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Keratoconus Layer by Layer –  
Pathology and Matrix Metalloproteinases  

Dasha Nelidova and Trevor Sherwin  
Department of Ophthalmology, Faculty of Medical and Health Sciences,  

University of Auckland, Auckland 
New Zealand 

1. Introduction 

Keratoconus is an ectatic disease in which the cornea develops a conical shape due to 
thinning of the collagenous corneal stroma. Characteristic morphological features seen on 
slit lamp examination are well described. This overview describes the recent advances in our 
understanding of keratoconic pathology, focussing particularly on the matrix 
metalloproteinase hypothesis of keratoconus disease progression.   

2. The diversity and complexity of keratoconus 

Keratoconus is a corneal ectatic disease where the cornea assumes a conical shape due to 
thinning of the corneal stroma, inducing irregular astigmatism and myopia and leading to 
marked impairment of vision1. Keratoconus typically starts at puberty and progresses until 
the third or fourth decade of life; alternatively it may commence later and arrest at any age. 
This disease is associated with several conditions, particularly those which encourage eye 
rubbing. 

The mechanism of disease progression has long been the subject of intense research; 
however, research is complicated by the large degree of variation in clinical features 
between patients. Forme fruste or sub-clinical forms of the disease, likely contribute to the 
differences in reported incidence are estimated to occur between 50 and 230 per 100,000 of 
the general population1. There are also significant geographical variations. New Zealand, for 
example, has an unusually high prevalence of keratoconus. 50% of corneal transplants 
performed in New Zealand are due to this debilitating disease, compared with 30% in 
Australia2 and 20% in the UK3. 

3. Clinical signs of keratoconus 

The first adequate description of keratoconus, setting it aside from other ectatic conditions, 
was advanced by Nottingham in 1854 in his treatise ‘Practical observations on conical 
cornea: and on the short sight, and other defects of vision connected with it’4. 

In 1943 Berliner5 listed the seven distinct features of keratoconus as classified by Von der 
Heydt and Appelbaum:  
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1. Thinning of the cornea at the apex of the cone 
2. Reflex from the endothelial cup 
3. Striae 
4. Irregular superficial opacities or scars 
5. Ruptures in Descemet’s membrane 
6. Increased visibility of the nerve fibres and  
7. Fleischer’s ring.  

These morphological features became incorporated by Duke-Elder6 into the 1965 text 
‘System of Ophthalmology’, which went on to describe keratoconus as a disease which can 
be recognised by: 

1. A thinning of the cornea at the apex of the cone from one half to one fifth of its normal 
dimensions 

2. An endothelial reflex in the central portion of the cornea at the peak of the cone 
3. Vertical lines in the deeper layers of the stroma 
4. An increased visibility of the nerve fibres which form a network of grey lines 

interspersed with small dots 
5. Fleischer’s ring, a line running round the base of the cone 
6. Ruptures of Descemet’s membrane of characteristic appearance 
7. Ruptures in Bowman’s membrane in advanced cases producing superficial linear scars. 

Rabinowitz1 lists the following clinical signs which may be present individually or in 
combination in moderate to advanced keratoconus: 

‘Stromal thinning (centrally or paracentrally, most commonly inferiorly or 
inferotemporally); conical protrusion; an iron line partially or completely surrounding the 
cone (Fleischer’s ring); and fine vertical lines in the deep stroma and Descemet’s membrane 
(Vogt’s striae)... Other accompanying signs might include epithelial nebulae, anterior 
stromal scars, enlarged corneal nerves and increased intensity of the corneal endothelial 
reflex and subepithelial fibrillary lines.’ 

Since then advances in corneal topographical assessment have greatly aided the diagnosis of 
early disease. Prior to topography, forme fruste keratoconus was harder to recognise as 
patients do not necessarily have symptoms or observable clinical signs in these early stages.  

4. Antero-posterior review of morphological changes in keratoconus  

Pathological and histopathological abnormalities have been documented in every layer of 
the keratoconic cornea and this has previously been reviewed by our laboratory7. The 
following represents a layer by layer summary of keratoconic morphological variations 
reported.   

4.1 Epithelium  

Ex vivo histological analysis of keratoconic corneas has demonstrated significant thinning of 
the central epithelium8. Central epithelial thinning was significantly greater in those corneas 
which also had breaks in the Bowman’s layer, however, the authors thought it likely that 
differences in the integrity of Bowman’s layer could nevertheless be considered to be 
manifestations of the same disease process.  Subsequent studies report thickened epithelia in 
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keratoconus9,10 or else no difference in epithelial thickness between keratoconus and normal 
controls11.   

In vivo confocal microscopy studies of the epithelium demonstrate morphological alterations 
in the area of the keratoconic corneal apex.  Elongated superficial epithelial cells, arranged in 
a whorl-like fashion, can be observed. Near Bowman's membrane highly reflective changes 
and fold-like structures are visible12. These in vivo pathological features may well reflect the 
oedematous disruptions of basal epithelial integrity in keratoconus.  

Apoptotic changes have also been detected in epithelia of keratoconic samples. TUNEL 
positive epithelial cells were confined to the superficial epithelium of normal corneas while 
extending further down in keratoconic corneas9.This is supported by the work which 
reported that intense TUNEL labelling was present in the basal epithelia of fifteen out of 
sixteen keratoconic corneas examined13.  

The keratoconic basement membrane assumes an irregular appearance and breaks in places14. 
It also undergoes a change in composition15,16 that cannot be explained by scarring alone. 
Laminin-1 and laminin-5 staining was shown to be irregular and thickened at defect sites, 
however monoclonal antibodies against the 2 and 2 chains did not react15. Type IV collagen 
1 and 2 reactivity was also only found in the defect regions of keratoconic or scarred 
corneas15. Immunostaining for type VII collagen was patchily localised to the basement 
membrane defects15. Integrin 4 staining which was positive in the basement membrane and 
the lateral and apical cell membranes of the epithelial cells, was found to be discontinuous in 
keratoconic corneas15. It has been suggested that a process similar to wound healing might 
account for such differences in structure. Basement membrane alterations may affect critical 
interactions of the corneal epithelium with the underlying basement membrane, as well as cell-
matrix interactions and matrix organization in the stroma16.  

4.2 Nerve fibres 

Increased visibility of nerve fibres by slit lamp biomicroscopy has been demonstrated in 
keratoconus. Corneal nerves pass between the stroma and epithelium at sites of early 
degradative change17. Keratocytes wrap around the nerves as they pass through an 
otherwise acellular Bowman's layer17. Localised nerve thickenings develop in the epithelium 
and stress epithelial architecture17.  

4.3 Bowman’s layer 

Scanning electron microscopy has found defects and ruptures in Bowman’s layer to varying 
degrees in all keratoconic corneas examined18. Discontinuities in Bowman’s layer are 
sometimes accompanied by distortion of the stroma beneath the defect15 or alternatively, 
direct contact between epithelial and stromal cells19. Rather than being seen throughout the 
affected cornea, such abnormalities of the extracellular matrix are usually confined to 
several loci, suggesting a localised focus of disease progression. 

4.4 Stroma – Collagen lamellae and keratocytes 

The thickness of collagen lamellae in keratoconus is unaltered, but the number of lamellae 
appears to be significantly reduced compared to normal tissue20. There is no difference in 
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interfibrillar spacing between keratoconus and control corneas, conclusively demonstrating 
that stromal thinning in keratoconus is not due to closer packing of the fibrils in the stroma.  

There is some evidence for a progressive loss of lamellae from the stroma, for example, a 
reduction in the volume of proteoglycan along the collagen fibrils has been found in 
keratoconus21. Low angle x-ray scattering has shown that the orientation of collagen fibrils 
within lamellae is also altered in the disease22. It is likely that these changes reflect the 
presence of a degradative process or alternatively, insufficient repair mechanisms. 
Biochemical analyses of stromal matrix components are inconclusive: Critchfield and co-
workers23 described decreased collagen and total protein levels in keratoconic tissue by 
western blotting. Radda et al.24 found a 5% increase in type I collagen in keratoconus; while 
Zimmermann et al.25 found no differences in collagen composition. 

Keratoconus is also associated with changes in keratocyte morphology as well as loss of 
keratocyte density11, 12. Keratocytes may be lost though apoptosis9,13, however, as apoptosis 
was not seen in all keratoconic samples analysed it was proposed that such cells might not 
be detected if at the time of analysis the tissue was in a period of keratoconic remission. An 
alternative explanation suggests that because keratoconus is diagnosed on the basis of 
clinical findings, there may be several diseases with differing pathophysiological 
mechanisms that produce the phenotypic change that is referred to as keratoconus.  

Keratocyte density was lowest in the anterior-most part of the stroma12. Whilst there may be 
a significant decrease in the density of keratocytes in the stroma immediately underneath 
Bowmans’ membrane, the remaining keratocytes are far from quiet. Such keratocytes and 
their pseudopodia are oriented apically towards the overlying epithelium and their 
activated state is reflected by the abundance of rough endoplasmic reticulum within the 
cells26.   

Studies of the peripheral keratoconic cornea also show discrete incursions of fine keratocytic 
processes into Bowman’s membrane10. These processes were often observed in conjunction 
with posterior collapse of epithelial cells into the Bowman’s layer10. 

4.5 Descemet’s membrane 

Ruptures and folds in Descemet’s membrane are common in keratoconus14. The origin of 
these ruptures is unclear as several studies of extracellular matrix proteins have revealed no 
differences in the levels of collagens, laminin, entactin or perlecan between keratoconus and 
normal tissue19,25. The appearance of the defects in Descemet’s membrane may well be 
associated with environmental factors such as eye rubbing and may lead to the development 
of hydrops1. 

4.6 Endothelium 

The endothelium may be normal in keratoconus or may demonstrate intracellular dark 
structures, pleomorphisms or elongation of cells1. Scanning slit confocal microscopy and 
ultrasound biomicroscopy in living patients with keratoconus revealed central detachment 
of Descemet’s membrane and endothelium from the posterior part of the stroma27. Ruptures 
in Descemet’s membrane may directly lead to endothelial cell loss by triggering cell 
membrane perforation, loss of cell contents and edema28. Alternatively apoptosis may 
account for decreased endothelial cell density13. 
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4.7 Evidence from recurrence of keratoconus 

The recurrences of keratoconus in patients after penetrating keratoplasty29 suggest either a 
recurrence of the host disease in the graft or else represent transmission of undiagnosed 
keratoconus from the donor cornea30. Histological examination of corneal buttons from 
patients undergoing repeated penetrating keratoplasty revealed structural changes 
compatible with a diagnosis of keratoconus in all the examined corneas31. Recurrence of 
keratoconus characteristics may be attributed to graft repopulation by the recipient cells, 
ageing of the grafted tissue, or both. However a recent study from our own laboratory failed 
to find evidence of recurrence of keratoconus in patients undergoing regraft surgery32. 

 
Fig. 1. A diverse range of morphological changes have been described in every layer of the 
keratoconic cornea. An antero-posterior section of a keratoconic cornea labelled with CellTracker 
green to highlight cellular morphology and integrin 31 labelling the basal epithelium in red 
helps to summarise characteristic histopathological abnormalities by corneal layer.  
Figure reproduced by permission from Wiley-Blackwells7 
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5. Pathology to pathogenesis 

The diversity of pathologies described for keratoconus are likely to represent temporal 
differences in the progression of the disease, positional differences relative to the apical 
centre of maximum damage and reflect a variety of pathophysiological diseases which make 
up the clinical pigeonhole of keratoconus.  

Matrix metalloproteinases (MMPs) have long been suspected of mediating the pathological 
progression of keratoconus. The cornea is 70% collagen by weight and the reduced collagen 
content of the keratoconic cornea suggests a degraded extracellular matrix23. Extracellular 
matrix breakdown is, however, only a small component of the MMP repertoire of activity.  
Nevertheless, this function is essential for normal remodeling, leading to the constitutive 
expression of MMPs in healthy tissues.  

Various models emphasise the role of MMPs in disease, for example, as mediators of 
connective tissue destruction in arthritis33. Consistent with such an involvement is the MMP 
hypothesis of keratoconus which proposes that MMPs are over-expressed in the disease 
while MMP inhibitors may be down-regulated, shifting the balance towards excessive tissue 
destruction. Over the last decade many studies have set out to measure the levels of MMPs 
and their inhibitors by a variety of techniques yet over-expression of MMPs or presence of 
active forms has not been found consistently34.  

It is important to consider that the relative balance between various MMPs could be more 
significant than absolute concentrations. This is relevant given that MMPs often undergo 
intermolecular interactions with each other to achieve activation from the latent form or to 
target MMP action to a particular site such as the cell surface. Paradoxically, tissue inhibitors of 
matrix metalloproteinases (TIMPs) can associate with pro form MMPs to trigger proteolytic 
activity33. Tissue degradation in thinning disorders, such as keratoconus, also involves the 
expression of inflammatory mediators, including proinflammatory cytokines and cell adhesion 
molecules35, which modulate MMP activity and are themselves modulated by it.  

The MMP family includes more than 25 members that make up five families based on their 
substrate preference: collagenases (MMP-1, MMP-8, and MMP-13), stromelysins (MMP-3, 
MMP-10), matrilysins (MMP-7, MMP-26), gelatinases (MMP-2, MMP-9), membrane type 
MMPs (MPP-14 to MMP-17, MMP-24) and others36. Most are synthesised by resident cells, 
some are brought in by invading leukocytes.  Specific MMPs appear in specific locations 
within the cornea36, likely due to cellular and soluble factors particular to the layer.  

MMP changes have been described in every layer of the cornea in keratoconus. The 
following is a layer by layer summary of MMP changes reported within the last 15 years.  

5.1 Tear film and increased MMP-9 

Tear film composition reflects ocular surface events and tears may therefore be considered a 
vehicle for some of the pathogenic protagonists of keratoconus.  Unfortunately, the cellular 
origin of any such molecules cannot be determined conclusively as both corneal and non-
corneal secretions will be represented in the tear fluid. 

In 2000 the presence of collagen degradation products was reported in the tears of patients 
with keratoconus37. The detected telopeptides were presumed to be of corneal origin but the 
authors conceded that serum and conjunctiva were also potential sources. The conjunctival 
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epithelium is indeed altered in keratoconus. Elevation of lysosomal enzyme levels has been 
found in corneal and conjunctival epithelium38 though such enzymes are mostly involved 
with lipid metabolism, rather than turnover of proteins or connective tissues.  Lipids, 
however, are crucial to the integrity of the tear film and indeed, chronic ocular desiccation 
and aqueous tear deficiency can produce inferior corneal steepening and high astigmatism 
resembling keratoconus39. 

More recently, the levels of interleukin-6 (IL-6), tumour nectosis factor-┙ (TNF-┙), and 
MMP-9 in the tear fluid of keratoconic patients were measured by enzyme linked 
immunoadsorbent assay and were found to be significantly higher than in normal subjects40. 
Increases in the levels of these molecules may be intermittent, but sufficient to provoke 
slowly progressive ectasia40. No significant differences in the concentrations of adhesion 
molecules inter cellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion protein-1 
(VCAM-1) were detected and other proteinases were not measured40. 

In most cases, keratoconus initially affects only one eye and later the ectasia may progress to 
include both eyes. Lema et al. followed up their initial work by measuring the 
concentrations of IL-6, TNF-┙ and MMP-9 in thirty patients with unilateral keratoconus - 
one eye diagnosed with keratoconus and the other eye having subclinical disease. IL-6 and 
TNF-┙ levels were found to be raised in both eyes in patients with asymmetric keratoconus, 
however, only TNF-┙ was significantly higher in the keratoconic eye, with respect to the 
subclinical one.  Increased MMP-9 levels were found in keratoconic eyes only35.   

TNF-┙ has been shown to upregulate MMP-9 expression in human corneal epithelial cells41 
and such proinflammatory cytokines are present at the ocular surface even in the absence of 
inflammation42. Interestingly, increased concentrations of cytokines are found in tears from 
various ocular allergic disease states43. While atopy is associated with keratoconus44, 
multivariate analysis has shown that the contribution to pathogenesis likely occurs from the 
eye rubbing encouraged by the itch of atopy rather than from chemical mediators associated 
with atopy itself45. 

The keratoconic ocular surface is characterised by a disorder of tear quality, decreased 
corneal sensitivity, conjunctival squamous metaplasia and higher fluorescein and rose 
bengal staining scores, all of which seem to relate to the extent of keratoconus progression46. 
In that respect the ocular surface is not unlike that of dry eye. It has been shown that 
inflammation plays an important role in both of these conditions and MMP-9 is found in the 
tears of both40,47.  

In fact MMP-9 accumulation has been demonstrated in several other disorders with an 
inflammatory basis, for example, in tears of patients with peripheral ulcerative keratitis, 
herpetic keratitis and Sjogren's syndrome48.  

Among the MMPs, MMP-9 is of central importance in cleaving epithelial basement 
membrane components and tight junction proteins that maintain corneal epithelial barrier 
function47. MMP-9 belongs to the gelatinase group of metalloproteinases that degrade 
denatured collagen; native collagens type IV, V, and VII; and elastin47. Expression of MMP-9 
by ocular surface epithelia in normal healthy eyes is low. Indeed, MMP-9 knockout mice 
show significantly less alteration of epithelial barrier function in response to experimental 
desiccating stress than do wild-type mice, an effect  abrogated by topical application of 
MMP-9 to the ocular surface49. 
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5.2 Whole cornea studies and decreased TIMP-1 

Studies have also assessed levels of various degradative enzymes in whole processed 
keratoconic corneas. This research was triggered by observations that cultured human 
dermal fibroblasts exposed to reactive oxygen species go on to upregulate MMP-1 and 
MMP-2 mRNA while downregulating TIMP-2 mRNA50,51. Thus oxidative stress was 
thought to be a contributing factor to the pathogenesis of keratoconus by promoting, 
amongst others, degradative activity.  

Kenney et al. measured RNA levels by semi-quantitative reverse transcription-polymerase 
chain reaction (RT-PCR) and Southern blot.  MMP-1, -2, -7, -9, -14, TIMP-2 and TIMP-3 mRNA 
levels did not differ between normal and keratoconic corneas52. There was, however, a 1.8 fold 
decrease in TIMP-1 mRNA and 2.8 fold decrease in TIMP-1 protein in keratoconus52.  

Decreased TIMP-1 may account for the high gelatinase activity and increased apoptosis of 
keratoconus. It has been proposed that TIMP-1 curtails the activity of MMP-2, the major 
protease of the corneal stroma. Unlike the constitutively expressed TIMP-2, TIMP-1 is an 
inducible inhibitor generally confined to the corneal epithelium53. Its synthesis seems to be 
upregulated in stromal cell cultures from scarred keratoconic corneas53. Apart from its anti-
proteinase role TIMP-1 prevents TIMP-3 mediated stromal cell apoptosis53. Dysequilibrium in 
the TIMP-1/TIMP-3 system can thus, at least partially, account for the keratoconic condition.  

It is likely that changes in MMP and TIMP systems are also present in several other eye 
diseases. For example, diabetic retinopathy corneas contain higher levels of MMP-3 and 
MMP-10 mRNA as measured by RT-PCR compared with keratoconic corneas54. This is 
thought to account for the various basement membrane and extracellular matrix alterations 
in the cornea of diabetic retinopathy.  

5.3 Epithelium and increased MMP-1 

Collier et al. performed peroxidase immunohistochemistry and determined that MMP-14 
(MT1-MMP) was significantly elevated in the epithelium of keratoconic corneas compared 
to eye bank controls, while MMP-2 was not55. This was surprising given that MMP-14 was 
previously shown to activate latent MMP-2 as well as being able to degrade matrix 
molecules directly. MMP-14 forms a tri-molecular complex on the cell surface with MMP-2 
and TIMP-2 in a complex sequence55. The timing of this interaction and concentrations of 
component molecules determine whether the MMP-14 active site is exposed and available 
for MMP-2 activation and matrix degradation55.  

It was also noted that the expression of MMP-14 in control corneas varied considerably from 
virtually none to pronounced levels, raising the possibility that the enzyme is expressed in 
response to any minor inflammatory or other pathological event.  

Subsequent work failed to detect a significant difference in either MMP-2 or MMP-14 between 
keratoconic and normal epithelium56, instead reporting higher levels of MMP-13 in the 
keratoconic epithelium compared to healthy specimens56.  TNF-┙ and IL-1┚ increase corneal 
epithelial MMP-13 synthesis57 while MMP-13 has been shown to activate MMP-9 in vitro58. The 
temporal and spatial correlation between MMP-13, MMP-9 and corneal re-epithelialisation 
suggests that MMP-13 plays a role in corneal reepithelialisation after injury59. MMP-13 
activation seems to be much more prominent in bullous keratopathy than keratoconus60.  

www.intechopen.com



 
Keratoconus Layer by Layer – Pathology and Matrix Metalloproteinases 

 

113 

Several studies report increased MMP-1 expression in keratoconus. The epithelia of healthy 
corneas and corneas with post LASIK keratectasia display nearly absent immunolabelling 
for MMP-1, whereas strong labelling occurs in the epithelium and stroma of keratoconic 
specimens56,61,62. MMP-1 is able to degrade many non-collagenous components of the 
extracellular matrix, including fibronectin, laminin, and basement membrane glycoproteins, 
but first and foremost, it cleaves native interstitial collagens types I and III62.  

MMP-1 can be effectively induced by the extracellular matrix metalloproteinase inducer 
(EMMPRIN), which is a member of the immunoglobulin superfamily of adhesion 
molecules62. In keratoconus, EMMPRIN expression was found in all layers of the cornea, 
especially in histopathologically altered areas, however, the distribution of MMP-1 did not 
totally overlap with histologically apparent corneal damage and EMMPRIN expression62. 
This may be because EMMPRIN upregulates other MMPs (MMP-2, MMP-3) in stromal 
fibroblasts. In areas of destruction EMMPRIN-inducible MMPs, other than MMP-1, may be 
participating in the local pathological process.  

MMP-8 seems to be down-regulated in keratoconic epithelium compared to normal 
controls56. MMP-8 plays a paradoxical role in tissues, on the one hand being able to cleave 
collagens despite the presence of TIMPs and on the other controlling the inflammatory load 
in tissues by downregulating the polymorphonuclear (PMN) burden63. Unlike other MMPs 
epithelial MMP-8 is not upregulated by TNF-┙ and IL-1┚57. Such MMPs may contribute to 
the pathogenesis of keratoconus by proteolytic modulation of proinflammatory cytokines or 
chemokines or the generation of apoptotic signals for inflammatory and corneal cells.  

5.4 Stroma 

Despite much research, contradictory reports preclude any conclusive statement on the 
contribution of specific MMPs to histopathological hallmarks found in the keratoconic 
corneal stroma.  

In one study MMP-1, -2 and -13 immunolabelling was noted to be greater in keratoconic 
samples compared to normal controls while no difference in MMP-8 or MMP-14 
immunolabelling was observed56. In another study, keratoconic immunolabelling for MMP-
1, -2 and -3 resembled that of the normal cornea and post LASIK keratectasia61 while 
peroxidase immunohistochemistry performed by Collier’s group showed that MMP-14 was 
significantly elevated in the keratoconic stroma55.  

Stromal tissue layer supernatant showed no significant difference in MMP-2, MMP-9, pro 
MMP-13 and TIMP-1 concentrations between bullous keratopathy and keratoconus60. 
Keratocyte cultures from normal and keratoconic corneas also showed no significant 
changes in mRNA levels for MMP-1, -2, -3, TIMP-1, or TIMP-264. Only TIMP-1 protein was 
decreased, prompting a three-fold increase in the MMP-2/TIMP-1 ratio in keratoconus64.  

Yet stromal cell cultures performed by Smith et al. found MMP-2 to be over-expressed in 
clear keratoconic and scarred keratoconic corneas65. The quantities of TIMP-1 and TIMP-2 in 
normal and clear keratoconic cultures were similar.  Scarred keratoconic cultures over-
expressed TIMP-165. In these cultures the cells remained healthy and the extent of stress 
induced MMP-2 activation was low65. For this reason, in addition to inhibiting MMP 
activity, upregulated TIMP-1 production may be a feature of corneal scar tissue cells that are 
refractory to dying. Alternatively, TIMP-1 may prevent cell death that is conceivably 
initiated by upregulated TIMP-3 production and sequestration in the extracellular matrix65.  
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5.5 Endothelium with Descemet’s  

There are only a few studies assessing MMP changes specific to Descemet’s membrane and 
endothelium. The endothelial monolayer often gets damaged or lost as the result of tissue 
handling making studies technically difficult. It was noted that endothelial cells and 
Descemet’s membrane were pathologically altered in keratoconus and EMMPRIN was 
expressed next to areas of histological damage without, however, any evidence of MMP-1 
expression in the area62. Mackiewicz et al. did not detect a difference in MMP-1, -13 and -14 
between keratoconus and healthy controls but did report more MMP-2 in the endothelium 
and Descemet’s of keratoconus and less MMP-8 in the same layers compared to normal 
controls56. Endothelial tissue supernatant showed no significant difference in MMP-2, MMP-
9, pro MMP-13 and TIMP-1 concentrations between bullous keratopathy and keratoconus60.  

 
Fig. 2. Matrix metalloproteinase (MMP) and tissue inhibitor of matrix metalloproteinase 
(TIMP) changes have been described in every layer of the keratoconic cornea. Again, an 
antero-posterior section of a keratoconic cornea illustrated the MMP and TIMP molecules 
whose expression have been reported as  altered in keratoconus. Green arrows represent 
increased expression, whilst red represents reported decreased expression and blue no 
change. It is evident in several cases that reported expression profiles are cotradictory. 
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6. Conclusion  

MMPs are a group of proteolytic enzymes that are able to degrade the main components of 
the extracellular matrix and corneal membranes. Owing to these activities, MMPs are widely 
assumed to have a central role in the pathogenesis of keratoconus. However, studies have 
shown that MMPs can also handle substrates distinct from extracellular matrix proteins, 
influencing cell processes such as apoptosis. Proteolytic modulation of proinflammatory 
cytokines or chemokines or the generation of apoptotic signals for resident and 
inflammatory cells may prove to be as important in mediating keratoconus progression as 
purported extracellular matrix degradation.  

The involvement of proteases in keratoconus has been the subject of much research; 
however, the exact nature of proteolytic phenomena that contribute to keratoconus 
progression remains unclear. Studies have described upregulation of MMP-1, MMP-2, 
MMP-9, MMP-13 and MMP-14 in keratoconus, yet this has not been seen consistently. Other 
authors report no change in MMP levels or else a downregulation of MMP-8 or TIMP-1. 
Increased activity of other proteinases such as cathepsins66 likely contributes to the 
structural deterioration seen in keratoconus. 

For MMP inhibition or TIMP upregulation to be considered a valid therapeutic target for 
amelioration of the disease process it is important to know exactly which MMPs are 
culpable. However, due to complex inter-molecular interactions between individual 
members of the MMP family, the ratios between various MMPs may turn out to be more 
significant to keratoconus pathogenesis than absolute concentrations of specific MMPs.  The 
ability to measure multiple MMPs in a single corneal specimen is therefore necessary in 
order to understand the interplay of proteinases within the cornea. Tear fluid analysis 
affords the opportunity to investigate keratoconus protagonists in the earlier stages of the 
disease, a significant advantage over end-stage corneal tissue analysis. MMP changes are 
seen in many other corneal diseases, suggesting that MMP activation may be a nonspecific 
response to corneal insult. Indeed, the observed changes in inflammatory mediators or 
MMP levels within the cornea can in fact be epiphenomena of changes in corneal structure35. 
It is also possible that several diseases, with differing pathophysiology produce the 
phenotypic changes that are called keratoconus, accounting for the difference in proteinase 
profiles of examined keratoconic samples.  
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