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1. Introduction 

The numerous effects that cryopreservation can induce in spermatozoa, ranging from lethal 
injuries to those which merely impair their subsequent function. In the last few years, the 
considerable increase in our understanding of both, the cell physiology of spermatozoa, and 
the stress of cryopreservation, have contributed to a renewed interest in improving the 
performance of cryopreserved semen. 

Despite the significant progress, the post-thaw viability and fertility of the cryopreserved 
sperm are still reduced, as a consequence of accumulated cellular injuries that arise throughout 
the cryopreservation process. Many laboratory tests have already been carried out to verify 
these detrimental effects and their origin. Their is needed to well understand the whole 
process of cryopreservation and its influence on sperm function. As a consequence, it would 
lead to a subsequent improvement of sperm viability by means of reformulated protocols and 
approaches helping to minimize the detrimental effect of cryopreservation.  

Here, we present an overview of the cryopreserved semen assessment methods in the light 
of sperm physiology, in order to relate these factors to altered functions of cryopreserved 
sperm and to determine the fertilizing potential of the frozen-thawed semen. 

2. Conventional methods of semen assessment 

Light microscopy is the most often used to analyze the quality and predict the fertility of the 
cryopreserved semen in the conventional way. Visual assessment requires such equipment 
as microscope, heated stage and slides, as well as an experienced evaluator, however the 
assessment is subjected to the evaluator bias.  

2.1 Sperm motility 

Motility is one of the most important features of a fertile spermatozoa. It was the first, and 
continues to be the most widely used indicator of sperm function. Sperm motility is an 
important attribute, because it is readily identifiable and reflects several structural, and 
functional competence, as well as essential aspects of spermatozoa metabolism. Sperm 
motility is expressed as the percentage of total motile or progressively motile spermatozoa. 
This parameter is usually assessed by the subjective visual examination under a phase 
contrast microscope at 37°C using low objectives (10 or 20x).  Light microscopic evaluation 
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of motile spermatozoa does not require expensive equipment, is a simple and rapid method 
for assessment of sperm quality, however, it is a highly subjective and not reliable assay for 
the prediction of fertility (Peña Martínez, 2004).  

2.2 Sperm morphology 

On account of the fact that freezing and thawing process provokes morphological or 
biochemical cryogenic damage resulting in sperm dysfunction and changes in cell’s 
membrane, the sperm morphology evaluation is an essential component of any semen 
analysis and provides the clinical information about the potential fertility of semen sample.  

Despite, there are many different and also new methods, as described below, used in semen 
analysis, semen smears are still employed for routine light microscopic morphological 
evaluation. However, this assessment is subjective and results are largely dependent on the 
proficiency and experience of the evaluator. Vital dye in combination with different stains 
for acrosome evaluation are commonly utilised to assess the spermatozoa morphology and 
the viability together. For this purpose, India ink, William’s, Karras, Spermac, Diff-Quick, 
Papanicolaou, Fuelgen or combination: Trypan blue and Giemsa, Trypan blue, Bismarck 
Brown and Rose Bengal, and finally eosin-nigrosin (described in 2.3 section) have been used 
in birds and mammals including human (Brito et al., 2003; Brito et al., 2011; Didion et al., 
1989; Freneau et al., 2010; Łukaszewicz et al., 2008; Partyka et al., 2007; Rodriguez-Gil et al., 
1994; Sprecher & Coe, 1996; Talbot & Chacon, 1981). In spite of that, Freneau et al. (2010) 
have shown that differential interference phase contrast microscopy of wet-mounted semen 
is the superior method for bulls sperm morphology assessment. For cats sperm morphology, 
the best differentiation of sperm structures, especially acrosome, with lower artifacts, fast 
green FCF-rose Bengal staining or Hancock and Glendhill solution staining and phase-
contrast microscope are encouraged (Zambelli & Cunto, 2006). However, when frozen-
thawed semen is analyzed these stains are negatively affected by egg yolk and glycerol, 
causing egg yolk agglutination and lack of sperm structures differentiation. Therefore, 
sperm washing is recommended to prevent these interferences (Zambelli & Cunto, 2006).  

Many reports have shown the common classification system for the morphology of 
spermatozoa from different species. However, classification categories are different for the 
various species and the adoption of uniform system within each species is needed. 
Mammalian spermatozoa abnormalities can be divided into primary and secondary 
abnormalities (Blom, 1950), or in some classification systems into major and minor 
abnormalities (Blom, 1968, 1983). Primary sperm defects are assumed to have occurred 
during spermatogenesis, and secondary defects are assumed to have occurred during 
maturation in the epididymis and the transit through the ductal system and specimen 
preparation. Second system classifies sperm defects according to the perceived effects on 
fertility. The most common sperm abnormalities (Fig. 1) are related to abnormal acrosomal 
regions/heads, detached head, proximal droplets, distal droplets, abnormal midpieces, 
bent/coiled tails. Acrosome defects include knobbed, roughed, and detached acrosomes. 
Head defects include microcephalic, macrocephalic, pyriform, tapered, other shape defects, 
nuclear vacuoles, and multiple heads. Midpiece and principal piece (tail) abnormalities 
enclose simple bent, folded, fractured, thickened, swollen, roughed, Dag-like, disrupted 
sheet, duplicated, coiled. Various defects are typical for each species.  

For each slide, at least 100-300 spermatozoa should be counted at 400-1000x magnification, 
which allows for accurate calculation of the percentage of different sperm defects. 
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Fig. 1. Selected defects in sperm morphology (boar spermatozoa): a) normal sperm cells; b)  
looped tail; c) acrosome detachment; d) loss of acrosomal contents (back arrow), proximal 
cytoplasmatic droplet (arrowhead); e) proximal cytoplasmatic droplet; f) kinked midpiece; 
g) looped tail (black arrow), coiled tail (arrowhead); h) thickened midpiece.  
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2.3 Sperm membrane integrity 

Live-dead staining. The traditional method for assessing whether the sperm membrane is 
intact or disrupted involves examining a percentage of viable sperm by a stain exclusion 
assay. For the determination of cell viability live-dead stains as aniline-eosin, eosin-nigrosin 
or eosin-fast green are widely used. Integrity of the plasma membrane is shown by the 
ability of a viable cell to exclude the dye, whereas the dye will diffuse passively into sperm 
cells with damaged plasma membranes. When stained smears are viewed under the oil 
immersion objective of light microscope, the percentage of viable, live, properly formed 
spermatozoa, nonviable and also partially-damaged spermatozoa can be determined. In 
eosin-nigrosin stain under the microscope, live spermatozoa appear white, unstained 
against the purple background of nigrosin (Fig. 2a). Dead and damaged spermatozoa which 
have a permeable plasma membrane are pink (Fig. 2b). The evaluation of the percentage of 
live and dead spermatozoa and the percentage of morphology defects may be performed on 
the same nigrosin-eosin stained slides. 

     
Fig. 2. Eosin-nigrosin staining for live-dead cells (chicken spermatozoa): a) live 
spermatozoon, b) dead spermatozoa. 

The hypoosmotic swelling test (HOS) is a method of investigating membrane integrity in 
sperm and, as such, is an alternative to supra-vital staining. In fact, the HOS test is thought 
to have the advantage of indicating not only whether the membrane is intact, but also 
whether it is osmotically active. Sperm with an intact, functional membrane when are 
exposed to an hypoosmotic solution incubated for 30 minutes at 37ºC, swell to achieve an 
osmotic equilibrium. An expression of this is a typical swelling of the sperm tail (Fig. 3) 
(Neild et al., 1999). The HOS test is a simple, inexpensive and easily applicable technique, 
which has been adapted to assess spermatozoa of several species (Corea & Zavos, 1994; 
Kumi-Diaka, 1993 Neild et al., 1999; Pérez-Llano et al., 2001; Santiago-Moreno et al., 2009). It 
has been suggested that this test may supplement the information provided by the 
conventional parameters of semen analysis, and is useful for fertilizing ability assessment 
(Brito et al., 2003; Vazquez et al., 1997). This test correlates highly with other predictive tests, 
such as hamster oocyte penetration (Jeyendran et al., 1992), in-vitro fertilization (IVF) results 
in human (van der Venn et al., 1986), and with pregnancy rates in pigs (Pérez-Llano et al., 
2001). The HOS test seems to be more appropriate for predicting the fertilizing capacity of 
frozen-thawed than fresh semen, because membrane damage is here a more important 
limiting factor than in the former (Colenbrander et al., 2003). 

a) b) 

www.intechopen.com



 
Methods of Assessment of Cryopreserved Semen 

 

551 

 
Fig. 3. HOS test (canine spermatozoa). 

3. Advanced methods of semen assessment 

3.1 Computer assisted sperm analysis (CASA) 

Recently, computer assisted sperm analysis has been introduced to veterinary andrology, 
same as it has been used in reproductive technologies in human andrology (Rijsselaere et al., 
2003; Verstegen et al., 2002). This technique assures objective semen assessment, whereas the 
main disadvantage of conventional semen evaluation is variability of obtained results. 
Subjectivity of traditional semen analysis is associated mainly with experience and skill of 
the observer, the method of specimen preparation, staining technique and number of cells 
evaluated. Variations in the results of conventional evaluation of the same semen samples 
by different observers and laboratories may achieve up to 30-60% (Coetzee et al., 1999; Davis 
& Katz, 1992). Subsequently, correlations between spermatozoa characteristics and fertility 
trials in females are relatively low. Computer assisted sperm analysers allow for calculation 
of several motility parameters, which characterize movement of individual sperm cells. 
They include VAP-average path velocity, VSL-straight line velocity, VCL-cell velocity, ALH-
amplitude of lateral head displacement, BCF-beat cross frequency (Fig. 4), STR-straightness 
of cell track, LIN-linearity of cell track, subpopulation of rapid, medium and slow cells 
(Niżański et al., 2009). Selected characteristics of spermatozoa motility parameters measured 
by CASA systems are summarized in table 1. 

 
Fig. 4. Scheme of different velocities and parameters of sperm movement measured by 
CASA systems. 
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Parameter Unit Description 

MOT % 
Motility - The population of cells that are moving at or above a 
minimum speed as determined by values defined under setup. 

PMOT % 
Progressive motility- the population of cells that are moving actively 
forward. 

VCL µm/s 
Track speed – Is defined as average velocity measured over the actual 
point-to-point track followed by the cell. 

VAP µm/s 
Path velocity - Is defined as average velocity  over smoothed average 
position of the cell. 

VSL µm/s 
Progressive velocity - Is measured in the straight line distance  
between the beginning and the end of the track. 

ALH µm 
Amplitude of Lateral Head Displacement – is the mean width of the 
head oscillation as the cell moves. 

BCF Hz 
Beat Cross Frequency – is the frequency with which the sperm head 
moves back and forth in its track across the cell path. 

STR % 
Straightness - A measure of VCL side to side movement determined 
by the ratio VSL/VAP. 

LIN % 
Linearity - A measure of the departure of the cell track from a straight 
line. It is the ratio VSL/VCL. 

RAP % Rapid – subpopulation of rapid cells. 

MED % Medium – subpopulation of cells with medium velocity. 

SLOW % Slow – subpopulation of slow cells. 

STATIC % Static cells. 

Table 1. Selected parameters of spermatozoa motility measured by CASA systems. 

It was proven in human, that results obtained with CASA systems are better correlated 
with the outcome of assisted reproductive techniques than results of traditional semen 
evaluation (Verstegen et al., 2002). Blesbois et al. (2008) showed  that some of parameters 
detected in CASA system are correlated with fertility results obtained with frozen–thawed 
chicken spermatozoa (PMOT, PROG, VAP, VSL). Most of them were affected by 
cryopreservation, with the exception of straightness (STR), suggesting that 
cryopreservation slows down the movement of chicken spermatozoa without changing 
the shape of trajectories.  

The important advantage of computer assisted sperm analysers is the immediate 
measurement of sperm concentration, total number of sperms in ejaculate and the 
automated calculation of number of insemination units which could be prepared from one 
ejaculate. Additionally some machines are equipped with UV excitation module, which 
gives the opportunity to analyse the percentage of live and dead spermatozoa after staining 
with vital fluorescent probes, such as Hoechst 33258. Nevertheless, CASA system needs 
standardization and validation before its use and image settings have been standardized 
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(Davis & Katz, 1992; Iguer-Ouada & Verstegen, 2002;  Rijsselaere et al., 2003; Verstegen et al., 
2002). Also other factors as the type and depth of the used chamber, number of fields 
analysed, temperature during analysis and protocol of semen sample preparation affect 
results. Optimization and validation of the technical settings would allow to compare intra- 
and inter-laboratory results, regardless of the instruments that have been used (Agarwal et 
al., 1992). 

Computer assisted sperm analysis allows for a detailed estimation of subtle changes of 
sperm motion characteristics such as hyperactivation (HA) of spermatozoa associated 
with capacitation process. Hyperactivation is the process that mammalian spermatozoa 
exhibit, while they progress through the female oviduct. It is described as vigorous, non-
progressive, non-linear sperm motion linked with capacitation. During HA, the pattern of 
sperm track undergo dramatic changes, characterized by wide-amplitude marked lateral 
movements of the head and tail of the spermatozoon, with slow or non-progressive ‘star-
pin’ movement (Verstegen et al., 2002). Hyperactivated sperm movement, is assumed to 
be necessary, for mammalian sperms to penetrate into and pass through, the cumulus cell 
layer of an oocyte (Meyers et al., 1997; Suarez et al., 1983). To fertilize the oocyte, 
mammalian spermatozoa must be capacitated, the process that depends on the removal or 
alteration of substances absorbed on, or integrated in the sperm plasma membrane, 
resulting in changes in membrane permeability and intracellular ionic composition, with 
Ca2+ movements playing the most critical role (Fraser et al., 1995; Rota et al., 1999). ALH 
and velocity parameters such as path velocity VAP, progressive velocity VSL are 
increased in hyperactivated spermatozoa, whereas linearity LIN and straightness STR of 
movement are lowered. Such changes are characteristic for capacitation induced by 
specific media (Rota et al., 1999) and for spermatozoa that underwent preservation 
(cryocapacitation) and are pronounced, especially when media with addition of 
detergents are used (Niżański et al., 2009). Kawakami et al. (2001) observed that oviduct‘s 
epithelium possess the ability to bind hyperactivated spermatozoa, which results in the 
obvious prolongation of their flagellar movement. On the other hand, the life-span of the 
free moving non-bound hyperactivated spermatozoa within oviductal lumen, is relatively 
shorter. It was also found, that Ca influx into the cytoplasm is inhibited in the oviduct-
epithelium-binding sperms (Dobrinsky et al., 1997). Active movement of the sperms and 
Ca influx into cytoplasm negatively affect the maintenance of viability and fertile life of 
sperm in the lumen of oviduct. Binding to the oviduct epithelium presumably prevents 
Ca influx, required for sperm capacitation. This phenomenon is available for prolonging 
viability and fertile life of canine sperms in the oviduct (Kawakami et al., 2001). 
Considering the obvious lack of such regulatory mechanism, in frozen-thawed semen it is 
believed, that in vitro post-thaw hyperactivation results in depletion in spermatozoa 
energy resources, accumulation of metabolites in the extender and cell death, if 
insemination dose is not deposited into the female’s genital tract immediately after 
thawing. 

Nevertheless, the computer assisted sperm analysis of cryopreserved semen should be 
treated with a dose of criticism. It should be emphasized, that CASA parameters describing 
kinematic features of frozen-thawed sperm cells may not reflect the real loss of quality of 
ejaculate after treatment. Absolute CASA parameters (VCL, VSL, VAP, ALH, BCF) should 
be used with caution, whereas relative CASA parameters (combinations of absolute 
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features-LIN, STR) can not be used directly for estimation of semen quality. Selective death 
of the most immotile and weakened spermatozoa leads to the situation, where normal 
CASA parameters show the ‘pseudoenhancement’ of kinematics. Thus, the mean velocity 
and linearity parameters may be higher after freezing. This is caused by the fact, that the 
sub-population of the most resistant cells which survive freezing-thawing may possess 
higher mean quality parameters, than the larger population of motile sperm cells in fresh 
semen. In spite of the fact, that only half or one third of population of sperm cells may 
survive the cryopreservation, their mean velocity may be higher in comparison with 
velocity parameters of larger population of spermatozoa in fresh semen. Thus, some 
investigators (Katkov & Lulat, 2000) observed increase in kinematic parameters (KP) of 
specimen after freezing-thawing, while at the same time substantial losses in post-thaw 
motility (percentage of motile cells) were observed. The possible explanation of this 
phenomenon is the selective elimination of the slowest sub-population within the 
specimens. This “CASA-paradox” is caused by substantial exclusion of slow-moving cells 
from the motile fraction measured after freezing-thawing. 

Therefore, in order to obtain more reliable results of semen assessment after thawing, it was 
proposed to use Modified Kinematics Parameters (MKP) or Yield of Kinematic Parameters 
(YKP). MKP can be defined as KP that is average on an entire sample: 

 MKP = KP x Motility /100% (1) 

YKP is the product of KP and the number of motile cells for which this parameter is average: 

 YKP = Total Number of Motile Cells x KP /100% (2)  

Furthermore, morphology (Assisted Sperm Morphology Assessment-ASMA) of sperm cells 
can be objectively evaluated, on the basis of morphometric analysis of predefined specific 
measurements of particular elements in spermatozoa.  Usually, on the slides, the head 
morphometric dimensions of length, width, width/length, area and perimeter of a 
minimum of 200 sperm are analyzed (Fig. 5). Additionally, parameters of head shape can be 
evaluated such as ellipticity, circularity, elongation, and regularity (Álvarez et al., 2008). 
Nevertheless, the accuracy of sperm morphology assessment depends on the careful 
preparation, fixation and staining of spermatozoa. The  analysis of sperm morphology may 
be done using Diff-Quik stain recommended by World Health Organization (WHO, 2010) or 
SpermBlue, which has been developed for the evaluation of human and animal sperm 
morphology (Maree et al., 2010). 

Rubio-Guillen et al. (2007) showed that by applying ASMA techniques and multivariate 
cluster analysis, it is possible to determine three subtle subpopulations of spermatozoa with 
different morphometric characteristics coexisting in bull ejaculates. The proportion of 
spermatozoa in each sperm subpopulation showed considerable differences among males 
and varied significantly throughout the cryopreservation procedure. The cryopreservation 
of spermatozoa has been found to affect chromatin structure and morphometry of the sperm 
head (Arruda et al., 2002; Esteso et al., 2003; Gravance et al., 1998; Hidalgo et al., 2006; 
Rijsselaere et al., 2004). Thus, it is presumed that the adverse effects of cryopreservation on 
sperm chromatin and head morphology, may be responsible for lowered fertility of 
spermatozoa, observed after cryopreservation. 
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Fig. 5. System for Assisted Sperm Morphology Assessment. 

3.2 Flow cytometry and fluorescent probes 

During last decades many fluorescent probes have been used for the semen assessment. The 
fluorescence of these compounds may be estimated using fluorescent microscopy or flow 
cytometry. Flow cytometry enables the observation of physical characteristics such as cell 
size, shape, and also any component or function of the spermatozoon that can be detected 
by a fluorochrome or fluorescently labeled compound. The analysis is objective and 
accurate. The great number of spermatozoa (>10 000) can be analyzed in a small volume of 
samples in a short time. This is considerably more than the total of 200 cells generally 
observed by microscopic analysis. Thus, the analysis of events detected on dot plots gives 
the accurate and high reliable results (Peña et al., 2001). It is a sensitive method of detection 
of subtle differences among spermatozoal populations that may not be detected with other 
techniques. 

3.2.1 Sperm membrane integrity 

The integrity of sperm membranes is a necessary condition to maintain spermatozoal 
functions during storage in the female’s reproductive tract and penetration of the oocyte 
(Holt, 2000). When semen is frozen, cells are exposed to a cold shock, ice crystals formation, 
and cellular dehydratation, which all cause irreversible damage (Amann, 1999; Parks & 
Graham, 1992). Cellular membranes are one of the primary sites of injury during chilling, 
freezing and thawing. Damage is caused by alteration of membrane structure and lateral 
organization (Amann, 1999). The cryopreservation results in temperature-dependent and 
dehydratation-induced membrane phase changes, which are thought to result in lateral 
phase separation of membrane components and increased membrane permeability for 
solutes (Hammerstedt et al., 1990). The disruption of plasma membrane integrity caused by 
disarrangement of lipids within the membrane during cryopreservation may induce further 
cellular damage and consequently lead to a sperm death (Watson, 1995).  

Membrane integrity of mammalian and avian spermatozoa may be assessed by using many 
fluorescent probe combinations including: carboxyfluorescein diacetate (CFDA) in 
combination with propidium iodide (PI), SYBR-14 with PI, carboxy-seminaphthorhodfluor 
(Carboxy-SNARF) with PI, calcein-AM with ethidium homodimer (EthD-1) and Hoechst 
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33258 (Christensen et al., 2004; Donoghue et al., 1995; Hewitt & England, 1998; Partyka et al., 
2010; Peña et al., 1998; Rijsselaere et al, 2005; Sirivaidyapong et al., 2000). SYBR-14 and 
CFDA, usually used detectors of live cells, are membrane-permeant and non-fluorescent 
compounds, which are immediately deacylated and thus rapidly converted into high 
fluorescent compounds by intracellular esterases. These green fluorochromes are 
maintained intracellular by intact membranes (Peña et al., 1998; Silva & Gadella, 2006). As 
plasma membrane deteriorate at cell death, cells lose their ability to resist the influx of red 
fluorescent PI. PI replaces or quenches green fluorochromes (Garner & Johnson, 1995). Live, 
viable, intact spermatozoa show a green fluorescence (CFDA, SYBR-14, calcein-AM) while 
dead stain red (PI) (Fig. 6a).  Carboxy-SNARF is pH indicator which stains live spermatozoa 
orange, while bisbenzimide stain Hoechst 33258 labels dead spermatozoa bright blue 
(Hewitt & England, 1998). The last one requires flow cytometric analysis with a laser that 
operates in the ultraviolet light range and is less commonly used in andrology laboratory, 
however alternatively it may be applied within fluorescent microscope. 

SYBR-14/PI fluorochromes have been found to be more sensitive in comparison with 
conventional method of live-dead cell assessment. The advantage of the use of 
fluorochromes is the possibility to assess the semen without the interference of fat particles 
and others material present in the extended semen (Rijsselaere et al., 2005). The detection of 
the third subpopulation i.e. moribund spermatozoa is the next advantage of this method. 
Additionally the simultaneous assessment of several functions of spermatozoa may be done 
in the same specimen by simultaneous staining of sperm cells with fluorescent lectins PNA 
or PSA for acrosome evaluation with PI for dead cell assessment. 

3.2.2 Acrosomal membrane integrity 

Acrosome is the acidic secretory organelle filled with hydrolytic enzymes. Assessment of the 
acrosomal status is a very important part of semen evaluation, in the view of the role of this 
structure in the maintenance of spermatozoal ability to penetrate the egg’s zona pellucida 
(in mammals), or the egg envelope (in birds) and the ability to fuse with the egg plasma 
membrane. Cells must retain a normal acrosome to ensure that the acrosome reaction may 
occur at the suitable time to facilitate fertilization (Esteves et al., 2007). Also the 
determination of the acrosome status in cryopreserved sperm is of the fundamental 
importance as cryopreservation directly damages sperm membrane, which could be 
followed by a loss of the acrosomal matrix contents.  

Acrosomal status may be assessed using lectins, such as peanut agglutinin from Arachis 
hypogaea (PNA) or Pisum Sativum agglutinin (PSA), conjugated with different fluorescent 
probes like fluorescein isothiocyanate (FITC), phycoerythryn (PE) or Alexa Fluor®, (Graham 
et al., 1990; Kawakami et al., 2002; Nagy et al., 2004; Partyka et al., 2010; Peña et al., 2001; 
Rijsselaere et al., 2005). For human sperm concanavalin A lectins (ConA) is used as well 
(Holden et al., 1990). The PNA labelling is specific for the outer acrosomal membrane and it 
binds to ǃ-galactose moieties. Whereas the PSA is labelling ǂ-mannose and ǂ-galactose 
moieties of the acrosomal matrix. The absence of the fluorescence on the living sperm is 
indicative for an intact acrosome, and fluorescence is indicative for acrosome disruption or 
acrosome reaction (Silva & Gadella, 2006). Since PNA agglutinin displays less non-specific 
binding to other areas of the spermatozoa, it leads some researchers to favour this over PSA 
(Graham, 2001).  Lectins may be also combined with Hoechst 33258, carboxy-SNARF/PI, 
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ethidium homodimer allowing for simultaneous assessment of acrosomal status and 
membrane integrity (Fig. 6b) (Kawakami et al., 1993; Szász et al., 2000). 

3.2.3 Mitochondrial function 

The motility of spermatozoa subjected to cryopreservation is reduced by reason of some 
changes in the active transport and the permeability of the plasma membrane in the tail 
region (Blesbois et al., 2008; Watson, 1995). A reduction of spermatozoa motility may also be 
triggered by a change in the availability of energy or an injury of the axonemal elements. 
Moreover, it has been noted that the alterations in the ultrastructure of mitochondria 
occurring during cryopreservation are followed by a loss of the internal mitochondrial 
structure of frozen-thawed spermatozoa (Watson, 1995). 

Rhodamine 123 (R123) is the potentiometric membrane dye which is used to selectively stain 
functional mitochondria. It fluoresces only when the proton gradient over the inner 
mitochondrial membrane (IMM) is built up and unstained sperm do not contain functional 
mitochondria (Garner et al., 1997; Gravance et al., 2001). Also the group of Mitotrackers: 
Mitotracker Deep Red, Red, Orange and Green selectively label the respirating 
mitochondria. Thus, these probes are suitable to discriminate sperm with deteriorated 
mitochondria from sperm in which oxidative respiration occurs (Gadella & Harrison, 2002; 
Garner et al., 1997).  

Some of mitotrackers such as 5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolyl-
carbocyanine iodide (JC-1) change their fluorescent properties due to changes in the 
potential of  IMM. JC-1 is a lipophilic cationic fluorescent carbocyanine dye that is 
internalized by all functioning mitochondria, where it fluoresces green. However, as the 
concentration of JC-1 inside the mitochondria increases (highly functional mitochondria), 
the stain forms aggregates which fluoresce orange. Hereby, population of spermatozoa can 
be divided into high (orange staining), moderate (orange and green) and low (green) 
mitochondrial potential groups after IMM depolarisation (Fig. 6c) (Garner et al. 1999; 
Gravance et al., 2000). 

3.2.4 Capacitation status 

Before fertilizing of the oocyte, mammalian spermatozoa undergo the sequence of 
membrane alterations associated with accumulation of calcium ion and the increase of 
tyrosine phosphorylation resulting in sperm hyperactivation (Hewitt & England, 1998; 
Petrunkina et al., 2003). At the contact with oocyte, capacitated spermatozoa presents the 
acrosome reaction which enables the zona pellucida penetration. However, in avian 
spermatozoa it is believed that a period of capacitation within the female’s reproductive 
tract in order to fertilize ova is not required (Howarth, 1971). The hen oocyte is not 
surrounded by cumulus cells that would require a different way of sperm motility to pass 
them trough. It may therefore be suggested that there is no need for motility hyperactivation 
to prepare for the acrosome reaction in the chicken and that this special motility pattern has 
not been developed in birds (Lemoine et al., 2008). 

The capacitation of the mammalian spermatozoa is assessed by using chlorotetracycline 
assay (CTC), lectins, measurements of CASA motility characteristics and assessment of 
thyrosine phosphorylation within plasma membrane (Guérin et al., 1999; Hewitt & England, 
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1998; Petrunkina et al., 2004; Rota et al., 1999). Fluorescent antibiotic CTC is used to assess  
the destabilization of sperm membrane. Neutral and uncomplexed CTC crosses over the cell 
membrane, enters intracellular compartments and binds to free calcium ions. During these 
events, CTC becomes negatively charged and after creating CTC-Ca+2 complexes becoms 
more fluorescent. Thus CTC can be used as a tool to distinguish capacitated and 
uncapacitated spermatozoa. Three classes of sperm cells may be assessed: uncapacitated and 
acrosome intact (F-pattern, an overall staining of the sperm head), capacitated and acrosome 
intact (B-pattern, a prominent staining of the apical area of the sperm head) and capacitated 
and acrosome reacted (AR-pattern, loss of staining of the sperm head) (Maxwell & Johnson, 
1997). CTC may be combined with Hoechst 33258, to simultaneous assessment of percentage 
of live cells and capacitation status (Hewitt & England, 1998). 

The exposure of spermatozoa to low temperatures shortens their capacitation time, 
changing the membrane lipid architecture, membrane permeability and the reducing 
efficiency of enzymes extruding calcium ions. These changes resemble capacitation, and 
are likely to reduce long-term sperm viability and alter their motility (Watson, 1995). 
Therefore,  the researchers have introduced the term “cryocapacitation” to emphasize the 
fact that cryopreservation procedures induce capacitation-like changes in spermatozoa 
(Bailey et al., 2000; Cormier & Bailey, 2003; Watson, 1995). These cooling-related 
capacitation-like changes in spermatozoa, may affect the fertility of cryopreserved semen, 
by rendering the cells less stable in the reproductive tract, after artificial insemination and 
therefore relatively short-lived. Such changes cannot easily be distinguished from true 
capacitation, but Green & Watson (2001) were able to establish that the capacitation-like 
changes in pig spermatozoa differed from true capacitation in the pattern of tyrosine 
phosphorylation of proteins.  

An increase in both, plasma membrane phospholipid scrambling and phospholipid 
disorder, during capacitation is associated with enhanced plasma membrane fluidity 
(Gadella & Harrison, 2002). During freeze–thaw cycle, the sperm membranes undergo lipid 
phase transition that also leads to an increased disorder of phospholipid packing and 
membrane fluidity, which causes poor control of intracellular calcium concentration (Bailey 
& Buhr, 1994; Holt, 2000). Therefore, an alternative stain for assessment of capacitation 
status of spermatozoa is the hydrophobic probe Merocyanine 540 (M540). This stain detects 
a decreased packing order of phospholipids in the outer leaflet of the plasma membrane 
lipid bilayer. Due to the fact that M540 earlier detects changes in the membrane fluidity than 
CTC, therefore, the hydrophobic probe is believed to be better for evaluating the early 
events of capacitation (Rathi et al., 2001). 

3.2.5 Lipid peroxidation 

A content of polyunsaturated fatty acids (PUFAs) in phospholipids of spermatozoa 
membranes makes them especially susceptible to lipid peroxidation (LPO) (Aitken et al., 
1993). LPO is a chain reaction with the formation of lipid peroxides and ultimately the 
formation of cytotoxic aldehydes (Aitken, 1995). In spermatozoa, peroxidation of lipids has 
critical consequences. Oxidation reactions in biomembranes lead to amplification of reactive 
oxygen species (ROS), change in membrane fluidity, loss of compartmentalization and 
plasma-membrane integrity, disturbance of ion-gradients, impairment of lipid-protein 
interactions, modification of DNA and proteins (Halliwell & Chiroco, 1993). 
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Effect of oxidative stress is particularly important during the storage of sperm and its 
cryopreservation. The analysis of semen of mammalian and avian species, showed that the 
production of ROS and LPO occurrence is increased during freezing- thawing (Bilodeau et 
al., 2000; Chatterjee and Gagnon, 2001, Guthrie & Welch, 2007; Neild et al., 2005; Partyka et 
al., 2011b). The main site of their formation are mitochondria (Brouwers & Gadella, 2003) 
and sperm cell membranes (Agarwal et al., 2005), which are particularly vulnerable to 
damage from sudden temperature changes. Although, aerobic cells have substrates and 
enzymes to prevent or restrict the formation and propagation of ROS, but the antioxidant 
defence of spermatozoa are relatively weak and these germ cells are very susceptible to 
oxidative stress (Jones & Mann, 1977). 

As an alternative to the colorimetric detection of lipid peroxide formation, a fluorescent 
membrane probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-
undecanoic acid (C11-BODIPY581/591) has recently been successfully used in human, equine, 
bovine, porcine, feline and chicken’s and goose’s spermatozoa (Aitken et al., 2007; Almeida 
& Ball, 2005; Brouwers & Gadella, 2003; Brouwers et al., 2005; Neild et al., 2005; Partyka et 
al., 2011a,b; Thuwanut et al., 2009). This is an oxidation-sensitive fluorescent fatty acid 
analogue, that is easily incorporating into membranes and fluoresces red in the intact state, 
but turns green after undergoing peroxidation (Drummen et al., 2002). C11-BODIPY581/591 
oxidation is virtually insensitive to environmental changes and the probe does not 
spontaneously leave the lipid bilayer after oxidation, moreover the extent of peroxidation is 
correlated with the formation of hydroxyl- and hydroperoxiphosphatidylcholine (Brouwers 
& Gadella, 2003; Brouwers et al., 2005). The degree of probe peroxidation can be followed in 
separate sperm subpopulations using flow cytometry, or localized in individual sperm 
using fluorescence microscopy. Moreover, the use of combination C11-BODIPY581/591 with PI 
makes it possible to distinguish the presence of reactive oxygen and nitrogen species in the 
hydrophobic part of lipid bilayers of live sperm from dead cell membranes (Fig. 6d). 

For monitoring the intracellular level of ROS, such as hydrogen peroxide (H2O2) in the 
spermatozoa, the fluorescent dye 5-(and-6)-carboxy-20,70-dichlorodihydrofluorescein 
diacetate (carboxy-H2DCFDA) can be used. Viable spermatozoa are differentiated from 
dead cells by a counterstain - propidium iodide and the subpopulations of sperm with a 
high H2O2 level (strong fluorescence) and with low H2O2 level (weak fluorescence) can be 
distinguished.  

3.2.6 Apoptotic changes 

Apoptosis is a physiological mechanism required for any organism  function. In contrast to 
necrosis, apoptosis is a process, where cells play an active role in their own death. Apoptosis 
comprising of a complex phenomenon that includes three stages: induction, execution and 
degradation. The most significant changes related to apoptosis are the externalization of the 
phosphatidylserine (PS), DNA fragmentation, caspase activation, loss of mitochondrial 
membrane potential, and increase in sperm membrane permeability (Bratton et al., 1997; 
Glander & Schaller, 1999; Martin et al., 2004;). Several pathways are reported for 
mammalian cell apoptosis. These include the intrinsic, extrinsic, and apoptosis-inducing 
factors. During the early phases of disturbed membrane function, asymmetry of the 
membrane phospholipids occurs, before the integrity of the plasma membrane is 
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progressively damaged (Martin et al., 1995). When the cell membrane is disturbed, the 
phospholipid PS is translocated from the inner to the outer leaflet of the plasma membrane 
(Desagher & Martinou, 2000).  

It is widely known that the cryopreservation usually causes sublethal cryodamage to 
spermatozoa, decreasing post-thaw cell viability. The freezing-thawing of human (Glander 
& Schaller, 1999), bull (Martin et al., 2004), and boar (Pena et al., 2003), stallion (Ortega 
Ferrusola et al., 2008), and dog (Kim et al., 2010) spermatozoa induces membrane PS 
translocation, what demonstrates that cryopreservation leads to apoptosis. Therefore, 
detecting early phases of membrane dysfunction, or initial phases of apoptosis of viable 
spermatozoa, would be important when evaluating stressed spermatozoa, such as those 
subjected to freezing and thawing, and would be useful for controlling freezing procedures 
in semen. 

Annexin V is calcium-dependent phosphatidylserine (PS) binding protein conjugated with 
fluorochrome – FITC or Alexa Fluor®.  The properties of Annexin V allow for detection of 
externally exposed PS. In ejaculated spermatozoa PS is confined to the cytoplasmatic side of 
the plasma membrane (Gadella et al., 1999). Different categories of apoptotic, necrotic and 
viable cells can then be sorted out using AnnexinV with PI, through flow cytometer (Fig. 6e), 
or visually evaluated using fluorescent microscope. 

After induction of apoptosis, mitochondrial pores are being opened, leading to a decrease in 
mitochondrial membrane potential. Therefore, described above JC-1 dye is used for 
monitoring of apoptotic changes in spermatozoa, too (Ortega Ferrusola et al., 2009). 
Mentioned above, the opening of mitochondrial pores causes the release of proapoptotic 
factors into the cytoplasm, where they are activated. These factors – caspases, are central 
components in the apoptosis signaling cascade. The detection of activated caspases in living 
spermatozoa can be performed using fluorescence labeled inhibitors of caspases (FLICATM). 
It allows investigating caspase activation in semen samples with regard to a single cell. The 
FLICATM reagent is comprised of 3 segments—it includes a green (FAM 5 
carboxyfluorescein) fluorescent label; an amino acid peptide inhibitor sequence targeted by 
the active caspase; and a fluoromethylketone group (FMK), which acts as a leaving group 
and forms a covalent bond with the active enzyme. Fluorescence labeled inhibitors of 
caspases are cell permeable and noncytotoxic (cited by Grunewald et al., 2009). Martin et al. 
(2004) showed that cryopreservation of bovine spermatozoa induced the significant increase 
in the proportion of cells with active caspases, which were mainly detected in the 
intermediate piece of spermatozoa. 

3.2.7 DNA status of spermatozoa 

DNA integrity has been considered as an important parameter in the determination of 
spermatozoa ability to withstand the cryopreservation process. It is suggested that 
chromatin structure should be studied as an independent complementary parameter for the 
better assessment of the sperm quality (Evenson et al., 2002). The spermatozoal chromatin is 
much more compact when compared to somatic and spermatogenic cell types (e.g., 
spermatognia, spermatocytes and spermatids). It appears that during freezing-thawing 
procedure the integrity of the nuclear DNA, which is related to fertility, could be negatively 
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affected.  Although, spermatozoa with DNA damage may be able to fertilize an oocyte, that 
could potentially disturb (epi)genetic regulation of the early embryo and block its further 
development (Lewis & Aitken, 2005). 

DNA damage can be evaluated at different levels. One of the usually used methods, 
developed for detecting changes in the chromatin structure of DNA integrity, is the sperm 
chromatin structure assay (SCSA) (Chohan et al., 2006).  The SCSA is a flow cytometric 
method for identification of changes in the DNA status. It is based on the assumption that a 
structurally abnormal sperm chromatin shows a higher susceptibility to acid denaturation 
(Evenson et al., 2002). The SCSA method utilizes the metachromatic properties of acridine 
orange (AO). This stain fluoresces in the green band when intercalates into the intact 
double-stranded DNA helix, and in the red band when associated with single strand 
denaturated DNA and RNA. After denaturation of chromatin by decreased pH, the 
spermatozoa with structurally abnormal chromatin fluorescence is detected in the red band 
(Fig. 6f) (Bochenek et al., 2001). The fertility data have been shown to correlate with the 
results obtained from the SCSA of human (Evenson et al., 1980), bull (Ballachey et al., 1988; 
Karabinus et al., 1990), stallion (Love & Kenney, 1998) and boar semen (Evenson et al., 1994). 
SCSA was also used for dog semen assessment (Garcia-Macias et al, 2006) and for evaluation 
of freezing-thawing effect on chicken and goose DNA status (Partyka et al. 2010; Partyka et 
al., 2011b).  

Another method to detect DNA defragmentation is TUNEL assay, which allows to 
incorporate of fluorescent nucleotide analogs by a terminal nucleotide transferase into single 
stranded DNA areas at the 3-OH termini (Chohan et al., 2006). Ramos & Wetzels (2001) 
using this method have shown that DNA damage is limited in functional human 
spermatozoa resulting from a swim-up procedure.  

The alternative method for detecting the DNA damage at the level of individual cells is the 
single-cell DNA gel electrophoresis assay (COMET). Although this method does not use 
such equipment as flow cytometry, application of fluorescent DNA specific stain is required. 
In COMET assay spermatozoa are spread on a surface covered with an agarose gel, and 
treated with a solution that lyses the cell components leaving the DNA immobilized in the 
agarose. They are then subjected to a DNA denaturation process, followed by 
electrophoresis, causing DNA fragments to migrate away from the main bulk of nuclear 
DNA. After staining with propidium iodide or ethidium bromide, cells with DNA strand 
breaks, display a comet-like shape, with the undamaged DNA located in the head of the 
comet and the fragmented DNA dispersed through the tail. Image analyses provide 
information on the extent of strand breaks in the DNA molecule. Several studies, conducted 
with different techniques, including comet assay, showed a negative relationship between 
the fertilization potential of spermatozoa and alterations at the level of genetic material. In 
particular in humans, infertility has been associated with higher levels of DNA damage in 
sperm compared to fertile subjects (Irvine et al., 2000). Fraser & Strzeżek (2007) have shown 
that the freezing–thawing process provoked sperm chromatin destabilization rendering the 
boar spermatozoa more vulnerable to DNA fragmentation. COMET assay has also been 
recently used for the evaluation of cryopreserved avian semen (Madeddu et al., 2010; 
Gliozzi et al., 2011). 
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Fig. 6. Examples of flow cytometry analyses of frozen-thawed spermatozoa: a) Dot plot of 
SYBR-14/PI stain. Four subpopulations can be distinguished: dead sperm (red stained), 
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moribund sperm (red/green fluorescence), viable sperm (green stained), unstained debris 
are discarded; b) Dot plot of PNA-AlexaFluor/PI stain. Spermatozoa can be identified as: 
acrosome - intact/damaged, together with selection - viable/dead, according to their green 
and red fluorescence; c) Dot plot of JC-1 staining for mitochondrial status analysis. The 
intensity of orange fluorescence depends on mitochondrial membrane potential (ΔΨm) 
allowing for differentiation between high, medium and low ΔΨm; d) Dot plot of C11 
BODIPY581/591/PI for assessment of lipid peroxidation (LPO). Spermatozoa can be divided 
into four subpopulations: dead without LPO, dead with LPO, live without LPO and live 
with LPO; e) Dot plot of Annexin V/PI stain. Spermatozoa can be identified as: viable, 
necrotic and apoptotic; f) Dot plot of SCSA using acridine orange. The distribution of 
spermatozoa is based on green (FL1) and red (FL3) fluorescence. Main population includes 
sperm without DNA fragmentation, %DFI represents the percentage of sperm with 
detectable DNA fragmentation and % HDS determines the percentage of immature cells. 

3.3 In vitro gamete interaction tests 

During fertilization, a sperm initially binds to the oocyte zona pellucida (ZP), undergoes the 
acrosome reaction (AR), penetrates the ZP, and fuses with the oolemma to form a zygote. 
Sperm-ZP interactions are carbohydrate-mediated events in various species, including 
humans (Benoff, 1997). The ZP of mammalian oocytes is a critical site for sperm-oocyte 
interaction. The ability of sperm to bind to the ZP indicates many functions of spermatozoa, 
such as viability, motility, morphology, acrosomal status and the ability to penetrate the 
oocyte (Liu & Baker, 1994), and for that reason this ability is of a diagnostic relevance. 

3.3.1 Zona pellucida binding assay 

The assessment of the ability of sperm cells to bind the homologous zona pellucida (ZP) is 
the useful test for prediction of spermatozoal fertilizing ability (Hermansson et al., 2006). It 
is assumed that it is reliable test to detect sperm damage at a molecular level, which is not 
visible by microscopic analysis, because binding is receptor-ligand mediated reaction. The 
test may be done in two ways: by using intact homologous oocytes (ZP-binding assay, ZBA) 
and by using bisected hemizonae (hemizona binding assay, HZA) (Kawakami et al., 1998; 
Rijsselaere et al., 2005). In ZBA spermatozoa are coincubated with oocytes obtained from 
sliced ovaries. The number of spermatozoa that bound to ZP is counted with contrast-phase 
microscopy. The disadvantage of ZBA is the fact that the attachment of sperm cells to zona 
depends on the oocyte. This feature was partly overcome in HZA. Bisected by 
micromanipulation two parts of ZP are coincubated with spermatozoa. As a result the direct 
comparison of sperm cells from two origins may be done (Ivanova et al., 1999; Mayenco-
Aguirre & Pérez Cortés, 1998). 

A sublethal damage that occurres during cryopreservation leads to loss of sperm surface 
proteins, segregation of membrane proteins, inactivation of membrane-bound enzymes and 
decreased lateral protein diffusion within the membrane (Watson, 1995). Kadirvel et al. 
(2011) observed significant reduction of the zona binding ability of cryocapacitated buffalo 
bulls spermatozoa, and further reduction of binding ability of frozen-thawed spermatozoa, 
after incubation, in either capacitating, or non capacitating medium. Similar results have 
been obtained in bulls (Fazeli et al., 1997) and humans (Amann et al., 1999) spermatozoa, 
with significantly reduced binding ability to the zona pellucida after freezing and thawing. 
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The reduced binding ability of the frozen-thawed spermatozoa might be due to the higher 
proportion of acrosome reacted and damaged spermatozoa, after cryopreservation and 
thawing. Moreover, impaired receptor-ligand interaction in frozen-thawed spermatozoa 
could be caused by cryoelution of an “essential ligand” from the sperm surface that has been 
described in human (Amann et al., 1999). 

3.3.2 Oocyte penetration assay 

Oocyte penetration assays (OPT) involve multiple sperm penetrations of each oocyte and 
permit the observation of pronuclear development (Yanagimachi et al., 1976). The 
application of the zona-free hamster oocyte assay has been used to assess the fertility of men 
(Freeman et al., 2001; ) and domestic animals (Cormier et al., 1997; De los Reyes et al., 2009; 
Hewitt & England, 1997; Maxwell et al., 1996;). The OPT is a less time-consuming technique 
than in vitro fertilization (IVF) test, because oocytes can be immatured, and after evaluation 
are not further subjected to development. In this assay spermatozoa presented in the 
pervitelline space and ooplasm of the oocytes are observed under fluorescent microscopy 
using Hoechst 33258, PI or light microscopy (aceto-orcein) (Hay et al., 1997; Hewitt & 
England, 1997). 

All changes in cryopreserved spermatozoa described in the above sections may affect the 
final percentage of fertilized oocytes, and also the time course of sperm penetration through 
the oocyte envelop, as reported previously in frozen-thawed ram and bovine sperm 
(Cormier et al., 1997; Maxwell et al., 1996). Nevertheless, the previous study has indicated 
that the major ability of cryopreserved sperm to penetrate oocytes occurs at the 1st hour of 
co-culture (Cormier et al., 1997; De los Reyes et al., 2009). This finding indicates that these 
sperm can undergo the events associated with fertilization earlier or faster than fresh sperm 
in relation with cryocapacitation appearance.  

Because the efficiency of oocyte penetration is a result of sperm–oocyte interaction, variation 
in oocyte properties are likely to produce large diversity in this assay results. However, this 
can be reduced with the use of a large number of oocytes (Lucas et al., 2003). However, in 
dogs in vitro maturation (IVM) of oocytes and IVF is difficult to achieve. Nevertheless 
capacitated dog spermatozoa are able to penetrate immature oocytes, inducing chromatin 
decondensation and resumption of meiosis (Luvoni et al., 2005; Hay et al., 1994; Sain-Dizier 
et al., 2001). Thus, in dogs both, immature or mature oocytes, may be use for this test.  

4. Conclusions 

For many years, scientists have made every endeavour to develop laboratory assays that 
precisely estimate the fertilizing capacity of semen. Laboratory semen appraisals can be 
classified in several ways. Nevertheless, an important factor for a laboratory analysis to be 
useful, it must be objective, repeatable, accurate and as far as possible, rapid. Among others, 
there can be distinguished one major division into conventional methods and advanced 
techniques of sperm assessment. It is little questionable, whether the subjective assessment 
of parameters related to the functional and morphological characteristics of spermatozoa, 
would increase the predictability of the fertilizing potential of cryopreserved semen. 
However, conventional methods for sperm evaluation in connection with the more objective 
computer-assisted sperm analyzers, flow cytometry and in vitro fertilization tests, have 
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enabled researchers to gain accurate information about the morpho-functional status of 
spermatozoa and mechanisms of sperm cryoinjury.  
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new cryopreservation methods. We feel that it is time to revise the previous paradigms and dogmas, discuss

the conceptually new cryobiological ideas, and introduce the recently emerged practical protocols for

cryopreservation. The present books, "Current Frontiers in Cryobiology" and "Current Frontiers in

Cryopreservation" will serve the purpose. This is a global effort by scientists from 27 countries from all

continents and we hope it will be interesting to a wide audience.
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