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1. Introduction  

The average life expectancy increased in the 20th Century, implying that important changes 

in disease and causes of death worldwide have occurred. Longevity increase and risk factors 

for chronic diseases have been combined to turn cardiovascular diseases into one of the 

main causes of death in the world (Libby, 2011). Heart disease and stroke are the first and 

third leading causes of death, respectively, in the United States. In 2006, cardiovascular 

disease was responsible for 31.7% of all deaths: 26.0% from heart disease and 5.7% from 

stroke (Heron et al., 2009). Deaths from coronary heart disease (425,425 deaths) comprise 

67.4% of all deaths from heart disease (631,636 deaths) (Keenan et al., 2011). In developing 

countries such as Mexico, cardiovascular disease is the leading cause of death (Inegi, 2009). 

Atherosclerosis is a disease characterized by the accumulation of lipids, fibrous elements, 

cell proliferation and an inflammatory response that results in changes to the arterial wall 

(Libby, 2002). This disease has been observed in man throughout history, having been 

identified and reported in Egyptian mummies 3500 years old (Allam et al., 2009).  

2. Risk factors associated with cardiovascular diseases  

The risk factors associated with cardiovascular disease include the following: age, male 

gender, high serum levels of low-density lipoproteins (LDL), cholesterol, high-density 

lipoproteins, high serum cholesterol levels, diabetes mellitus, hypertension, smoking, family 

history of premature cardiovascular disease and infections by microorganisms such as 

Chlamydia pneumoniae. Furthermore, the combination of these risk factors is associated with a 

higher risk of cardiovascular disease (Ross, 1999, Garg, 2011). 

3. Low-density lipoprotein structure  

LDL is a spherical particle with a 22 nm diameter and a molecular weight of 2500 kDa. The 

particle consists of a hydrophobic nucleus of about 1600 cholesterol ester molecules and 170 

triglyceride molecules surrounded by a superficial monolayer of 700 phospholipids 
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molecules (mainly phosphatidylcholine) and 600 molecules of free cholesterol. 

Apolipoprotein B-100 (apoB-100) is found embedded in a monolayer; it consists of 4536 

residues of amino acids, with a molecular weight of 500 kDa (figure 1). The average half-life 

of circulating LDL is 2.5 days (Segrest et al., 2001). The main disposal mechanism for LDL in 

the blood is by endocytosis of nucleated cells through the LDL receptor, which is also the 

primary source of cholesterol used to maintain cell membranes (Jeon & Blacklow, 2005). 

 

 

Fig. 1. Low-density lipoprotein structure. The LDL is a spherical particle consisting of the 
cholesterol ester, triglycerides, phospholipids, free cholesterol and apolipoprotein B-100. 

4. Contribution of the low-density lipoprotein in atherosclerotic lesion 
development 

An increase in plasma LDL levels leads to an increase in the adherence of circulating 

monocytes to arterial endothelial cells and, at the same time, to an increased rate of entry of 

LDL into the intima, resulting in a higher steady state concentration of LDL in the intima. 

Once incorporated, the LDL can undergo oxidative modification by endothelial cells, 

smooth muscle cells, or macrophages and this oxidation is a key step in the development of 

an atherosclerotic lesion (Steinberg, 1997). There is evidence demonstrating that oxidized 

LDL (oxLDL) is present in atherosclerotic plaques. Immunohistochemical analysis using 

antibodies against oxLDL has revealed oxLDL in atherosclerotic lesions of humans and 

hyperlipidemic rabbits (Damasceno et al., 2006). Likewise, oxLDL has also been obtained 

from atherosclerotic plaques of human arteries, and this molecule  (oxLDL)  presents  the  

same properties and characteristics as oxLDL observed in vitro: a high electrophoretic 

mobility, high free cholesterol content, and a high proportion of sphingomyelin and 

lysophosphatidylcholine in the phospholipid fraction (Ylä-Herttuala et al., 1989).  LDL may 

suffer a minimal oxidation and is known as minimally modified LDL (mmLDL) or complete 

(oxLDL); mmLDL increases adherence and penetration of monocytes, in part by stimulating 

the release of MCP-1 from endothelial cells (Cushing et al., 1990). mmLDL can also stimulate 

the release of macrophage colony-stimulating factor, which can induce differentiation of the 
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monocyte into a cell with the phenotypic pattern of a tissue macrophage, including 

increased expression of the scavenger receptor (SR) (Rajavashisth et al., 1990), which does 

not recognize mmLDL (Berliner et al., 1990). In contrast, oxLDL is itself directly chemotactic 

for monocytes and is the major ligand for SR and other receptors on the arterial macrophage 

that contribute to foam cell formation. These may be the basis for the contribution that cells 

make to the foam cell population. A centrally important point is that the fatty streak lesion, 

while being clinically silent itself, is the precursor of the more complex lesions that cause 

stenosis and limited blood flow. These complex lesions ultimately represent the sites of 

thrombosis leading to myocardial infarction (Steinberg, 1997). 

5. Atherosclerotic plaque development  

The atherogenic process starts with endothelial dysfunction, recently, have shown that 

endothelial dysfunction may be caused by increased production of free radicals causing 

oxidative damage in vascular endothelial cells, which may be due to unresolved 

inflammatory response or the loss of balance between tumorigenic [apoptosis ('Yin')] and 

tumoricidal [wound healing or resolution ('Yang')] of the acute inflammatory process, which 

represents one of the first stages in the pathogenesis of atherosclerosis (Khatami M, 2008, 

2009, 2011). The first phase consists of a loss of homeostatic functions in the endothelium 

(anti-adhesive, anti-aggregating, anti-proliferative, anti-thrombotic, antioxidant, and 

vasomotor tone regulator), as well as an increase in the endothelial permeability to LDL, 

which retain the extracellular matrix (figure 2A) (Ross, 1999). The LDL is modified by 

lipoperoxidation in the sub-endothelial space by oxygen-derived compounds produced by 

endothelial cells (Steinberg, 1997, Libby, 2002).  The increase of LDL particles in the sub-

endothelial space initiates the formation of the atherosclerotic plaque (Ross, 1999, Steinberg, 

1997, Libby, 2002). The lipolysis of LDL by phospholipase A2 and lipoperoxidation 

generates lysophosphatidylcholine, which increases the pro-inflammatory effect in the 

artery intima (Mehrabian & Allayee, 2003). As a consequence, the expression of adhesion 

molecules are increased, including platelet/endothelial cell adhesion molecule (PECAM)-1, 

intercellular cell adhesion molecule (ICAM)-1, and vascular cell adhesion molecule 

(VCAM)-1 (Davies et al., 1993). These adhesion molecules permit the interaction of T cells 

and circulating monocytes with endothelial cells (Ross, 1999, Libby, 2002).  

Moreover, the endothelial and smooth muscle cells synthesize and secrete chemoattractants, 

such as monocyte chemotactic protein (MCP)-1 (Ross, 1999, Libby, 2002), thereby 

stimulating the migration and accumulation of monocytes to the lesion site (figure 2A) 

(Osterud & Bjorklid, 2003). Other cells that participate in the atherosclerotic plaque include 

macrophages and platelets, which adhere to proteins of the extracellular matrix, such as von 

Wilebrand factor and exposed collagen. The adherence of platelets to the exposed matrix is 

considered the first stage in the formation of a clot (Ross, 1999). Subsequently, activated 

platelets release vasoactive mediators that lead to the formation of a pro-inflammatory state 

during clot development (Shi & Morrell, 2011). The smooth muscle cells then migrate to the 

lesion (figure 3B), stimulated by growth factors, such as fibroblast growth factor, among 

other stimuli. In addition, T cells are recruited (figure 2B) and secrete tumor necrosis factor 

(TNF)-┙, IL-2, and other molecules (Ross, 1999, Libby, 2002).  

Monocytes and macrophages participate in the innate immune response and are essential 
effector cells during atherosclerosis. These cells express the cell surface scavenger receptors 
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(SR A type I and II, and CD36), which identify and internalize oxLDL particles (Mazzone, 
2000). Upon internalization, oxLDL induces monocyte transformation into foam cells (figure 
2B). These events precede the formation of the advanced lesion (figure 2C), which tends to 
form a fibrous cover in the walls of the lumen. The fibrous cover is characterized by an 
extracellular growth of lipids, especially cholesterol, cholesterol esters, and matrix proteins 
derived from smooth muscle cells. These lesions extend to the shoulders of the plaque (Ross, 
1999). As a result, the activated macrophages in the plaque secrete pro-inflammatory 
cytokines (Takahashi et al., 2002), among which are interleukin (IL) -1┚, IL-8, TNF-┙, 
macrophage colony-stimulating factor, and MCP-1, resulting in further 
monocyte/macrophage recruitment and their accumulation (Ross, 1999). Within the plaque, 
macrophages increase their expression of the co-stimulatory molecules CD80/CD86 (Buono 
et al., 2004), CD40 (Phipps, 2000), and major histocompatibility (MHC) type II molecules, 
which modulate T cell activation (Buono et al., 2004). The activation of T cells favors the 
secretion of interferon-gamma and TNF-┙, which act to amplify the inflammatory response. 
However, apoptosis or necrosis may be generated by the accumulation of lipids, promoting 
the advance of the necrotic nucleus to the plaque (figure 2C) (Ross, 1999). Moreover, damage 
to the lesion may be augmented by macrophages that produce TNF-┙, IL-1┚, and 
metalloproteinases (Ross, 1999, Libby, 2002). The atherosclerotic lesion may suffer a rupture 
in the fibrous layer (figure 2D) or ulceration, which leads to unstable angina syndromes or 
myocardial infarction (Ross, 1999). The vulnerability of the plaque originates from a 
thinning of the shoulders of the lesion, which happens when macrophages degrade the 
matrix of the fibrous layer by means of interstitial collagenase, gelatinase, and stromelysin. 
In addition, there is an inhibition in the secretion of the matrix proteins from smooth muscle 
cells by IFN-┛ secreted by T cells. Degradation of the fibrous layer may lead to a 
hemorrhage (figure 2D). Alternatively, the activated platelets adhere to the injured artery 
and cause the formation of the clot and occlusion of the artery. These changes may also be 
accompanied by the production of pro-coagulant tissue factors, which enhances the 
possibility of thrombosis (Ross, 1999, Libby, 2002). 

6. TLRs  

Several lines of evidence have demonstrated that toll-like receptors (TLRs) play an essential 
role in inflammatory responses (Medzhitov, 2001, Trinchieri & Sher 2007) and may be 
important for the progression of atherosclerotic disease. The gene that encodes the Toll 
receptor was discovered early in the 1980s as an essential component in the path that 
establishes the dorsoventral axis in the early Drosophila melanogaster embryo (Anderson et 
al., 1985). In 1996, Lemaitre et al. documented the first Toll-like receptor involved in the anti-
fungal immune response in D. melanogaster, and the discovery of the first human TLR4 was 
performed in 1997 by Medzhitov et al., which has since been identified as a crucial 
component of the innate and adaptive immune responses. In mammals, 13 TLRs have been 
described, (11 in humans), which are located at the cellular surface and in intracellular 
vesicles (Kawai, et al., 2010). The TLRs form a family of receptors that have been 
phylogenetically conserved, exhibiting three structural characteristics: 1) they have an 
extracellular region that is rich in leucine-rich repeats; 2) they have a short transmembrane 
region; and 3) they have a cytoplasmic region that is homologous to the IL-1 receptor, also 
called Toll/interleukin-1–receptor (TIR), which is required to initiate signaling cascades 
(Medzhitov, 2001). 
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Fig. 2. Development of the atherosclerotic plaque. (2A) The lesion originates when damage 
to the endothelium increases the endothelial permeability and promotes leukocyte 
migration and adhesion. (2B) In the following stage of the lesion, smooth muscle cells 
migrate to the lesion, macrophages transform into foam cells, T cells are activated, platelets 
adhere to and accumulate at the lesion, and leukocytes continue to arrive. (2C) In the lesion, 
an accumulation of macrophages occurs, which subsequently die by apoptosis or necrosis, 
generating the necrotic nucleus and forming the fibrous layer. (2D) In the final stages, the 
lesion exhibits a thinning of the fibrous cap, and plaque rupture and bleeding of 
microvessels can ensue. 
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TLRs participate in the innate immune response, recognizing pathogen-associated molecular 
patterns (PAMPs), which are described in Table 1. 
 

TLR Ligand Source ligand  

TLR1/TLR2 Tri-acyl lipopeptides Mycobacterium 
tuberculosis 

(Takeda et al., 2002) 
 

TLR2 Peptidoglycan Staphylococcus aureus (Schwandner et al., 
1999) 

 Lipoarabinomannan Mycobacterium 
tuberculosis 

(Tapping & Tobias 
2003) 

 Phospholipomannan 
 

Candida albicans (Netea et al., 2002b) 

TLR3 dsRNA Viruses (Alexopoulou et al., 
2001) 
 

TLR4 LPS Gram-negative bacteria (Chow et al., 1999) 

 Envelope F protein Respiratory syncytial 
virus 

(Kurt-Jones et al., 
2000) 

 Glycoinositolphospholipids Trypanosoma cruzi (Oliveira et al., 2004) 

TLR5 Bacterial flagellin Salmonella typhimurium (Andersen-Nissen et 
al., 2007) 

TLR6/TLR2 Lipoteichoic acid Group B streptococcus (Henneke et al., 2005) 

TLR7 ssRNA Viruses (Diebold et al., 2004) 

TLR8 ssRNA Viruses (Heil et al., 2004) 

Table 1. TLRs and some of their ligands 

6.1 TLRs signaling  

The activation of TLRs involves their dimerization, heterodimerization, or collaboration 

with other receptors, as well as a redistribution and aggregation at the cell surface (Husebye 

et al., 2006, Trianrafilou et al., 2006). Most TLRs use signaling pathways dependent on 

myeloid differentiation primary response protein 88 (MyD88). MyD88-dependent signaling 

starts in the TIR region, which then recruits the MyD88 adaptor molecule and promotes the 

association of IRAK (IL-1RI-associated protein kinase) 4 and IRAK1. During the formation 

of this complex, IRAK4 activates and phosphorylates IRAK1, which in turn interacts with 

TRAF (TNF receptor-associated factor) 6, thereby generating the IRAK1-TRAF6 complex 

that can interact with other molecules and induce the activation of the IKK complex. The 

IKK complex consists of IKK┙ and IKK┚, which catalyze phosphorylation of IkB. 

Phosphorylated IkB is then ubiquitinated and degraded by the proteosome, allowing the 

liberation and further translocation of NF-κB to the nucleus. The MyD88 independent 

pathway involves the TRIF protein (Toll/interleukin-1-receptor (TIR)-domain-containing 

adaptor protein inducing interferon (IFN)-┚), which associates with the TANK-binding 
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kinase (TBK) 1. TBK1, in turn, induces the phosphorylation of the interferon-regulatory 

factor (IRF) 3 transcription factor and allows its translocation to the nucleus. Thus, the 

activation of TLR signaling pathways induces NF-κB and IRF translocation, which activate 

multiple inflammatory genes such as TNF-┙, IL-1┚, IL-6, IFN-┚, CD80, CD86, ICAM-1, 

VCAM-1, IL-8, and  MIP1-┙, among other molecules (figure 3) (Akira et al., 2006, 

Medzhitov, 2001). 

7. TLRs Expression in atherosclerosis  

In human and mouse atherosclerotic lesions, TLR1, TLR2, and TLR4 have been shown to be 
over-expressed in endothelial cells and monocytes/macrophages (Edfeldt et al., 2002). For 
example, endothelial cells located within the atherosclerotic lesion express high levels of 
TLR1, TLR2, and TLR4, whereas endothelial cells from a normal artery exhibit lower 
expression levels of these TLRs (Edfeldt et al., 2002). In vivo, the endothelial cells of the 
coronary artery increase TLR2 expression under hyperlipidemia. This increase is also 
observed in regions where blood flow is altered, suggesting that TLR2 participates in the 
initial pro-inflammatory events and contributes to the early processes of atherosclerosis 
(Mullick et al., 2008). 
Circulating monocytes in peripheral blood from patients with unstable angina and 
myocardial infarction express higher levels of TLR4 than patients with stable angina or 
healthy subjects (Methe et al., 2005). Monocytes from patients with cardiovascular disease 
present higher levels of TLR2 when compared to monocytes from healthy controls. Indeed, 
high TLR2 levels in patients are considered a risk factor for atherogenesis (Kuwahata et al., 
2010) and reflect levels of infiltrated macrophages, which also predominantly overexpress 
TLR2 and TLR4, in the atherosclerotic plaque of humans (Edfeldt et al., 2002). 

7.1 The role of TLRs in the development of atherosclerosis 
The participation of TLRs in the development of atherosclerosis has been clearly 
demonstrated in studies using animal models. In Apo E−/−/TLR4−/− mice, a reduction in 
atherosclerotic plaques has been found, and it has been associated with decreased levels of 
pro-inflammatory cytokines, such as IL-12 or MCP-1, as well as an alteration in the plaque 
composition, characterized by a decrease in the macrophage infiltrate in the lesion area 
(Michelsen et al., 2004). In a similar study using LDLR−/−/TLR2−/− mice fed a diet high in 
fat, under pathogen-free conditions, TLR2-deficient mice exhibited a considerable decrease 
in atherosclerotic lesions when compared with LDLR−/−/TLR2+/+ control mice. These 
studies clearly establish a role for TLR2 in the development of atherosclerosis, suggesting 
the possibility that endogenous ligands activate TLR2. Another study demonstrated that the 
bone marrow (BM) from TLR2+/+ or TLR2−/− mice did not impact the cellular expression of 
TLR2 in the aortic lesion when transplanted into LDLR−/− mice. This effect is attributed to 
the resident cells, such as endothelial cells, or cells from the smooth muscle and fibroblasts, 
but  not to cells derived from the BM, such as monocytes and macrophages.  Finally, it was 
found that the specific in vivo activation of TLR2 results in an increase in the formation of 
the atherosclerotic  plaque in control mice (Mullick et al., 2005). Other studies that support 
the participation of TLRs in the development of atherosclerotic lesions have demonstrated 
that MyD88-deficient mice are somewhat protected from the development of atherosclerosis 
and have a reduction in the development of the atherosclerotic plaques, accompanied by a 
decrease in circulating levels of pro-inflammatory cytokines, such as IL-12 and MCP-1 
(Michelsen et al., 2004, Björkbacka et al., 2004). 
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Fig. 3. Schematic representation of the TLR signaling pathway. The signaling of TLRs starts 
when they recognize their specific ligands. The TLRs signal through a MyD88-dependent 
pathway to initiate a complex signaling cascade that involves diverse proteins and culminates 
in the activation of NF-κB, which facilitates the expression of pro-inflammatory cytokines such 
as IL-1┚, IL-6, and TNF-┙, among others.  Similarly, the MyD88-independent signaling pathway 
involves TRIF proteins, which are associated with the TANK binding kinase (TBK1); this 
induces phosphorylation of the transcription factor IRF3 and facilitates the expression of type I 
interferon. IkB, inhibitor of NF-κB; IRF, interferon-regulatory factor; MyD88, myeloid 
differentiation primary-response gene 88; TBK1, TANK-binding kinase; TRIF, Toll/interleukin-
1-receptor (TIR)-domain-containing adaptor protein inducing interferon (IFN)-┚. 
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7.2 TLR polymorphisms in atherosclerosis  

The Asp299Gly polymorphism in TLR4 attenuates signaling of the receptor and decreases 
the inflammatory response to Gram-negative pathogens, which have been associated with a 
decrease in the risk for atherosclerosis (Kiechl et al., 2002). Some studies have reported this 
polymorphism as associated with cardiovascular disease (Ameziane et al., 2003, Boekholdt 
et al., 2003), although other groups have not found this association (Yang et al., 2003, Netea 
et al., 2004). 
Some functional studies have shown that the Arg753Gln polymorphism in TLR2 results in a 
weak response to bacterial peptides (Lorenz et al., 2004), and it is associated with protection 
during restenosis (Hamann et al., 2005). However, there was no association with myocardial 
infarction (Labrum et al., 2007, Balistreri et al., 2008), similar to observations of the 
Thr1237Cys and Thr1486Cys polymorphisms from the TLR9 promoter, which suggested 
that these polymorphisms were not associated with atherogenesis or restenosis (Hamann et 
al., 2006). 

7.3 The role of TLRs in response to infectious agents in atherosclerosis 

One of the possible causes of inflammation in atherosclerosis is lipopolysaccharide 
exposure, which is a glycolipid present in the external wall of Gram-negative bacteria 
(Bryant et al., 2010), such as C. pneumoniae (Kuo et al., 1993), Porphyromonas gingivalis (Dorn 
et al., 1999), and Helicobacter pylori (Ameriso et al., 2001). These bacteria have been associated 
with atherosclerosis. Likewise, cytomegalovirus (CMV) has been associated with 
cardiovascular disease (Nieto et al., 1996).  
For example, C. pneumoniae has been isolated from coronary arteries in patients with acute 
coronary syndrome (Saikku et al., 1988), and in experimental studies, it has been found that 
infection with C. Pneumoniae increases atherosclerotic plaque size in Apo E−/− mice 
compared to the controls. It has also been reported that the size of the aortic lesion and the 
expression of pro-inflammatory cytokines, such as MCP-1, IL-12p40, TNF-┙, and IL-6, are 
reduced in ApoE−/−TLR2−/−, ApoE−/−TLR4−/− and ApoE−/−MyD88−/− mice when compared 
with the ApoE−/− controls infected with C. Pneumoniae (Naiki et al., 2008). Other studies 
have reported that HSP60 of C. Pneumoniae (cHSP60) reduces the expression and activity of 
nitric oxide synthase in the endothelial cells of the human coronary artery, which has also 
been associated with endothelial dysfunction. Moreover, the effect of cHSP60 on endothelial 
nitric oxide synthase deregulation is inhibited by blocking TLR2 and TLR4 (Chen et al., 
2009). Additionally, the endogenous cHSP60 stimulates the proliferation of vascular smooth 
muscle cells (Hirono et al., 2003). Other studies have shown that C. Pneumoniae induces the 
formation of foam cells in the presence of oxLDL through TLR2 (Cao et al., 2007) and that 
this occurs through both MyD88-dependent or –independent pathways (Chen et al., 2009). 
Finally, infection of vascular smooth muscle cells with C. Pneumoniae mediates the persistent 
release of MCP-1 through the activation of TLR2 (Yang et al., 2005), and infection of 
mononuclear cells with C. Pneumoniae induces TLR2- dependent TNF and IL-1┚ secretion 
(Netea et al., 2002a), which may also contribute to the formation of the plaque. 
Infection of ApoE−/− mice with P. gingivalis demonstrated an increase in the atherosclerotic 
plaque, characterized by an increase in levels of lipids, macrophages, and T cells (Hayashi et 
al., 2011). Moreover, P. gingivalis induced the expression of TLR2-dependent inflammatory 
mediators, such as IFN-┛, IL-1┚, IL-6 and TNF-┙ (Hayashi et al., 2010). Another study 
demonstrated that P. gingivalis LPS increased TLR2 expression and induced IL-6 and TNF-┙ 
secretion in vascular secretion cells. It was also found in this study that a heterotypic 
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receptor complex is formed, comprised of TLR2, TLR1, CD36, and CD11b/CD18 
(Triantafilou et al., 2007), resulting in an overregulation of ICAM-1 and VCAM-1 in 
endothelial cells, which facilitates the adhesion of mononuclear cells (Nakamura et al., 2008). 
Other data have demonstrated that the infection by CMV increases the size atherosclerotic 
plaque in ApoE−/− mice (Hsich et al., 2001). However, to date, no data exists regarding the 
role of the TLRs in response to a CMV infection in the context of atherosclerosis. It is 
important to mention that TLR7 and TLR9 may exhibit redundant roles in the production of 
IFN-┙/┚, IL-12p40, and TNF-┙ by plasmacytoid dendritic cells (pDC) during CMV infection 
(Zucchini et al., 2008). Likewise, pDCs infected with CMV are capable of triggering the 
proliferation of B cells and the production of antibodies in the presence of T cells (Varani et 
al., 2008). This evidence suggests that a role for CMV in the pathogenesis of atherosclerosis 
may exist, particularly because the atherosclerotic plaque contains pDC (Van Vré et al., 
2011). 
TLRs participate in the innate immune response in atherosclerosis, recognizing infectious 
agents, which are described in Table 2. 
 

TLR Ligand Infectious agent  

TLR2  C. pneumoniae (Naiki et al., 2008) 
 HSP60   C. Pneumoniae (Chen et al., 2009) 
 LPS 

P. gingivalis (Nakamura et al., 
2008) 
 

TLR4 HSP60 C. Pneumoniae (Chen et al., 2009) 

Table 2. TLRs and some of their ligands in infectious agents. 

7.4 Role of TLRs in response to PAMP in atherosclerosis 

It has been clearly established that PAMPs promote various processes in atherosclerosis. 
Among these are endothelial cell activation, foam cell formation and the development of an 
atherosclerotic plaque (Erridge, 2008). 
The endothelium maintains the vascular tone and blood flow with little or no expression of 
pro-inflammatory factors under homeostatic conditions (Hadi et al., 2005). However, LPS 
induces cell activation resulting in an increase in the expression of TLR2 and TLR4, as well 
as the secretion of IFN-┛, TNF-┙ (Faure et al., 2001), and MCP-1 (Yumoto, et al., 2005) in 
vascular endothelial cells. Cell activation also results in the expression of adhesion 
molecules, such as E-selectin, VCAM-1 and ICAM-1, which are involved in the adhesion of 
monocytes and T cells to the endothelium (Jersmann et al., 2001). In addition, LPS and 
histamine (acting via H1 receptors) synergistically induce the production of prostaglandin 
and IL-6 in endothelial cells (Raveendran et al., 2011). Coronary artery endothelial cells 
activation through TLR2 with lipoteichoic acid exocytose Weibel-Palade bodies is 
accompanied by the release of von Willebran factor, P-selectin, and IL-8 (Into et al., 2007). 
Additionally, TLR3 activation of endothelial cells impairs endothelium-dependent 
vasodilation, increases the production of reactive oxygen species, reduces re-
endothelialization after carotid artery damage, and increases atherosclerotic plaque 
formation in ApoE−/− mice ( Zimmer et al., 2011). 
Macrophages play key roles in lipid metabolism and immune responses. However, 
macrophages are converted into foam cells during early and late stages of atherosclerosis 
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and contain massive amounts of cholesterol esters (Glass & Witztum, 2001). Stimulation of 
RAW264.7 macrophages through TLR2 with the ligand Pam3Cys in the presence of LDL 
leads to the formation of foam cells, and this effect is not observed in TLR2-deficient 
macrophages (Cao et al., 2007). The accumulation of cholesterol ester during atherogenesis 
reflects a balance between the internalization of lipids by scavenger receptors and 
cholesterol efflux. Alterations in this balance favoring the removal of lipids by efflux could 
limit the formation of foam cells, whereas interference with the efflux pathway would 
exacerbate the lesion. In this context, activation of macrophages with poly I:C, the ligand for 
TLR3, and lipid A, a TLR4 ligand, inhibit cholesterol efflux-dependent apoAI (Castrillo et 
al., 2003). These data suggest that signaling via TLR2, TLR3, or TLR4 is potentially an 
important modulator of cardiovascular disease, which is supported by studies in animal 
models that have revealed the role of PAMPs in the development of atherosclerosis. The 
administration of the TLR2 ligand PamCys to LDLR−/− mice, which are susceptible to 
developing atherosclerosis, showed a dramatic increase in the severity of atherosclerotic 
plaques (Mullick et al., 2005), while PamCys induced intimal hyperplasia in arteries of 
C57BL/6 mice (Schoneveld et al., 2005). 

7.5 Role of TLRs in response to endogenous ligands during atherosclerosis 

Most studies have focused on determining the involvement of TLRs in response to 
microorganisms or PAMPs. However, there is growing evidence showing that TLRs can 
signal through endogenous ligands, which are classified as damage-associated molecular 
patterns and are able to mount an inflammatory response in the absence of exogenous 
antigens (Chen & Nuñez, 2010).  
During atherosclerosis, several endogenous ligands have the potential to activate TLRs. 
Initial studies indicate that the activation of macrophages with oxLDL induces the up-
regulation of TLR4 mRNA in a dose-dependent manner, suggesting that a mechanism 
connecting lipids and TLRs exists (Xu et al., 2001). Subsequently, it was determined that 
mmLDL is capable of binding to CD14 and that, through the TLR4/MD2 complex, mmLDL 
causes actin polymerization and membrane spreading in macrophages (Miller et al., 2002). 
However, it has been shown that mmLDL induces secretion of pro-inflammatory cytokines, 
such as IL-1┚, IL-6, and TNF-┙, in human monocytes and macrophages through CD14 
(Chávez-Sánchez et al., 2010a, Chávez-Sánchez et al., 2010b), which is corroborated by the 
fact that the blockade of CD14 with anti-CD14 antibodies significantly reduces the 
concentration of pro-inflammatory cytokines, including IL-1┚ and IL-6, produced by 
macrophages in response to oxLDL (Pasini et al., 2007). The stimulation of human 
monocytes and macrophages with mmLDL induces the secretion of IL-1 ┚, IL-6, and TNF-┙ 
through a TLR4-dependent mechanism (Chávez-Sánchez et al., 2010a, Chávez-Sánchez et 
al., 2010b), which is similar to the mechanism by which end products of LDL glycosylation 
lead to the production of TNF-┙ (Hodgkinson et al., 2008a). Another study showed that 
mmLDL induces the secretion of MIP-2  in mice and that this secretion is TLR4/MyD88 
dependent in mouse macrophages, whereas the secretion of MCP-1, TNF-┙, and IL-6 was 
shown to be independent of TLR4/MyD88 (Miller et al., 2005). Discrepancies across these 
studies could be due to different types of mmLDL or differences in the types of cells that 
were used in each study. For example, Chávez-Sánchez et al. used copper-modified LDL 
whereas Miller et al. used LDL modified by fibroblasts that overexpressed 15-lipoxygenase.  
mmLDL has also been shown to activate TLR2 and induce the secretion of IL-1┚, IL-6, and 
TNF-┙ in human monocytes and macrophages (Chávez-Sánchez et al., 2010a, Chávez-
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Sánchez et al., 2010b). Moreover, the stimulation of monocytes with mmLDL causes a 
redistribution of CD14 and TLR4 on the cell surface, as well as the colocalization of CD14 
and TLR4. mmLDL also caused the redistribution and patching of TLR2 on the cell surface, 
suggesting that there is a close association between these cell surface receptors (Chávez-
Sánchez et al., 2010a). Similar data show that TLR2 and TLR4 colocalized with oxLDL (Su et 
al., 2011). Notably, mmLDL increases the expression of TLR2, rather than the expression of 
TLR4, in human monocytes and macrophages (Chávez-Sánchez et al., 2010a), suggesting 
that mmLDL may induce cross-talk between the TLR2 and TLR4 pathways of activation, 
resulting in amplified secretion of pro-inflammatory cytokines (Fan et al., 2006). Similarly, it 
has been shown that oxLDL, which can induce foam cell transformation, can increase TLR2 
and TLR4 transcript expression (Holvoet et al., 2006). Surprisingly, mmLDL induces mRNA 
synthesis of IL-10 (Bae et al., 2009) and the secretion of this cytokine in monocytes and 
macrophages (Chávez-Sánchez et al., 2010b), indicating that the activation of TLR2 and 
TLR4 also initiates regulatory mechanisms, including the production of anti-inflammatory 
cytokines such as IL-10 (Liew et al., 2005).  
Endogenous ligands have been associated with atherosclerosis in recent studies, including 
elevated serum amyloid A , which can predict cardiovascular events (Kosuge et al., 2007) 
and has been postulated as a shared mediator of inflammation and cardiovascular disease ( 
Wilson et al., 2008). Serum amyloid A  can induce cellular activation through TLR2 (Cheng 
et al., 2008), and activation of smooth muscle cells by serum amyloid A  lead to an increase 
in the incorporation of sulfate proteoglycan, which causes an increase in glycosaminoglycan 
chain size and a greater binding affinity of LDL (Wilson et al., 2008).  
Another acute phase protein that is involved in cardiovascular disease is fibrinogen, which 
induces the secretion of MCP-1 in macrophages (Smiley et al., 2001), IL-8 in monocytes 
(Kuhns et al., 2007), and TNF-┙, IL-6, MMP-1, and MMP-9, among other molecules 
(Hodgkinson et al., 2008b), through the activation of TLR4.  
In mice and humans, atherosclerotic plaque-resident macrophages and foam cells express 
fibronectin with an extra domain A (EDA) (Tan et al., 2004). This EDA domain may act as a 
ligand for TLR4 (Okamura et al., 2001) and TLR2, which feeds back to increase the 
expression of TLR2, TLR4 and CD11b (Schoneveld et al., 2008). In the development of 
atherosclerosis, there is a marked increase in the number of macrophages producing high 
mobility group box 1 (HMGB1) protein (Kalinina et al., 2004). HMGB1 can activate the  
 

TLR Ligand  

TLR2 mmLDL 
Serum amyloid A   
EDA 
HMGB1 

(Chavez-Sanchez et al., 2010) 
(Cheng et al., 2008)  
(Okamura et al., 2001)   
(Park et al., 2004) 

TLR4 mmLDL (Miller et al., 2002, Chavez-
Sanchez et al., 2010) 

 AGE-LDL 
Fibrinogen 
EDA 
HMGB1 

(Hodgkinson et al., 2008) 
(Hodgkinson et al., 2008) 
(Okamura et al., 2001) 
(Park et al., 2004) 
(Yang et al., 2010) 

Table 3. TLRs and some of their ligands in atherosclerosis. 
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receptor for advanced glycation end products, and it induces secretion of TNF following 
activation of TLR2 and TLR4 and downstream NF-κB (Park et al., 2004). HMGB1 in 
endothelial cells increases the expression of ICAM-1 and E-selectin, whereas the inhibition 
of TLR4 leads to a suppression of these molecules plus NF-κB (Yang et al., 2010). 
TLRs participate in the innate immune response in atherosclerosis, recognizing endogenous 
ligands, which are described in Table 3. 

7.6 The TLRs as therapeutic targets 

TLR4 and TLR2 have a pathogenic role in cardiovascular disease; their ability to initiate and 
propagate inflammation makes them attractive therapeutic targets. Therefore, blocking 
antibodies directed against these TLRs and pharmacological inhibitors of their signaling 
pathways have been considered as potential therapeutics. 
Eritoran (E5564) is an antagonist of lipid A that interferes with TLR4/MD2/LPS complex 
formation and attenuates the inflammatory response in myocardial ischemic reperfusion, as 
evidenced by a reduction in infarct size and a decrease in the expression of TNF-┙, IL-1┚, IL-
6, MIP-1┙, MIP-2, and MCP-1 (Shimamoto et al., 2006). This compound is in phase III 
clinical trials for sepsis, and its administration in patients undergoing surgery cardiac causes 
no cytotoxicity, but significantly reduces the incidence of any adverse action or 
postoperative systemic inflammation/organ dysfunction endotoxin (Bennett-Guerrero et al., 
2007).  
Similarly, the blockade of TLR2 with anti-TLR2 antibody (OPN-301) reduces myocardial 
ischemia-reperfusion and preserves cardiac function in vivo. OPN-301 prevents the 
activation of NF-κB and reduces the production of TNF-┙, CD11b, and proapoptotic signals, 
as well as stinting the infiltration of leukocytes. Thus, OPN-301 is a good candidate for 
adjuvant therapy in patients undergoing percutaneous transluminal coronary angioplasty 
(Arslan et al., 2010). 
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