronstein, 2007). Previous studies 
demonstrated that B cells produce RANKL as a result of periodontal pathogens stimulation 
(Han et al., 2009), and also that the majority of B cells in periodontal lesions are RANKL+ 
(Kawai et al., 2006). Considering the hypothesis that B cells outnumber T cells in periodontal 
lesions, the predominance of a Th2-type response in periodontal lesions potentially leads to 
the accumulation RANKL producing cells and consequently to tissue destruction (Gemmell, 
2002, Kawai et al., 2006). In fact, B cell deletion was recently demonstrated to prevent bone 
loss in mice after oral P. gingivalis infection (Baker et al., 2009). However, while B cells seem 
to contribute to alveolar bone loss, they are not essential since T cells are able to promote 
LPS-induced bone resorption in the absence of B cells (Yamaguchi et al., 2008). An 
additional possibility for a destructive role for Th2/B cell pole is the expression of 
autoantibodies against periodontal tissue components (such as collagen, heat shock 
proteins, vimentin, spectrin, filamin, actin, lamin, keratin, and tubulin), described in both 
aggressive and chronic PD patients (Koutouzis et al., 2009). 
On the other hand, some studies propose that the Th2-type cytokine IL-4 may attenuate 
periodontitis progression, in contrast to its putative destructive role previously discussed. 
Although there is no evidence of the role of IL-4 in periapical diseases, this cytokine has 
been asssociated to control other inflammatory diseases, such as periodontitis and 
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rheumatoid arthritis (Bozkurt et al., 2006). IL-4 presents marked suppressive and anti-
inflammatory properties mediated by its capacity to inhibit the transcription of pro-
inflammatory cytokines and IFN-, then suppressing the polarization of Th1 cells (Agnello 
et al., 2003, Appay et al., 2008, Bluestone et al., 2009). Moreover, IL-4 induces the production 
of cytokines with similar or complementary suppressive properties, such as IL-10 (Pestka et 
al., 2004).  In addition, IL-4 is also able to inhibit the production of MMPs and RANKL, and 
concomitantly induce the upregulation of its respective inhibitors TIMPs and OPG (Ihn et 
al., 2002), reinforcing its potential protective role in PD pathogenesis (Giannopoulou, 2003). 
Indeed, the concentration of IL-4 in GCF was demonstrated to decrease from periodontal 
health to disease, suggesting that this cytokine could mediate the remission or improvement 
of periodontal lesions (Bozkurt et al., 2006, Pradeep et al., 2009). The protective role for Th2-
biased humoral immunity also refers to the prevention of alveolar bone loss after 
immunization protocols, which are usually associated with increase in serum 
immunoglobulin levels (Zhang, et al., 2009). Accordingly, a longitudinal human study 
demonstrated that serum levels of IgG antibodies against A. actinomycetemcomitans or P. 
gingivalis in periodontitis-stable patients were higher than those in patients with active 
periodontitis, suggesting a protective role for IgG (Rams et al., 2006).  
Also in the tissue protection context, the prototypical anti-inflammatory cytokine IL-10 
(Pestka et al., 2004) described to be widely expressed in inflamed periodontal and periapical 
tissues, is thought to be associated with lower disease severity (Colic et al., 2010, Garlet et 
al., 2006, Garlet et al., 2004, Rossi et al., 2008). Genuinely, IL-10 knockout mouse is highly 
susceptible to P. gingivalis-induced alveolar bone loss (Sasaki et al., 2004), and great PLs may 
be developed, reinforcing the important role of IL-10 in the pathogenesis of experimentally 
induced pulp infection as endogenous suppressor of PL development (Rossi et al., 2008). 
Studies suggest that IL-10 can act on multiple ways to restrain periodontitis severity. The 
control of inflammatory signaling mediated by IL-10 may involve the inhibition of 
inflammatory mediators mRNA transcription after TLR or cytokine signaling (Yoshimura et 
al., 2003). This control can be exerted by the suppressors of cytokine signaling (SOCS), 
which act to attenuate signal transduction as part of a negative feedback loop to inhibit the 
response to subsequent stimuli (Yoshimura et al., 2007). Accordingly, a recent study 
demonstrates that the upregulation of SOCS expression after the challenge with DNA from 
PD-associated bacteria significantly suppressed the response to a subsequent bacterial 
challenge (Taubman et al., 2007). Aside from the suppression of innate immunity cytokines, 
IL-10 interferes directly with IFN- and IL-17 production by T cells, demonstrating a broad 
role for this immunoregulatory cytokine (Jovanovic et al., 1998, Naundorf et al., 2009). 
Hence, in PLs, a previous study demonstrated that macrophages are able to control 
periapical tissue and alveolar bone destruction by inhibiting the DC-mediated production of 
IFN- by CD4+ T cells and by augmenting the secretion of IL-10 (Colic et al., 2010). 
Therefore, it is possible that IL-10 may reduce the inflammatory signaling that leads to 
inflammatory and Th1 cytokine mRNA transcription, which in turn could downregulate 
downstream pathways under its influence (Hosokawa et al., 2009). In accordance, the 
expression of SOCS-1 and SOCS-3 is significantly higher in inactive versus active 
periodontal lesions (Garlet et al., 2006).  
In addition to the control of inflammatory reaction, IL-10 also presents a direct protective 
role in tissue destruction, modulating both MMPs and RANK systems. IL-10 
characteristically induces the upregulation of TIMPs, which are capable of inhibiting almost 
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every member of the MMP family in a non-specific way (Chou et al., 2006, Claudino et al., 
2008, Garlet et al., 2004). In fact, increased TIMPs levels in periodontal and periapical tissues 
are thought to effectively counteract MMPs, and have been associated with the attenuation 
of disease severity (Garlet et al., 2004, Lin et al., 2002, Ramamurthy et al., 2005, Sato et al., 
2009). Moreover, IL-10 stimulates the production of OPG, which consequently inhibits 
bone resorption by preventing RANK-RANKL engagement (Zhang & Teng, 2006). 
Concurring, IL-10 modulates the levels of both TIMPs and OPG in vitro and in vivo 
(Kumada et al., 2004, Liu et al., 2006, Zhang & Teng, 2006). IL-10 was also described to 
suppress osteoclastogenesis by selectively inhibiting calcium signaling downstream of 
RANK and by inhibiting transcription of the osteoclast co-stimulatory molecule triggering 
receptor expressed on myeloid cells 2 (TREM-2) (Park-Min et al., 2009). Indeed, IL-10 are 
thought to present a direct effect over bone formation, since the alveolar bone loss in the 
absence of IL-10 is associated with a reduced expression of osteoblast and osteocyte 
markers, independently of microbial, inflammatory or bone-resorptive pathways 
(Claudino et al., 2008). 
Interestingly, IL-10 was initially considered to be produced by Th2 cells in periodontal and 
PLs, but the discovery of Tregs as an important IL-10-producing T helper subset resulted in 
an evaluation of such concept. Indeed, while the association of Th2 cells with inflammatory 
diseases outcome remains controversial, Tregs have been described as a protective T cell 
subset concerning the tissue damage in periodontal and periapical environment. Natural 
Tregs are CD4+CD25+ T cells that specifically regulate the activation, proliferation, and 
effector function of activated conventional T cells determining the outcome of several 
immunological settings, ranging from infectious diseases to immunopathology and 
autoimmunity (Appay et al., 2008, Belkaid et al., 2009, Sallusto & Lanzavecchia, 2009, 
Shevach et al., 2009). Tregs seem to be essential for the maintenance of peripheral tolerance 
and to control the immune response (Kotake et al., 2001), presenting a suppressive effect on 
osteoclasts differentiation (Zaiss et al., 2007) and controlling bone resorption (Zaiss et al., 
2010). Tregs characteristically express as phenotypic markers the transcription factor 
forkhead box P3 (FOXp3), CD103, the glucocorticoid-inducible TNF receptor (GITR), the 
inhibitory molecule cytotoxic T-lymphocyte-associated molecule 4 (CTLA-4) and cell surface 
TGF-1, among other surface molecules (Li & Flavell, 2008, Shevach et al., 2009). Regarding 
PD, immunohistological, flow-cytometry and molecular analysis characterized Tregs in 
periodontal tissues by the expression of its phenotypic markers (FOXp3, CTLA-4, IL-10, 
GITR, CD103 and CD45RO), demonstrating therefore its presence in periodontal 
environment (Nakajima et al., 2005, Cardoso et al., 2008). Similarly, the presence of CD4+ 
CD25hi Foxp3+ Tregs was also observed in PLs, which inhibited the proliferation of 
responder T-cells in vitro, at least in part, by stimulating the production of IL-10 (Colic et al., 
2010). A recent study demonstrates that CD4+Foxp3+ cells migrate to periodontal tissues 
after experimental infection, while its inhibition resulted in increased alveolar bone loss and 
inflammatory cell migration (Garlet, 2010). Interestingly, recent data demonstrated that 
Tregs inhibition throughout A. actinomycetemcomitans-induced experimental periodontitis in 
mice does not compromise the control of infection (Garlet, 2010). This apparent 
inconsistency may rely on the uniqueness of PDs, as previously discussed regarding the 
characteristics of host response against the subgingival biofilm and to individual invasive 
periodontal pathogens, and the still unknown degree and nature of host response required 
to restrain the periodontal infection. 

www.intechopen.com



Inflammation, Chronic Diseases and Cancer –  
Cell and Molecular Biology, Immunology and Clinical Bases 

 

236 

Besides IL-10, Tregs-associated cytokine TGF- and the inhibitory molecule CTLA-4 are also 
supposed to attenuate PD progression (Cardoso et al., 2008). Regarding CTLA-4, this classic 
Tregs marker is expressed by leukocytes in diseased periodontium, and was found to be 
increased in CD4+ cells of periodontitis patients when compared to healthy subjects (Aoyagi 
et al., 2000, Orima et al., 1999). Additionally, CTLA-4 suppresses the proliferation of T cells 
in response to periodontopathogens (Aoyagi et al., 2000). TGF- can also play important 
roles in the attenuation of inflammatory damage in periodontal tissues. TGF- is a 
pleiotropic cytokine that regulates cell growth, differentiation and matrix production, and is 
a potent immunosuppressive factor that downregulates the transcription of pro-
inflammatory factors (such as IL-1 and TNF-) and MMPs (Okada & Murakami, 1998, 
Steinsvoll, et al., 1999). Moreover, in active periodontal lesions and stable granulomas, TGF-
 levels are negatively correlated with RANKL levels, reinforcing its protective role against 
tissue destruction (Dutzan, 2009a, Dutzan, 2009b, Steinsvoll et al., 1999).  
Subsequently to the discovery of Tregs subsets, the identification of a Th17 subset that 
present effector antagonic roles for Treg-suppressive cells (Appay et al., 2008, Cardoso et al., 
2008, Garlet, 2010, Sallusto & Lanzavecchia, 2009, Weaver, & Hatton, 2009), had an 
immediate impact not only on the understanding of T-cell function and regulation, but also 
has encouraged many researchers to re-examine the dichotomic Th1/Th2 model in bone 
inflammatory disorders, such as periodontal and periapical diseases. 
Th17 lymphocytes is an osteoclastogenic cell subset (Yago et al., 2009), characterized as an 
IL-17-producing CD4 T cell subset, which have been implicated in numerous autoimmune 
and inflammatory conditions (Annunziato et al., 2008, Colic et al., 2008, Colic et al., 2007, 
Gaffen and Hajishengallis, 2008, Sallusto & Lanzavecchia, 2009). Th17 cells develop through 
cytokine signals distinct from, and antagonized by, products of the Th1 and Th2 lineages 
(Appay et al., 2008, Dong et al., 2008, Sallusto & Lanzavecchia, 2009). Although IL-23 is 
important for the final differentiation of Th17 cells (Kastelein et al. 2007), it is not the only 
cytokine responsible for their development and activation, IL-1, IL-6 and TGF- seem to be 
also involved (McGeachy and Cua, 2008). It has been reported that T cells are involved in 
the bone destruction via IL-17 production, which in their turn is described as an inducer of 
RANKL production (Kotake et al., 1999, Sato et al., 2006). While some studies suggest that 
IL-17 seems to be less potent as a direct MMP inducer than classic innate immunity 
cytokines, the ability of Th17 cells to produce IL-6 and to upregulate IL-1 and tumor 
necrosis factor- (TNF-) production may generate an inflammation amplification loop, 
with a consequent increase of MMPs and RANKL expression. Recent reports demonstrated 
the presence of IL-17, in periodontitis and chronic PLs (Cardoso et al., 2008, Colic et al., 2007, 
Takahashi et al, 2005, Vernal et al., 2005). In consequence, Th17 cells are thought to 
exacerbate inflammatory diseases by activating adjacent cells to produce inflammatory 
mediators, generating therefore a positive loop for inflammatory reaction amplification that 
leads to lesion exacerbation. In accordance, recent evidences demonstrate that the Th17/IL-
17 axis, by itself or along with pro-inflammatory and Th1 cytokines, mobilize macrophages 
and neutrophils against extracellular and intracellular pathogens. IL-17 was described to 
play a role in neutrophil mobilization after P. gingivalis infection (Yu et al., 2007). 
Interestingly, experimental studies in rodents demonstrate the IL-17 deficient mice may 
present increased or decreased bone lesions in response to periodontal pathogens challenge 
(Oseko et al., 2009, Yu et al., 2007). However, we must consider that experimental 
periodontitis or PLs models may not reflect perfectly the chronic nature of human disease, 
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and that alveolar bone loss in aged mice is associated to an increased expression of IL-17A. 
Curiously, IL-17 was also recently described to increase TLR responsiveness in human 
gingival epithelial cells, suggesting that this cytokine can play a supporting role in the 
innate immunity sensing of pathogens and in the subsequent host response. 
Recently, it has been shown the involvement of others cytokines and Th subsets than Th1, 
Th2, Tregs and Th17 in the complex process of inflammatory diseases development and 
progression (Brand et al., 2006, Cardoso et al., 2009, Colic et al., 2007, Colic et al., 2008, 
Gaffen et al., 2008, Seiderer et al., 2008). IL-9 has long been thought to be a Th2 cytokine, as 
it promotes allergic inflammation and is associated with various Th2 responses (Hauber et 
al., 2009). However, reports have described an IL-9-secreting population T cell, Th9 cells, 
which are differentiated in culture with a combination of TGF-1 and IL-4 (Dardalhon et al., 
2008). IL-9 has also been shown to promote Th17 cells development, while increasing the 
activity of Treg cells (Elyaman et al., 2009, Novak et al., 2009). In addition, Th22, a novel Th 
cell population characterized by IL-22 expression, was identified in epidermis of patients 
with skin inflammatory disorders (Brand et al., 2006). Although, unpublished data from our 
group suggests a anti-inflammatory function for IL-22, since IL-22 was positively correlated 
to OPG, IL-10 and TGF-  in chronic periapical granulomas, exhibiting anti-inflammatory 
properties, in accordance to other studies in intestinal inflammatory diseases (Valencial et 
al., 2006). The opposite result could reinforce the theory proposed that IL-22 presents bi-
directional function (Seiderer & Brand, 2009). In Chron’s disease, an intestinal inflammatory 
disease, IL-22 was capable at the same time to stimulate proinflammatory mediators 
expression and to mediate the intestinal barrier function. Based on opposite effects of IL-22, 
it can be suggested the Th22 participation in adaptative immune response in PLs.  
At this point, it is possible to propose that the differential expression of T helper cytokines in 
periodontal and periapical tissues determine the PD and PLs outcome. However, the 
discovery of new T cell subsets lead to a more complex scenario regarding the role of 
cytokines in periapical inflammatory diseases pathogenesis. In fact, the Th1/Th2 and 
Th17/Tregs paradigms provided interesting frameworks, but further studies are still 
required to integrate them in a string theory to unravel the destructive and protective role of 
cytokines from the tissue destruction viewpoint. Although the lipid mediators do not fit in 
the classic definition of cytokines (usually comprising proteins, peptides or glycoproteins), 
they may modulate or be modulated by them. However, recent reports suggest that the 
concept of “protective and destructive” mediators in the control of periodontal and 
periapical infection is an obviously simplified model, and that cytokines may present dual 
and apparently conflicting protective or destructive roles. Hence, a different perspective is 
that the spatial orientation of the inflammatory infiltrate to the bone and the periodontal 
ligament is an important component of determining whether the destructive influence is 
reversible as in the case of gingivitis or irreversible as in the case of periodontitits and pulp 
necrosis (Graves et al., 2011). 

6. Chemokines as determinants of host response nature 

Leukocytes are an essential part of the host’s inflammatory response and are fundamental to 
antibacterial defense (Bellingan, 2000, Kantarci et al., 2003, Nathan, 2006). Their chemotaxis 
can be induced by several inflammatory mediators, including IL-1 and TNF-, which in turn 
induce the production of specific chemoattractants, the chemokines. Chemokines are a 
family of potent chemotatic cytokines that regulate the trafficking and recruitment of 
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leukocytes to distant sites of inflammation (Zlotnik & Yoshie, 2000). The fine tuning of the 
regulation of the chemokine system is essential for host homeostasis and defense, and its 
abnormal expression is often associated with pathological processes (Garin & Proudfoot, 
2011). The first cytokine identified to have chemotactic activity was IL-8, which proved to be 
a selective neutrophil chemoattractant (Yoshimura et al., 1987). The discovery of IL-8 
triggered the search for other chemokines, stimulating a search for new family members 
with considerable interest in mediators responsible for the selective recruitment and 
activation of all leukocyte subsets (Murphy et al., 2000, Silva et al., 2007, Ward et al., 1998). 
Today, several chemokines have been described and they can be subclassified into four 
groups, according to their structure and spacing of conserved cysteine residues present in 
their molecules, namely CXC, CC, C and CX3C (Murphy et al., 2000, Rossi et al., 2000, 
Zlotnik & Yoshie, 2000). This relatively new classification system was introduced in 2000, in 
which chemokines were considered as chemokine ligands, and each chemokine has been 
assigned a designation of CXCL or CCL (Rossi et al., 2000, Bacon et al., 2002). These ligands 
mediated their effects via 7-transmembrane domain receptors comprising a subset of G 
protein–coupled receptors (GPCRs) (Zlotnik & Yoshie, 2000). There is a great deal of 
redundancy and binding promiscuity between chemokine ligands and their receptors 
because some chemokines can bind multiple receptor subtypes, and some receptors can 
bind multiple chemokines (Murphy et al., 2000). Although most chemokine receptors 
recognize more than one chemokine, they are almost always restricted to a single subclass. 
Thus, the nomenclature system is rooted by the chemokine subclass specificity of the 
receptor been referred to as CC chemokines receptor (CCR) and CXC chemokine receptor 
(CXCR) followed by a number (Bacon et al., 2002, Murphy et al., 2000). Engagement of 
chemokine receptors with their respective ligands affects leukocyte migration by regulation 
of cytoskeletal re-arrangement, integrin-dependent adhesion, as well as by the binding and 
detachment of cells from their substrate (Silva et al, 2007). 
Among the mediators potentially involved in leukocyte migration to periodontal and 
periapical environment, chemokines have been investigated with special interest (Silva et 
al., 2007). Chemokines are found in gingival tissue and crevicular fluid and are produced by 
a number of cell types in the periodontium, such as fibroblasts, endothelial cells, 
macrophages, osteoclasts, epithelial cells, polymorphonuclear leukocytes, monocytes, 
lymphocytes, and mast cells and exert their effects locally in paracrine or autocrine fashion 
(Baggiolini, 2001, Traves & Donnelly, 2005). Some chemokines have important 
proinflammatory effects and are related to periodontal tissue destruction that involves the 
stimulation of bone resorption and induction of tissue damage. Chemokines can also affect 
the recruitment, differentiation, or fusion of precursor cells to form osteoclasts or enhance 
osteoclast survival (Pradeep et al., 2009, Silva et al., 2007). They could also interfere with PD 
by recruiting cells, such as neutrophils, which protect host against bacterial invasion (Graves 
et al., 2011, Kantarci et al., 2003).  
CXCL8 (IL-8) is an inflammatory chemokine which functions mainly as a neutrophil 
chemoattractant and activating factor. CXCL8 is able to upregulate the expression of 
adhesion molecules on the surface of neutrophils, enhancing leukotriene B4 (LTB4) 
production, inducing neutrophil chemotaxis and increasing neutrophils adherence to 
endothelial and epithelial cells (Rossi, 2003, Traves & Donnelly, 2005). CXCL8 is found at 
higher levels in gingival crevicular fluid prior to clinical signs of inflammation (Graves et al., 
2011). As PD seems to be related to the progression of the inflammatory process to deeper 
periodontal tissues, chemokines found in both gingival tissue and crevicular fluid may play 
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an important role on its pathogenesis. In this regard, subjects with a history of 
periodontitis have high levels of CXCL8 in gingival tissue and crevicular fluid and these 
levels are correlated with disease severity (Graves et al., 2011, Tsai et al., 1995). Moreover, 
CXCL8 has a direct effect on osteoclast differentiation and activity by signaling through 
the specific receptor, CXCR1 (Bendre et al., 2003). Analysis of the chemokines KC/CXCL1 
(the analogue of the human CXCL8), in an experimental model of PD in mice, revealed 
their expression in diseased tissues, preferentially in the junctional epithelium, and their 
correlation with the migration of PMNs (Garlet et al., 2005). Furthermore, there was a 
significant increase in the expression of CXCL8 by epithelial cells from periapical 
granulomas, suggesting that those cells also could increase vascular permeability and 
leukocyte chemotaxis (Takeichi et al., 2008).  
Other abundant chemokine expressed in the connective tissue subjacent to gingival 
epithelium is Macrophage Inflammatory Protein-1ǂ (MIP-1ǂ)/CCL3 (Gemmell et al., 2001). 
CCL3 chemoattracts a variety of cells, including lymphocytes, monocytes, basophils and 
eosinophils (Koch et al., 2005, Taub, 1996). It is a ligand for the receptors CCR1 and CCR5 
and is associated with the recruitment of monocytes/macrophages and dendritic cells via 
CCR1, and lymphocytes polarized into the Th1 phenotype by CCR5 (Alnaeeli et al., 2007). 
Thus, CCL3 has a potential role in stimulating bone resorption through effects on 
macrophages and Th1 cells (Graves et al., 2011). The number of CCL3-positive cells 
increases in periodontal tissues with increasing severity of PD. On the other hand, the 
absence of CCL3 does not affect the development of experimental PD in mice, probably 
due to the presence of homologous chemokines CCL4 and CCL5 which share the 
receptors CCR1 and CCR5 with CCL3 and present a similar kinetics of expression than 
CCL3 (Repeke et al., 2010). 
Regulated upon Activation Normal T-cell Expressed and Secreted (RANTES/CCL5) is 
found in greater levels in active periodontal lesions compared to inactive sites (Gamonal 
et al., 2001, Gemmell et al., 2001) and it chemoattracts lymphocytes and monocytes as well 
as other cell types (Koch et al., 2005, Schall et al., 1990). The involvement of CCL5 in 
periodontal bone resorption is supported by findings that it binds to CCR1 and/or CCR5 
(Garlet et al., 2003), inducing chemotaxis and the formation of osteoclasts in vitro (Yu et 
al., 2004). Fibroblasts from patients with rheumatoid arthritis, which shares some 
inflammatory features with PD, produce CCL5 mRNA upon stimulation with TNF-, IL-
1, or IFN- (Koch et al., 2005, Volin et al., 1998) and this production of CCL5 can 
participate in cytokine networks by inducing the production of CXCL8 and IL-6 (Nanki et 
al., 2001). Nevertheless, findings in a model of PL implicated CCR5 as a negative regulator 
of bone resorption, as mice lacking CCR5 presented larger PL than wild-type mice (Rossi 
et al., 2008). Accordingly, an increased amount of orthodontic tooth movement, correlated 
with increased alveolar bone resorption, was observed in the absence of CCR5 in mice 
(Andrade Jr. et al., 2009). Interestingly, an intermediate phenotype of PD development 
was observed after individual blockage of CCR1 and CCR5 (using genetically deficient 
mice strains) (Repeke et al., 2010). Thus, supported by findings that showed CCR1 
expression in pre-osteoclasts and its increase expression in RANKL differentiated 
osteoclasts (Yu et al., 2004), it seems that the bone resorptive activity of CCL5 in PD and 
PL might be mediated by its engagement with CCR1, while it seems to be controlled by 
CCR5, although lack direct evidence to support this hypothesis.  
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemoattractant for 
monocytes (Koch et al., 1992), detectable in the sera of patients with rheumatoid arthritis 
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(Koch et al., 2005). CCL2 is produced by a variety of cell types, either constitutively or after 
induction by oxidative stress, cytokines, or growth factors (Yada et al., 2010). CCL2 binds to 
CCR2 and CCR11 receptors, however, binding to CCR11 does not result in increased 
intracellular calcium mobilization, which is essential for chemotaxis (Schweickart et al., 
2000). Some evidence indicates that CCL2 may contribute to periodontitis once its levels are 
directly correlated with gingival inflammation. It has been demonstrated that IL-1 and 
TNF- induce and synergistically stimulate CCL2 expression by fibroblasts from human 
periodontal ligament contributing to the infiltration of monocytes into inflammatory sites 
(Hanazawa et al., 1993, Ozaki et al., 1996, Yu et al., 1995). The monocytes/macrophages 
accumulation at sites of bone injury and bone remodeling may play a significant role in the 
regulation of bone metabolism (Rahimi et al., 1995, Williams et al., 1992, Yada et al., 2010). 
CCL2 also has been implicated as chemoattractant for osteoclast precursors (Bonecchi et al., 
2009, Garlet et al., 2003) while limiting the infiltration of PMNs (Garlet et al., 2010). 
Accordingly, it was demonstrated that the mean concentration of CCL2 in GCF in chronic 
periodontitis patients reduced after treatment (Pradeep et al., 2009). Thus, a variety of 
evidence that support the role of CCL2 in inflammatory bone remodeling conditions, such 
as PD and PL, include: 1) CCL2 is the principal monocyte chemoattractant produced by 
osteoblastic cells in vitro, 2) CCL2 is not expressed in normal bone, but is induced during 
bone inflammation, 3) The induction of CCL2 in inflamed bone is temporally and spatially 
correlated with the recruitment of monocytes, 4) CCL2 production is associated with the 
recruitment of monocytes to areas of both bone formation and resorption during 
developmentally regulated bone remodeling (reviewed by Yada et al., 2010). 
Altogether, these findings indicate that chemokines orchestrate a large proportion of the 
cellular and molecular events observed in inflammatory oral diseases. In PD and PL, 
chemokines are directly involved in the recruitment of cells to control infection, but also 
contribute to the pathways involved in bone resorption. Thus, the control of this highly 
tuned system is essential in the determination of tissue homeostasis or disease when an 
infectious challenge disturbs the natural host balance. 

7. Clinical implications and future directions 

Periodontal disease and periapical lesion progression remain significant aspects of dentistry 
today. Extensive efforts to understand the etiology and pathogenesis of the oral 
inflammatory diseases concluded that they share common pathogenic mechanisms. Both 
diseases are mainly mediated by the perpetuation of infection and destruction of connective 
and mineralized tissues. This information gives us a clue that certain therapeutic strategies 
may be beneficial to both diseases and a number of mediators may have therapeutical 
potential. Ironically, the same host systems that defend against diverse pathogens are also 
responsible for tissue destruction. Hence, the spatial orientation of the inflammatory 
infiltrate to the bone and the periodontal tissue is an important component that can 
determine whether the destructive influence is predominant over the infection control. 
Despite recent technological advances in curative treatment, the disease prevention  are still 
elusive. Deeper knowledge of the etiology and pathogenesis to uncover predictive 
biomarkers may well be important to provide safe host-modulating approaches, which can  
reveal real possibility of early intervention and prevention  of alveolar bone loss. 
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8. Concluding remarks (Summary)  

The past 20 years have seen major advances in our understanding of the role of cytokine 
networks and chemokines orchestrating cellular and molecular events in the complex 
process of inflammatory disease development and progression. In fact, the development of 
oral inflammatory diseases is characterized by the persistent release of inflammatory 
mediators, such as cytokines and chemokines and migration of inflammatory cells to 
infected sites. These responses, although directed against bacteria, perpetuate and mediate 
the destruction of connective and mineralized periodontal tissues, being the main 
responsible for periodontal breakdown. Moreover, ongoing research results let us to 
conclude that the discovery of new T cell subsets lead to a more complex scenario regarding 
the role of cytokines in  inflammatory oral diseases pathogenesis. Recent reports suggest 
that the control of periodontal and periapical infection by “protective and destructive” 
mediators is an obviously simplified concept and several cytokines may present dual and 
apparently conflicting protective and destructive roles. Thus, string theories to unravel the 
destructive and protective role of cytokines and chemokines from the tissue destruction 
viewpoint make the development of effective therapies a very interesting challenge.  
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