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1. Introduction

Acoustic noise control systems gain more importance as more and more industrial

equipments, i.e., engines, fans, ventilators, and exhausters are in use (1–6). Passive acoustic

noise control techniques benefit enclosures, barriers and silencers to attenuate ambient noise.

However, if the noise has dominant low-frequency components, then passive techniques are

either inefficient or expensive. In contrast, active noise control (ANC) systems are much more

effective in canceling low-frequency noise. Various noise cancelation algorithms have been

proposed in the literature (7–11). In a generic ANC scheme, a reference microphone is used

to receive the ambient noise and the system produces an anti-noise signal which has equal

amplitude but opposite phase with the primary noise to cancel it acoustically (1). As the

primary noise may have time-varying characteristics, ANC systems should be able to adapt

themselves to the noise rapidly.

In most of the ANC systems, either adaptive filters or neural network based structures

are employed (2–6; 9; 12–18). In (15), fuzzy-neural networks are used to estimate the

nonlinear response of the unknown primary acoustic path where primary and secondary

paths are characterized by nonlinear functions. On the other hand adaptive filters are

usually employed to increase the system performance and robustness. They are mostly

employed with least mean squares (LMS)-based algorithms and the adaptation is usually

realized in time domain (3; 9; 12; 13; 19). Whereas Fourier domain (20) and wavelet-based

adaptive filter bank approaches (21; 22) are among the few transform-domain adaptation

techniques that have been used in the ANC systems. Compared to time-domain adaptive

filters, transform-domain adaptive filters may need fewer parameters (23; 24). When the noise

source has dominant low-frequency components, wavelet transform-based adaptive filters

provide higher performance rates. However, in case of linear frequency modulated (LFM) or

chirp-type audio signals, as their frequency varies linearly with time, performance rates are

limited for both Fourier and wavelet-transform domains.

LFM signals are among the frequently used signals in real life and they are good models

for mechanical systems with accelerating internal components. A Gaussian enveloped,

1 The authors are supported by the Scientific and Technological Research Council of Turkey, TUBITAK
under the grant of Project No. 105E078.

2 The material in this chapter was published in part at [33].

2

www.intechopen.com



2 Will-be-set-by-IN-TECH

single-component LFM signal can be expressed as

x(t) = A eπγ(t−t0)2
ejπ[α(t−t0)2+2β(t−t0)] (1)

where α is the chirp rate, t0 and β represent the time and frequency shifts with respect to

the time-frequency origin, A and γ are the parameters of the envelope. One of the most

convenient analysis tools for LFM signals is the fractional Fourier transform (FrFT), which

employs chirps as basis functions. FrFT is a generalization of the ordinary Fourier transform

with a fractional order parameter. It is a mathematically powerful and efficiently computable

linear transform. It has been employed in various application areas including time-frequency

signal processing, filtering, and denoising (25). Recently, the authors have introduced the

adaptive filtering scheme in fractional Fourier domain in (33).

In this chapter, we present a robust adaptive fractional Fourier domain filtering scheme in the

presence of LFM signals and additive white Gaussian noise (AWGN). As the instantaneous

frequency (IF) of LFM signals may show rapid variations in time, adaptation to a chirp signal

is much more difficult compared to a sinusoidal signal in ANC systems. As a remedy to this

problem, we propose to incorporate the FrFT.

Adaptive fractional Fourier domain filtering introduces significant improvements,

since chirp-type signals are transformed into narrow-band sinusoidal signals and the

non-stationary signal adaptation problem is converted to a stationary form. To improve the

system performance, it is necessary to estimate the transformation order of FrFT successfully.

This is directly related to the proper estimation of the IF of the chirp signal and the estimation

should be kept up-to-date at certain time intervals. Many methods are proposed for IF

estimation in the literature, such as polynomial phase-based estimators, LMS or RLS-based

adaptive filters, and time-frequency distribution-based estimators with same inherent

disadvantages (31; 32). Here IF is determined by exploiting the relationship between the

Radon-Wigner transform (RWT) and FrFT of signals (29).

The chapter is organized as follows. Section 2 introduces the preliminaries of the chapter

by introducing the FrFT giving its definition, important properties and its fast computation

algorithm. Then, the IF estimation of single or multi–component LFM signals are investigated.

Time and Fourier domain adaptive filtering schemes are explained in Section 3. In Section 4,

the ANC system model, FrFT-based adaptation scheme and its performance analysis are given

in detail. Finally the conclusions are drawn in Section 5.

Keywords

Active Noise Control, Adaptive filtering, Fractional Fourier transform, Fractional Fourier

domains, Instantaneous frequency estimation.

2. Preliminaries

2.1 Fractional Fourier transform

FrFT is a generalization of the ordinary Fourier transform with a fractional order parameter

a, which corresponds to the ath fractional power of the Fourier transform operator, F. The

ath-order FrFT of x(t) is defined as

xa = Fa{x(t)} =
∫

Ka(t, t′)x(t′)dt′ (2)

30 Noise Control, Reduction and Cancellation Solutions in Engineering
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Adaptive Fractional Fourier Domain Filtering in Active Noise Control 3

where 0 < |a| < 2, and the transformation kernel Ka(t, t′) is

Ka(t, t′) = Aϕe−jπ(t2 cot(ϕ)−2tt′ csc(ϕ)+t′2 cot(ϕ) (3)

Aϕ = e−jπsgn(sin(ϕ))/4+j(ϕ)/2/| sin(ϕ)|1/2

with the transform angle ϕ = aπ/2 (25). The first–order FrFT is the ordinary Fourier

transform and the zeroth-order FrFT is the identity transformation. The ath-order FrFT

interpolates between the function x(t) and its Fourier transform X( f ). Fig. 1 shows the real

part of a mono–component LFM signal x(t) with a chirp rate α = 0.5 in various fractional

orders. Time domain signal, i.e. the zeroth–order FrFT, is given in Fig. 1 (a) and its Fourier

transform is given in Fig. 1 (c). Moreover, Fig. 1 (b) and (d) show the signal in 0.5th and 1.5th

order fractional domains.
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Fig. 1. The real part of the FrFT of the mono-component LFM signal in various fractional
orders. (a) The signal in time domain, (b) 0.5th order FrFT, (c) 1st order FrFT, i.e. the Fourier
transform, and (d) 1.5th order FrFT.

The inverse transform operator is simply expressed as (Fa)−1 = F−a which corresponds to

K−1
a (t, t′) = K−a(t, t′) as the inverse-transform kernel function. FrFT is a linear and unitary

transform. One of the important properties of the FrFT is index additivity and it is expressed

as

Fa1Fa2 = Fa1+a2 (4)

where a1 and a2 indicate the fractional transform orders.

In (26), FrFT is decomposed into a chirp multiplication followed by a chirp convolution and

followed by another chirp multiplication. The chirp convolution is evaluated by using the

fast Fourier transform. Thus, FrFT can be computed by O(NlogN) computational complexity,

where N denotes the time–bandwidth product (TBP) of the signal (26). The TBP of a signal

x(.) is defined as the product of time–width and bandwidth of the signal. According to the

well-known uncertainty principle, signals can not be confined both in time and frequency at

the same time. However, it is always possible to choose the TBP of the signal large (always

greater than 1). Therefore, authors in (26) assumed that the signal is confined to the interval

[−∆t/2, ∆t/2] in time and [−∆ f /2, ∆ f /2] in frequency domain. In order to have same length

of time and frequency interval, a scaling operator must be used. When time domain scaling

31Adaptive Fractional Fourier Domain Filtering in Active Noise Control
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c1[m] := ejπ 1
4 (α/dx2−β/N)m2 −N ≤ m ≤ N − 1

c2[m] := ejπβ(m/2
√

N)2 −2N ≤ m ≤ 2N − 1

c3[m] := ejπ dx2

4N (α/N−β/dx2)m2 −N ≤ m ≤ N − 1
g[m] := c1[m]x(m/2dx) −N ≤ m ≤ N − 1

ha′ (m/2dx) :=
Aφ

2dx c3[m](c2 ∗ g)[m] −N ≤ m ≤ N − 1

where,
φ′′ := π

2 a′′

α := cot φ′′

β := csc φ′′

Aφ :=
exp(−jπsgn(sin φ)/4+jφ/2)

| sin φ|1/2

Table 1. Table 1. Definition of the variables in Fig.2, which are used in the calculation of the
fast fractional Fourier transform algorithm

is employed to the signal, time and frequency axes become ∆t/s and ∆ f s, respectively. By

defining the scale parameter as s =
√

∆t/∆ f , new time and frequency axis (range, interval)

become same and it is ∆x =
√

∆ f ∆t. Therefore the TBP is N = ∆t∆ f , the interval of the

samples is defined in terms of the TBP, ∆x =
√

N.

The fast FrFT computation block diagram is given in Fig. 2. First, the signal is interpolated

by 2, then the interpolated signal is multiplied by a chirp signal c1. After then, the obtained

signal is convolved by a chirp c2 and multiplied another chirp c3. Finally, the obtained signal

is downsampled by 2. In the algorithm, the fractional transform order, a, is assumed to be in

the interval 0.5 ≤ |a| ≤ 1.5. The index additivity property of the FrFT can be used to extend

this range.

As mentioned in the next section, FrFT has some impacts on the Wigner distribution (WD).

Roughly speaking, FrFT rotates the support of the signal on the x-y axis respect to the

transform order. In order to preserve the energy of the signal in a circle with a ∆x diameter,

the analyzed signal must be interpolated by 2 times in the beginning of the algorithm. (26)

presents the digital computation of the FrFT, moreover, discrete FrFT definitions have been

developed by many researchers (27; 28).

Fig. 2. The fast FrFT computation block diagram.

32 Noise Control, Reduction and Cancellation Solutions in Engineering
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2.2 IF estimation of chirp-type signals

FrFT converts time-varying chirp-type signals into sinusoidals at appropriate transform

orders. Thus it is crucial to estimate the instantaneous frequency (IF) value of the chirp

components successfully. The IFs of the analyzed signals characterize the variation of their

spectra.

The WD of a signal x(t) is represented by Wx(t, f ) and defined as

Wx(t, f ) =
∫

x(t + τ/2)x∗(t − τ/2)e−j2π f τdτ. (5)

The RWT of a signal x(t) is defined as the Radon transform of the WD of x(t),

RDN[Wx](r, ϕ) =
∫

Wx(r cos(ϕ)− s sin(ϕ), r sin(ϕ) + s cos(ϕ))ds (6)

where (r, ϕ) are the transform-domain variables in polar coordinates and the RWT gives the

projection of the WD for 0 ≤ ϕ ≤ π. The radial slices of the RWT, RDN[Wx](r, ϕ), can be

directly computed from the FrFT of the signal as,

RDN[Wx](r, ϕ) = |Fa{x(r)}|2 = |xa(r)|2 . (7)

A mono-component amplitude-modulated chirp signal and its time-frequency representation

by WD are shown in Fig. 3(a) and (b). FrFT rotates the WD of the signal by an angle related

to the fractional transformation angle ϕ, as shown in Fig. 3 (c) and (d). The appropriate order

of the FrFT, which is (1/3) for this case, rotates the WD in the clockwise direction so that the

chirp is converted to an amplitude modulated sinusoidal signal.
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Fig. 3. (a) Real part of the LFM signal in time-domain, (b) its WD, (c) its (1/3)-rd order FrFT,
and (d) the WD of the transformed signal.

The projections in the WD domain are related to the FrFT and we propose an efficient and

a simple IF estimation technique by using the relationship between the RWT of a signal and

its corresponding FrFT (29). The algorithm searches for the appropriate FrFT order a for

the signal. At the appropriate order, FrFT of the signal gives the maximum peak value. By

33Adaptive Fractional Fourier Domain Filtering in Active Noise Control
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searching the peaks of |xa(r)|2 computed in O(NlogN) operations at various order parameter

values of 0 < |a| < 2, the LFM rates and IF estimates can be determined robustly.

As the ath-order FrFT gives x(t) for a = 0 and X( f ) for a = 1, binary search algorithm searches

for the optimum transformation order between zero and one that maximizes the peak FrFT

value. First, this algorithm calculates the FrFT of the signal for a = 0, a = 0.5, and a = 1 values.

Secondly, it takes the maximum two peak values of the FrFT among these values. Then, FrFT

calculation is repeated for two obtained peak values and their mean value. This procedure is

iteratively repeated by decreasing the search region for the order parameter a. The flowchart

of this algorithm is given in Fig. 4. As each FrFT computation has O(NlogN) complexity, the

overall complexity of the required search is of O(3x L x N(logN)), where L indicates the loop

number of the search algorithm and 10 steps is usually sufficient.

Such an RWT-based IF estimation works well even the environment has AWGN besides the

chirp-type noise. The peak FrFT value of the chirp signal in Fig. 5 with respect to the FrFT

order (a − 1) is presented for AWGN with three different SNR values.

If the signal has multi–chirp components, then each peak belonging to each different IF should

be determined. For a multi–component chirp signal, Fig. 6 shows peak FrFT values of each

component. Chirp rate of these components are [π/18, 2π/9, 3π/12] and their time and

frequency centers are t0 = [0, 0, 1] and b = [−1, 0, 1], respectively. Although this

technique works for the multiŰcomponent case, its performance depends on the SNR value

and difference between IF values of each component of the analyzed signal. For this reason,

if the ambient noise has more than one component, the minimum-essential-bandwidth-based

IF estimation technique can be used as in (28).

Fig. 4. A basic IF estimation scheme via RWT.

34 Noise Control, Reduction and Cancellation Solutions in Engineering
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Fig. 5. Peak FrFT values as a function of the fractional order, (a-1) for a mono–component
chirp signal.
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Fig. 6. Peak FrFT values as a function of the fractional order, (a-1) for multi–component chirp
signal.

(28) shows that the fractional Fourier domain order corresponding to the transformed signal

of minimum bandwidth gives IF estimates in sufficiently long observation periods for

multiŰcomponent signals. In (28), two different IF estimation algorithms are proposed in that

optimization scheme. One of them makes use of the maximum fractional time-bandwidth

ratio, whereas the second one introduces a minimum essential bandwidth, which is expressed

as the minimum sum of the bandwidths of the separate signal components. Genetic algorithm

is employed to determine the IF of the signal components.

3. Adaptive filtering in ANC systems

Most of the ANC systems employ adaptive filters based on LMS-type algorithms, operating

either in time or transform domains. In some applications, such as acoustic echo cancellation

in teleconferencing, time-domain adaptive filters should have long impulse responses in order

to cancel long echoes successfully. On the other hand, transform-domain adaptive filters may

converge faster than time-domain adaptive filters in such cases.

We propose a fractional Fourier domain adaptive filtering scheme for ANC systems as given

in Fig. 7. The effect of the environment is summarized by an unknown plant P(z) from

35Adaptive Fractional Fourier Domain Filtering in Active Noise Control
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Fig. 7. The basic scheme of the FrFT-domain adaptive filter in an ANC application.

the reference microphone to the error microphone. Secondary path from the canceling

loudspeaker to the error microphone is represented by S(z). Secondary path effects include

the effect of power amplifiers, microphones, speakers, analog-to-digital converters and

digital-to-analog converters. In (19), secondary path transfer functions have been estimated,

whereas in (4; 14), the secondary path is modeled as an FIR filter. (34) emphasizes on the

system identification problem of ANC, thus the secondary path is not considered. Here, we

employ a secondary acoustic path model as an FIR filter and assume its proper estimation as

Ŝ(z), and we focus on the fractional Fourier domain adaptive filtering scheme.

3.1 Time-domain adaptation

Searching the optimum filter tap-weights to minimize the sums of squares of the cumulative

error, LMS-based algorithms achieve satisfactory performance rates with low computational

complexity. Assuming that xp(n) is the input vector at time n, instantaneous error of the

adaptive filter is

e(n) = d(n)− s(n)[wT(n)x′p(n)] (8)

where e(n), d(n) and w(n) denote the error signal, reference signal, and the adaptive filter

tap-weights, respectively. Error is minimized by decreasing the filter tap-weights in the

direction of the gradient with a step-size μ recursively

w(n + 1) = w(n) + μxp(n)e
∗(n). (9)

To reduce the effect of the power of the input signal on the system performance μ may be

normalized by the power of the signal as in the normalized-LMS (NLMS) algorithm.

In ANC systems, filtered-X LMS (Fx-LMS) algorithm is used to reduce the secondary path

effects. In the Fx-LMS algorithm, tap-weights w(n) are recursively adapted in the direction

3 In this section, lowercase boldface italic characters generally refer to vectors and (.)* is used to denote
the Hermitian conjugate operation for matrices.

36 Noise Control, Reduction and Cancellation Solutions in Engineering
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of the gradient with a step-size μ by using the filtered reference signal through the secondary

path model s(n),
w(n + 1) = w(n) + μx′p(n)e

∗(n) (10)

where x′p is the filtered xp.

A summary of the Fx-LMS algorithm is given in Table 2. Time-domain adaptation to a chirp

signal is presented in Fig. 11 where the reference signal is d(n) and the corresponding output

of the time-domain LMS-based adaptive filter is y(n). The error increases as the frequency

of the input signal changes rapidly. The performance of the adaptive filtering scheme is also

investigated by using the NLMS algorithm. The error signal e(n), of the LMS-based adaptive

filter in time-domain is illustrated in Fig. 11 (a), whereas the error signal of the NLMS-based

adaptive filter in the time domain is shown in Fig. 11 (b).

3.2 Fourier–domain adaptation

Fourier–domain adaptation improves the adaptive filter performance for several reasons. For

example, time domain adaptation requires the convolution operation and when the impulse

response gets long, the overall complexity increases. By using fast Fourier transform, the

computational complexity can be reduced, which is one of the reasons in choosing Fourier

domain adaptation. The other reason is that frequency domain adaptive filtering improves

the convergence performance. Moreover, orthogonality properties of the discrete Fourier

transform provides a more uniform convergence rate (24).

4. System model and simulations

The adaptive LMS-based ANC system in fractional Fourier domain is designed as shown

in Fig 8. An adaptive filter is used to model the primary path effect P(z), which is the

acoustic response from the reference sensor to the error sensor. Reference signal is obtained

by measuring the ambient noise and the primary signal is the output of the unknown plant.

The ambient noise that shows chirp-type characteristics is modeled by an adaptive filter in

fractional Fourier domain which transforms non-stationary chirp-type signals to stationary

sinusoidal signals. The acoustic anti-noise signal, which is the inverse-FrFT of the adaptive

filter output, is generated by the loudspeaker. Except the FrFT-order estimation at certain

time intervals, adaptation scheme is the same as the Fourier-domain adaptation in practical

circuits and systems applications. A chirp-type noise signal to be modeled by the fractional

Fourier domain adaptive filter and its appropriately-ordered FrFT are shown in Fig. 9(a) and

(b). The chirp signal is transformed to a sinusoidal signal at the estimated transformation

order of a = 1/3 by the proposed binary search algorithm. The input and output signals

of the LMS-based adaptive filter in the fractional Fourier domain are given in Fig. 9(b) and

(c). By taking the inverse FrFT of (c), time-domain filter output is obtained as shown in (d).

The fractional Fourier domain error signals of both LMS and NLMS-based adaptive filters are

plotted in Fig. 10(a) and (b). Among the two algorithms, NLMS performed better. Moreover,

the corresponding time-domain error signals of the fractional Fourier domain adaptive filters

by LMS and NLMS algorithms are presented in Fig. 11(a) and (b). Compared to the error

plots of time-domain adaptation in Fig. 4(b) and 5(b), the fractional Fourier domain adaptive

filtering scheme achieves significantly better performance. Finally, the performance of the

adaptive fractional Fourier domain LMS-based ANC is tested when the chirp-type noise

37Adaptive Fractional Fourier Domain Filtering in Active Noise Control
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signal is embedded into AWGN. Fig. 12 presents error energy with respect to SNR, e.g.,

when SNR is 8 dB, the error energy in fractional Fourier domain adaptation scheme is less

than 10−1, whereas if the adaptation is realized in time, the error energy is greater than 1.

Fractional Fourier domain adaptation noticeably improves the system performance.

Fig. 8. The designed system model.

An LFM noise signal to be modeled by the fractional Fourier domain adaptive filter and its

appropriately-ordered FrFT are shown in Fig.9(a) and (b). The chirp signal is transformed

to a sinusoidal signal at the estimated transformation order of a=1/3. The input and output

signals of the LMS-based adaptive filter in the fractional Fourier domain are given in Fig.(b)

and (c). By taking the inverse FrFT of (c), time-domain filter output is obtained as shown

in (d). The fractional Fourier domain error signals of both LMS and NLMS-based adaptive

filters are plotted in Fig.10 (a) and (b). The adaptation step size μ can be chosen on the order

of 10−1. In the simulations, it is chosen as μ = 0.04 in LMS and μ = 0.55 in NLMS algorithm

with α = 0. In all of the simulations, adaptive filter length is chosen as 16 and among the two

algorithms, NLMS performed better.

In the proposed fractional Fourier domain adaptive filtering scheme, the reference input xp is

transformed by the FrFT at the appropriate fractional order a so that the new input signal is

xp =

⎡

⎢

⎢

⎢

⎢

⎣

x(n)
x(n − 1)

·
·

x(n − p)

⎤

⎥

⎥

⎥

⎥



→ xa,p =

⎡

⎢

⎢

⎢

⎢

⎣

xa(n)
xa(n − 1)

·
·

xa(n − p)

⎤

⎥

⎥

⎥

⎥



. (11)

The reference and error signals are defined in the ath-order fractional Fourier domain and

represented by da(n) and ea(n), respectively. The corresponding weight-update process of the

transform-domain adaptive filter becomes

ea(n) = da(n)− wT
a (n)x

′
a,p(n). (12)

38 Noise Control, Reduction and Cancellation Solutions in Engineering
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Fig. 9. An LFM signal, (b) its (1/3)rd order FrFT, (c) the output of the adaptive filter in FrFT
domain and (d) the output of the adaptive filter in time domain by taking its inverse FrFT.
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Fig. 10. Error signals in the fractional Fourier domain, by employing (a) LMS-based and (b)
NLMS-based algorithms.

The tap-weights wa(n) of the fractional Fourier domain adaptive filter are updated iteratively

by

wa(n + 1) = wa(n) + μx′a,p(n)e
∗(n). (13)

The FrFT parameter a should be estimated and kept updated during the adaptation process.

FrFT-domain adaptation to an LFM signal is presented in Fig.12 by LMS and NLMS

algorithms without introducing the secondary path effects S(z). Fig.12(a) shows the chirp-type

primary noise in time domain. This signal is transformed to a sinusoidal signal by taking FrFT

at the appropriate order. Then, adaptation procedure is employed. Error plots of the LMS and

NLMS algorithm in the fractional Fourier domain adaptation scheme are given in Fig.12(b)

and (c), respectively. According to error signal of adaptive filters shown in Fig. 11 (b)-(c)

39Adaptive Fractional Fourier Domain Filtering in Active Noise Control
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Fx-LMS Algorithm

Input:

Initialization vector: w(n) = 0
Input vector: x(n)
Desired output: d(n)
Secondary path: s(n)
Step-size parameter: μ
Filter length: M
Output:
Filter output: y(n)
Coefficient vector: w(n+1)
Procedure:

1) y(n) = wH(n)x(n)s(n)
2) e(n) = d(n)− y(n)
3) w(n + 1) = w(n) + μe∗(n)x(n)s(n)

Table 2. Fx-LMS Algorithm

and Fig. 12 (b)-(c) , it can be said that fractional Fourier domain adaptation performs well

compared to time domain adaptation for chirp–type noise.

The fractional Fourier order parameter a is chosen as equal to the chirp rate, so the

corresponding FrFT transforms the signal into a stationary signal. The simulation results

present that fractional Fourier domain adaptive filtering is more successful at suppressing

the undesired chirp-type noise compared to the time domain adaptation at the appropriate

FrFT order.
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Fig. 11. (a) Primary noise in time domain, (b) LMS error, and (c) NLMS error by time domain
adaptation.

The stability of the fractional Fourier domain LMS adaptation is assured by imposing limits

on μ as

0 < μ < 2/λm (14)
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Fig. 12. (a) Primary noise in time domain, (b) LMS error, and (c) NLMS error by fractional
Fourier domain adaptation.

where λm is the largest eigenvalue of the correlation matrix of the fractionally Fourier

transformed input data. In case of the Fx-LMS algorithm, x′a,p(n) is used as the filtered version

of xa,p(n) through S(z). The observation period also depends on the computational power

of the processor that operates the algorithm. IF estimation requires several times of FrFT

algorithm giving rise to extra computational cost to the FrFT-domain adaptation.

Finally, the performance of the adaptive fractional Fourier domain LMS-based ANC is tested

when the LFM noise signal is embedded into AWGN. Fig.13 presents error energy with respect

to SNR, e.g., when SNR is 8 dB, the error energy in fractional Fourier domain adaptation

scheme is less than 10−1, whereas if the adaptation is realized in time, the error energy is

greater than 1.

The fractional Fourier domain adaptation noticeably improves the system performance. The

convergence analysis of the adaptive filtering schemes is realized for two alternative schemes.

Fractional Fourier domain adaptive filtering scheme achieves faster adaptation compared to

the time-domain adaptation algorithm as shown in Fig.14.

Fig.15 presents a real bat signal which has three different LFM components. Short–time

Fourier transform (STFT) of this signal is given in Fig.16. The components of this signal are

oriented along the same direction on the time-frequency plane and the FrFT transformation

order is calculated as a=0.0691 by the IF estimation algorithm proposed in (28). Error signals

of time-domain and FrFT-domain adaptation are given in Fig. 17 (a) and (b), respectively.

FrFT-domain adaptive filtering scheme gives better results compared to the time-domain

adaptation.

4 The authors wish to thank Curtis Condon, Ken White, and Al Feng from Beckman Institute of the
University of Illinois for permission to use the bat data it in this paper.
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Fig. 13. Error energy in fractional Fourier and time-domain adaptation schemes with respect
to SNR in AWGN.
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Fig. 14. Convergence analysis for both time and FrFT domain adaptive filtering.
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Fig. 15. Real bat echolocation signal which has multi-chirp components.
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Fig. 17. (a) Error signal in Fx-NLMS algorithm by time-domain adaptation, (b) error signal in
Fx-NLMS algorithm by fractional Fourier domain adaptation.

5. Conclusions

This chapter presents high-performance fractional Fourier domain adaptive filtering scheme

for ANC systems. As a system parameter, the IF of the input chirp-type signal is

estimated by searching the peak values of the modulus square of the FrFT. As noise

signals originating from accelerating motion are chirp-type, such a fractional Fourier domain

adaptive filtering approach avoids the difficulties of adaptation in a rapidly time-varying

signal environment by transforming the signals to the appropriate fractional Fourier domain

where the signals of interest become slowly time varying. Simulation results and error signals

for mono-component chirp-type signals are compared in both time and fractional Fourier

domains. It is evident that the total error quantity of adaptive filtering in fractional Fourier

domain is significantly less than that of the time-domain adaptive filter.
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