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Coronary Arterial Drug-Eluting Stent: 
 From Structure to Clinical 

Tim Wu and Stephen McCarthy 
Biomedical Engineering and Biotechnology,  

University of Massachusetts Lowell, MA,  
USA 

1. Introduction 

1.1 Cardiovascular diseases and Percutaneous Coronary Intervention (PCI) 

Coronary Artery Disease (CAD) is the chronic blocking or narrowing of the coronary 

arteries caused by neointimal hyperplasia of the arterial wall. It has been the number one 

killer in the United States since 1900 and remains a common cause of death in the Western 

world despite therapeutic advances. Approximately 14 million Americans have CAD, 

500,000 people die from acute myocardial infarction, and one million more survive but 

with a 1.5 to 15 times greater risk of mortality or morbidity than the rest of the population 

each year. The annual health care cost of the disease is in excess of $112 billion 1. The 

current levels of predictors of heart disease risk, such as obesity, diabetes, and smoking, 

suggests that this will continue to be a significant public health problem for the 

foreseeable future 2.  

The options for CAD treatments include medications, percutaneous coronary arterial 

interventions (PCI, including angioplasty and stenting), or coronary artery bypass graft 

surgery (CABG). In general, patients with coronary narrowing that does not limit coronary 

artery blood flow receive medications and lifestyle modification to help prevent 

progression. If a patient has coronary atherosclerosis that limits blood flow in the coronary 

arteries, balloon angioplasty and stenting can be offered. In patients with multiple areas of 

coronary artery narrowing or blockage, CABG is generally recommended. 

1.1.1 Coronary Artery Bypass Graft Surgery (CABG) 

Of those patients with coronary artery disease, about 10% undergo CABG surgery. 

Patients with severe narrowing or blockage of the left main coronary artery or those with 

disease involving two or three coronary arteries are generally considered for bypass 

surgery. In a CABG, the surgeon uses a portion of a healthy vessel (either an artery or 

vein) from the leg, chest, or arm to create a detour or bypass around the blocked portion 

of the coronary artery. Depending on how many coronary arteries (and main branches) 

are blocked, patients typically receive 1 to 5 bypasses. The most commonly used bypass 

vessels are the saphenous vein from the leg, the internal mammary artery from the chest, 
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and the radial artery from the arm. During a CABG, a heart-lung machine artificially 

maintains circulation while the surgeon operates on the heart. CABG operations require 

general anesthesia and typically 4 to 7 days in the hospital. It may take up to 3 months to 

fully recover from the surgery. 

1.1.2 Percutaneous Interventions (PCIs) 

Percutaneous Interventions (PCIs), which include percutaneous transluminal coronary 

artery angioplasty (PTCA) and coronary artery stenting (CAS) are the major therapies for 

CAD treatment. PTCA involves insertion of an expandable balloon catheter against a 

primary atherosclerotic plaque or secondary restenotic lesion to increase vessel patency 

and blood flow. Clinical stenting was introduced in 1986 with the Wallstent to repair 

abrupt closure after PTCA and has revolutionized interventional cardiology 3. In CAS,  

the stent (a tiny metal scaffolding) functions to brace the vessel wall and reduce the risk of 

restenosis following angioplasty. CAS reduces the rate of angiographic and clinical 

restenosis compared to PTCA alone. This results in a significant reduction in the 

frequency of major adverse cardiac events (MACE) after PCI driven mainly by a reduction 

in target vessel revascularization (TVR). CAS not only increases procedural success rates, 

but also increases the safety of procedures by decreasing the need for emergency  

CABG surgery. As a result, stents are currently utilized in over 85% of the two million 

PCIs in US and the total direct cost for those life-saving procedures is over $5 billion 

annually.  

1.2 Problems in current DESs 

Since the introduction of the stent, there exist two serious complications: namely, 

thrombosis (subacute and late-stage) and in-stent restenosis (ISR). While subacute 

thrombosis has been controlled with the use of dual anti-platelet therapy, late-stage 

thrombosis occurring in drug-eluting stents (DESs) has been a big concern recently. 

Restenosis remains among the most challenging problems in interventional cardiology. The 

recent development of DESs is a major breakthrough as a potential solution for the 

restenosis problem.  

1.2.1 In-stent Restenosis (ISR) 

Restenosis, the re-narrowing of an opened artery after stenting or PTCA procedure, is due 

to a proliferative response of the intima, a layer of cells that lines the lumen of the vessel 

composed of connective tissue and smooth muscle cells (SMC). In restenosis, vascular 

neointimal hyperplasia results in complete blockage of the original artery and insufficient 

oxygenation of cardiac tissue, leading to cardiac arrhythmia or cardiac arrest. Restenosis 

has been the biggest problem in PCI until the recent successful development of DESs. 

Initially, the restenosis rate in PTCA procedures was over 50% within six months post 

balloon dilation. Stenting lowers this rate to 20-30%. Both Sirolimus (Cypher®, Cordis Inc, 

Fla) and Paclitaxel (Taxus®, Boston Scientific Inc, Natick, MA) coated DESs can 

significantly reduce the rate of restenosis to <10%4-6. However, restenosis in patients with 

high risk such as small vessels, diabetes, and long diffusion diseased arteries still remains 
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unacceptably high (30%-60% in bare metal stents [BMSs] and 6%-18% in DESs)7-9 despite 

DES implantation.  

ISR formation is a multi-factorial, sequential process. Although the detailed mechanism of 
the arterial tissue response to an implanted stent is still under investigation, it is generally 
believed that three stages are involved in the process. 1) Thrombotic Phase (day 0-3): this 
phase is the initial response of the artery tissue to stent implantation characterized with 
rapid activation, adhesion, aggregation and deposition of platelets and neutrophils to form a 
thrombus at the injured site. 2) Recruitment Phase: this phase occurs between days 3 to 8 
and is characterized by an intensive inflammatory cell infiltration. In this phase, 
inflammatory cells are activated and infiltrate into the injured vessel wall. Subsequently, the 
recruited inflammation cells provide the key stimulus for subsequent smooth muscle cell 
(SMC) proliferation and migration. 3) Proliferate Phase: This phase lasts 1 to 3 months 
depending on the thickness of the residual thrombus and the rate of growth. At this stage, 
inflammation cells colonize the residual thrombus, forming a “cap” across the mural 
thrombus. The cells progressively proliferate, resorbing residual thrombus until all 
thrombus is gone and is replaced by the neointima tissue 10-12.  

The process of neointimal growth, which consists of SMCs, extracellular matrix, and 
macrophages recruited over a period of several weeks, is similar to the process of tumor 
tissue growth 13. This pathologic similarity between tumor cell growth and benign 
neointimal formation has led to the discovery of anti-tumor drugs such as Paclitaxel as 
effective agents for the treatment of ISR 12, 13.  

1.2.2 Stent thrombosis 

In spite of restenosis remaining a clinical problem in approximately 10% of patients with 
DES implantation, it can often be successfully treated with repeat implantation. The greatest 
concern, however, has been for stent thrombosis which is associated with a high rate of 
myocardial infarction and death. The rate of early stent thrombosis (less than 30 days 
following implantation) appears similar in both BMSs and DESs (Cypher® and Taxus®) 14. 
However, late stent thrombosis has been increasingly reported beyond 12 months 
following DES implantation with the greatest risk occurring as a result of premature 
discontinuation of anti-platelet therapy 15-19. Although the precise mechanism of late stage 
stent thrombosis is unknown, it is generally believed that the combination of delayed 
endothelialization due to anti-proliferative therapy and persistence of the nonerodable 
polymer contribute to a hypersensitivity reaction, possibly with some residual active drug 
that may not be eluted 20, 21.  

2. The structure and components of a drug eluting stent 

Drug eluting stents are comprised of three major parts: 1) drug delivery platform (metal 
stent) to hold the drug and provide supporting forces for the collapsed artery; 2) drug 
coating polymer to attach the drug on the stent surface; 3) anti restenosis drugs released 
from the stent to inhibit restenosis formation after stent implantation. We review each 
component systemically in order to have an anatomic understanding of drug eluting 
stent.  
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2.1 Stent platforms 

2.1.1 Stent materials 

2.1.1.1 Non degradable material 

316L stainless steel: 316L stainless steel (316L SS) is the most commonly used metal material 
in stents due to its excellent mechanical properties and corrosion resistance and is used in 
the first generation DESs, Cypher (sirolimus-eluting stent, Cordis, Warren, NJ) and Taxus 
(paclitaxel-eluting stent, Boston Scientific, Natick, MA). However, its ferromagnetic nature 
and low density make it a non-MRI compatible and poorly visible fluoroscopic material. 
Furthermore, the release of nickel, chromate and molybdenum ions is likely to provoke 
immune reactions and inflammatory responses, which may result in ISR22. Therefore, a 
number of materials have been used as coatings to improve its visibility and 
biocompatibility. 

Co-Cr: Co-Cr alloy exhibits superior radial strength and improved radiopacity compared to 
316L SS. It allows for thinner stent struts, which is a significant advantage because the 
thickness of stent struts is a important factor on the reduction of restenosis in BMSs23, 24. At 
the same time, it reduces device profile and consequently improves its deliverability to the 
target lesion. Co-Cr platforms are employed in the second generation DES, Xience V 
(everolimus-eluting stent, Abott Vascular, CA) and Endeavor (zotarolimus-eluting stent, 
Medtronic Vascular, Santa Rosa, CA). 

Ta: The highly stable surface oxide layer, preventing electron exchange between the metal 
and the absorbed biological species25, 26, make Ta an excellent corrosion resistant material. 
Ta has been coated on 316L SS to improve corrosion properties and biocompatibility of 316L 
SS27. Its high density and non-ferromagnetic properties28,29 make Ta an excellent 
fluoroscopically visible and MRI compatible material. However, its poor mechanical 
properties make Ta stents have higher rates of recoil compared to 316L SS based stents and 
result in enhanced neointimal formation30. Although no Ta based stents have been approved 
by FDA for general use to date, a bare Ta stent has been used by Cordis® (Johnson & 
Johnson, USA) in clinical trials and released commercially in Japan, Canada and Europe31. 

Ti: Although Ti has excellent biocompatibility and corrosion resistance, pure Ti is not 
commonly used for making stents due to its low tensile strength and ductility. However, Ti 
alloys might be optimum for stents. Ti-nitride-oxide coating on 316L SS was biologically 
inert, reducing platelet and fibrinogen deposition, and neointimal hyperplasia32. Promising 
results were reported in clinical trials by the Titan stent (Hexacath, France) using  
this coating33,34. Moreover, Ti-based Ta and niobium alloys showed excellent 
haemocompatibility35, indicating they have potential applications for stents. An extensively 
used Ti alloys in stents is Ni-Ti. 

Ni-Ti: Ni-Ti alloy is also a common material for stents which has good biocompatibility, 
radial force and shape memory. However, the release of nickel ions and their toxic effects on 
tissues have been reported36, 37. In addition, it is suspected of producing mild inflammation 
when contacting monocytes38. In order to solve these problems, the surface of Ni-Ti is 
passivated to increase the Ti oxide concentration and decrease the Ni concentration39, 40, and 
it is coated by some materials such as polyurethane41, Ti nitride42 and polycrystalline 
oxides43 to improve the corrosion resistance. Another problem is that the Ni-Ti alloy does 
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not have adequate visibility under fluoroscopy44 though it can be visualized by MRI45. Ni-Ti 
is used by ACT-OneTM (Progressive Angioplasty Systems, USA)46, Paragon (Progressive 
Angioplasty Systems, USA)47, and Radius (Scimed, USA)48 in clinical trials. 

Pt-Ir: The bare stents made from Pt-Ir alloy of 90% platinum and 10% iridium have been 
implanted in animal models, showing excellent radiopacity and a reduction in both 
thrombosis and neointimal proliferation with less inflammatory reactions. However, their 
recoiling percentage was much higher (16%) than the 316L SS stents (5%)49, 50. Though Pt-Ir 
alloy stents have been proved safe and effective in a human clinical trial51, the 
biocompatibility and haemocompatibility of Pt-Ir alloys needs be further investigated. 

2.1.1.2 Biodegradable metallic materials  

Besides the aforementioned non-degradable metallic stents, a new concept is biodegradable 
metallic stent. The recently used biodegradable metallic materials are pure Fe52 and Mg 
alloys53. 

Pure Fe: The degradation of Fe was completed through the oxidation of Fe into ferrous and 
ferric irons which were dissolved into biological media54. It is reported that ferrous ions 
could reduce the proliferation rate of vascular smooth muscle cell in vitro by influencing 
growth-related gene expression and therefore may antagonize restenosis in vivo54. The pure 
Fe (more than 99.5%) stents with strut thickness varied from 100 to 120µm have been 
implanted successfully in rabbit and porcine and endothelialization was observed52, 55. 
However, further investigation is needed on the modification of the composition and design 
of the stent to expedite the degradation process55. 

Mg alloys: Mg and its alloys has been used as orthopedic materials56, but it is a new principle 
to apply these materials to coronary stents53. Unlike pure Fe, pure Mg is not suitable for 
making stents due to mechanical and corrosion properties. There are two Mg alloys, AE2153 
and WE4357, used for making stents. These materials are radiolucent and thus cannot be 
imaged by X-rays. However, they can be visualized by intravascular ultrasound and MRI58. 
The Lekton Magic stent (Biotronik, Switzerland) is made from WE43, which is safe and can 
provide sufficient support to the collapsed arteries within its degradation time (2-3 
months)59,60. It has been implanted in porcine models, and the preliminary clinical data 
showed promising results that after one-month implantation of magic stents, 18 out of 20 
patients had normal flow while 30%-40% restenosis occurred in the other 2 patients57. 
However, mixed results were found in a human study using a Biotronik’s Mg absorbable 
metal stents61,62, indicating further evaluation is needed. 

2.1.2 Stent geometric design 

Self-expanding vs. balloon-expandable: Basically, there are two stent types: the self-expanding 
and the balloon-expandable stents. The self-expanding stent is made of a coil, mesh or 
zigzag configuration that is constrained with an outer sheath. The stent elastically springs 
open to a predetermine size after the sheath is removed. The balloon-expandable stent is 
crimped and premounted on a balloon, and expanded by the inflation of the balloon whose 
diameter determines the size of expanded stent. Though the self-expanding stent will 
expand to a calculated size automatically, it is not recommended and seldom used at 
present because it continues to expand in the weeks after deployment and thus leads to the 
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stent migration to the adventia and the stent cross-sectional area increasing accompanied by 
medial compression63, 64. 

Coil vs. Tube: Generally, the balloon-expandable stent is classified into two groups: the tube 
and the coil design. The tubular stent is cut from a steel tube or a flat sheet of metal which is 
then rolled and welded to form a tube. The coil design is composed of a continuously 
wound wire or a series of flat sheet coils, which has a greater strut width with gaps and 
fewer or no connections between struts compared with the tubular stent65. These 
characteristics make coil stents more flexible but have poor radial strength and the wide gap 
allows tissue prolapse66. As a result, coil design is being replaced by the tube design 
gradually. 

Slotted tube vs. Modular: Tubular balloon-expandable stents also can be divided into two 
types: slotted tube and modular design. Both of them are cut from a tube of metal. A clinical 
study showed slotted tube stents resisted restenosis more than the modular stents (22.1% vs 
25.2%)67. The slotted tube stent also has two kinds: one is closed cell design, and the other 
one is open cell design. The former one is loser to the original concept of slotted tubes, while 
the latter is more like the modular stent. In a clinical study, less platelet activation was 
found in the implantation of closed cell stents than the open cell stents, which may have 
resulted from a greater degree of tissue prolapsed with the open cell stents68.  

Long vs. Short: It has been proven that stent length is associated with restenosis rate and 
clinical events (mainly target lesion revascularization): 20 mm length stent resulted in 22.6% 
angiographic restenosis rate; 27 mm length stent led to 36% angiographic restenosis rate; 
and 43 mm length stent produced 67.5% angiographic restenosis rate69. Similar results were 
found in another clinical study that showed the angiographic restenosis rates were 20.8% 
and 37.3%, respectively, in the implantation of 16 mm and ≥ 32 mm BMSs, and the 
angiographic restenosis rates were 7.2% and 10.3% for the implantation of the same length 
of DESs70. Therefore, stent length is still a problem in DESs. On the one hand, the DESs can 
reduce restesnosis in both long and short lesions compared with BMSs, but a long stent is 
expected to cover all the diseased area. On the other hand, a long DES may increase the 
occurrence of restenosis. 

Wide vs. Narrow: As with stent length, the stent width is another problem in both BMSs and 
DESs. The same study mentioned above showed the angiographic rates were 40.8% in the 
2.5 mm diameter vs. 12.9% in the 3.5 mm diameter BMSs, and 8.8% vs. 5.5% in the same 
diameter DESs70. Although the study suggested that the wide diameter stent is more 
favorable than the narrow one, the width is still a problem which has not been eliminated by 
DESs. 

More struts vs. less: An animal study, of stainless steel stents with different configurations 
implanted in rabbit iliac arteries, indicated that the stents with 12 struts per cross section 
had 50% to 60% less mural thrombus and 2-fold less neointimal area than those of identical 
stents with only 8 struts per cross section71. However, another animal study showed the 
neointimal growth is not related to the number of struts, but associated with the stretching 
of arteries and the injury depth caused by the implantation of stents72. Therefore, further 
research is needed to evaluate the impact of the number of struts in a stent on thrombosis 
and restenosis. 
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Thick vs. thin struts: As discussed above, the injury depth and the stretching of the coronary 
arteries have a great impact upon neointimal growth72, and the two parameters are vary 
inversely with the thickness of the stent struts. Thinner struts slice into tissue more easily 
and hence induce more deep injury to the coronary arteries, but unlike thicker struts, they 
cause less angulations and stretching of the arterial wall. The effect of strut thickness on 
restenosis incidence was evaluated in both ISAR-STEREO and ISAR-STEREO 2 trials23, 24. In 
the ISAR-STEREO trial, 326 patients were implanted with thin-strut stents (strut thickness is 
50 µm) while in the other 325 patients were assigned to receive thick-strut stents (strut 
thickness is 140 µm) randomly. The results showed the incidence of angiographic restenosis 
was 15.0% in the thin-strut group vs. 25.8% in the thick-strut group (P=0.003), clinical 
restenosis was also significantly reduced, with a reintervention rate of 8.6% among thin-
strut patients vs 13.8% among thick-strut patients (relative risk, 0.62; 95% CI, 0.39 to 0.99; 
P=0.03), and no difference was observed in the combined 1-year rate of death and 
myocardial infarction (MI)23. In the ISAR-STEREO 2 trial, a total of 611 patients with 
symptomatic coronary artery disease were randomly assigned to receive two different kind 
of stents in both design and strut thickness: the thin-strut ACS RX Multilink stent with 
interconnected ring design (Guidant, Advanced Cardiovascular Systems, Santa Clara, 
California) (strut thickness 50μm) were implanted into 309 patients while the thick-strut BX 
Velocity stent with closed cell design (Cordis Corp., Miami, Florida) (strut thickness 140μm) 
were implanted into 302 patients. The results showed the incidence of angiographic 
restenosis was 17.9% in the thin-strut group vs. 31.4% in the thick-strut group (p < 0.001), a 
target-vessel revascularization (TVR) due to restenosis was required in 12.3% of the thin-
strut group vs. 21.9% of the thick-strut group (p = 0.002), and no significant difference was 
observed in the combined incidence of death and MI at one year24. Therefore, the stents with 
thinner struts is preferred for the design of new stents as they can reduce angiographic and 
clinical restenosis more than those with thicker struts. 

Square vs. round strut cross-section: Another note worthy stent geometry is the shape of the 
strut cross-section. An in vitro study showed the migration distance of human aortic 
endothelial cells along the surface of the flat pieces of 316L stainless steel with the sharpest 
edge angles of the bottom surfaces (35°) was significantly greater than with larger angles 
(70°, 90°, and 140°, P < 0.05) under static and flow conditions, indicating the edge angle of 
stent struts does influence the rate of endothelialization. The stents with smaller edge angles 
and slopes facilitate endothelialization as compared with the larger angles73. In addition, 
when compared to those with smaller edge angles, the stents with larger angels have 
sharper edges in the direction of blood flow, which may interfere with blood by slicing the 
blood cells. Therefore, the square strut cross-section is not recommended and the round 
strut cross-section without corners or sharp edges is popular at present.  

Rough vs. smooth surface: The stent surface topography is thought to play an important role in 
stent performance. Though some studies showed a smooth, polished surface reduced 
thrombus adhesion and neointimal growth74, it does not mean extremely smooth surfaces 
are optimal for re-endothelialization. Recently, an in vitro study suggested that a stent 
surface with a microscopic pattern of parallel grooves disposed in the direction of blood 
flow leads to a faster re-endothelialization process than the stent with smooth surface75. In 
addition, in a recent animal study, a similar result was observed a stent with a microscopic 
parallel grooves accelerated the endothelialization rate significantly 1 week after 
implantation in porcine carotid arteries compared to smooth stents76, 77. In order to 
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determine the relationship between the stent surface topography and outcome in patients 
undergoing implantation of stents with rough and smooth surfaces, a clinical trial of 200 
patients with significant stenosis in native coronary vessels were randomly assigned in a 
double-blind study to receive either a rough or a smooth-surface stent. The study indicated 
rough stent surface does not increase late lumen loss after stent implantation as compared 
with a conventional smooth stent surface, and the angiographic restenosis rates were 25% 
with rough-surface stents vs 35% with smooth surface stents (P=0.19)78. Therefore, a 
relatively rough surface is better for stent performance than a smooth one. 

Symmetry of Deployment: Previous studies suggested that the degree of restenosis is related to 
the symmetry of stent expansion and increased neointimal thickening was found in the 
unevenly deployed stents71, 79. In the presence of calcified lesions, the stents usually were 
expanded asymmetrically80, 81. It is believed that the symmetry of stent deployment might be 
influenced by the balloon folding patterns82. Currently, trefoil or tetrafoil folding is 
common, which prevents excessive expansion of one side of the stent83. 

2.2 Drug delivery vehicles – Coating polymer 

Polymers are large molecule compounds consisting of repeating structural units typically 
connected by covalent chemical bonds, which can be broadly classified into 
nonbiodegradable and biodegradable polymers when used as drug carriers in DESs. 

2.2.1 Non biodegradable polymers 

Both the first and the second generation of DESs are using nonbiodegradable polymers to 
control the drug-elution profile. In the first generation of DES, Cypher (sirolimus-eluting 
stent, Cordis, Warren, NJ) used polyethylene-co-vinyl acetate (PEVA)/poly-n-butyl 
methacrylate (PBMA) to delivery sirolimus, while Taxus (paclitaxel-eluting stent, Boston 
Scientific, Natick, MA) used polystyrene-b-isobutylene-b-styrene (SIBS) to delivery 
paclitaxel. Both stents can reduce restenosis significantly compared to BMSs70,84-86, however, 
an increase in the rate of MI and mortality was reported in patients following 18 months to 3 
years after the implantation of Cypher or Taxus87-90. In the second generation of DES, Xience 
V (everolimus-eluting stent, Abott Vascular, CA) employed a fluoropolymer to carry 
everolimus, while Endeavor (zotarolimus-eluting stent, Medtronic Vascular, Santa Rosa, 
CA) employed phosphorylcholine (PC) to carry zotarolimus. Compared with the respective 
BMS, the target vessel revascularization (TVR) was reduced significantly by both Endeavor 
and Xience V stents91,92. Xience V stents reduced angiographic late loss without an increase 
of stent thrombosis compared with Taxus stents in the SPIRIT III study93, whereas Endeavor 
stents showed a higher incidence of restenosis compared with Cypher stents in the 
ENDEAVOR III trial94. However, both Endeavor and Taxus stents had an equivalent target 
lesion revascularization rate in a later trial95. In addition, there were no cases of very late 
stent thrombosis in earlier ENDEAVOR trials over 4 years indicating Endeavor stents are 
safe in the long-term96. 

2.2.2 Biodegradable polymers 

As nonbiodegradable polymers may lead to inflammatory response97, the biodegradable 
polymers applied for stent coatings to delivery drugs are being investigated. The most 
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commonly used polymers now are polylactic acid (PLA), polyglycolic acid (PGA) and their 
copolymer, polylactic-co-glycolic acid (PLGA)98, 99, which are fully metabolized to water and 
carbon dioxide and excreted via the respiratory system. Despite a series of promising 
preliminary data that was reported100-103, the development of biodegradable polymers in 
DES is still challenging. On the one hand, the degradation of polymers are affected by a 
variety of factors104 such as the pH, the polymer’s size, molecular weight and crystallinity, 
etc, making the drug release control difficult. On the other hand, the accumulated acidic 
products from polymer degradation may result in significant inflammatory response of the 
vessel wall and therefore lead to restenosis. 

2.2.3 Other materials and methods 

Other stents that do not use a polymer at all are still under development. For example, a 
titanium–nitric oxide alloy has been applied to stainless steel stents with encouraging results, 
including decreased platelet adhesion and neointimal hyperplasia compared with BMS34. A 
microporous stainless steel stent (Yukon, Translumina, Germany) allows for dose-adjustable, 
multiple drugs, and on-site coating105 [63]. The system is therapeutically effective with 
rapamycin106. A nanoporous hydroxyapetite (a biocompatible crystalline derivative of calcium 
phosphate) coating, which can be impregnated with anti-restenotic drugs, is currently under 
development107. A stainless steel stent coated with nanoporous aluminium oxide and 
tacrolimus showed disappointing results, however, with evidence of particle debris shed from 
the coating contributing to increased neointimal hyperplasia108. An interesting drug delivery 
system developed recently is composed of magnetic nanoparticles (MNPs) loaded with 
endothelial cells and a 304 grade stainless steel109. The endothelial cells were loaded on 
polylactide modified MNPs and then moved by a magnetic field gradient towards the stent 
surface after injection, which enabled artificial endothelialization and repeated dosing, 
showing promising future. However, further evaluation in animal studies and clinical trials is 
required. 

2.3 Therapeutic agents  

2.3.1 Sirolimus and its analogues 

Sirolimus: Sirolimus (rapamycin), a macrocyclic lactone used in the Cypher stents, binds to 
FK-binding protein 12 and subsequently inhibits the mammalian target of rapamycin 
(mTOR). The mTOR prevents the degradation of p27kip1, a cyclin-depengdent kinase 
inhibitor, thereby inhibits the migration and proliferation of SMCs110, 111. However, the 
mTOR is also a downstream target of the phosphatidylinositol-3 kinase pathway, which 
inhibits the tissue factor in endothelial cells and monocytes112-114. Therefore, the inhibition of 
mTOR by sirolimus leads to increasing expression and activity of tissue factor in endothelial 
cells112. 

Zotarolimus: The former name of zotarolimus is ABT-578, which is one of the sirolimus 
analogues developed by Abbott laboratories. The extremely lipophilic property and low 
water solubility115 make zotarolimus a better candidate for DES than sirolimus. It has been 
employed in Medtronic’s Endeavor stents which was approved by FDA in 2008 and showed 
better endothelialization than Cypher at 14 days post implantation116. It is also used in 
Zomaxx stents developed by Abbott laboratories117. 
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Everolimus: Everolimus is another sirolimus analogue, which is also used as an 
immunosuppressive agent 118. As with sirolimus, it inhibits smooth muscle cell proliferation 
and in-stent neointimal growth119, 120. However, compared to sirolimus, everolimus has a 
better pharmacokinetic profile and bioavailability when used in organ transplant121. When it 
is used in intracoronary elution, everolimus absorbs to local tissue more rapidly and has a 
longer celluar residence time and activity122. It has been used in another FDA approved 
stent, Xience V, which also showed better endothelialization than Cypher at 14 days post 
implantation of stents116.  

Biolimus A9: Biolimus A9 has similar immunosuppressive potency to sirolimus, but it is 
absorbed by vessel walls more readily and enters cells more rapidly123, 124. It has been 
investigated in two PLA coated stainless steel stents, Biomatrix (Biosensors International, 
Singapore) and Nobori (Terumo, Japan) 124-126. The biolimus-eluting stent has been proven to 
be safe and effective in reducing neointimal proliferation when compared to BMSs and 
Taxus in the Nobori 1 trial126. 

2.3.2 Paclitaxel and its analogues 

Paclitaxel: Paclitaxel, a lipophilic diterpenoid, binds to β-subunit of the tubulin heterodimer, 
promoting tubulin polymerization and cell cycle arrest, thus inhibiting the migration and 
proliferation of SMCs127, 128. Notwithstanding, an important regulator of endothelial and 
monocytic tissue factor induction113, 114, c-Jun NH2-terminal kinase, is also activated by 
paclitaxel129, 130, and, consequently, enhances the activity of tissue factor in endothelial cells 130. 

Coroxane: To improve the solubility of paclitaxel and reduce non-drug-related toxicties131, a 
protein-engineered nanoparticle albumin bound paclitaxel (nab-paclitaxel) named Coroxane 
was developed by Abraxis Bioscience Inc.. The phase 1 study has been conducted showing 
10-30 mg/m2 doses of the drug are safe for humans132. The phase II study is ongoing. 

Docetaxel: Docetaxel is a semi-synthetic analogue of paclitaxel used for the treatment of 
ovarian, breast and non-small cell lung cancer133. Compared to paclitaxel, docetaxel has 
better anti-proliferative properties134, however, it has dose-dependent cytotoxicity135. 

2.3.3 Others 

Tacrolimus: Tacrolimus (FK-506 or Fujimycin or Prograf), a hydrophobic macrolide 
immunosuppressant drug, is a T cell inhibitor resulting in cell apoptosis by holding cells in 
the G0 phase of the cell cycle and has a different mechanism from that of sirolimus136, 137 . 
Moreover, unlike the mTOR inhibitors and paclitaxel, tacrolimus does not increase 
expression of tissue factor since it has a preferential effect on SMCs as suppressed 
endothelial cells112, 130, 138, 139. Although some studies showed that tacrolimus-eluting stents 
can significantly reduce neointimal proliferation108, 140, a study on Janus, a new design of 
tacrolimus-eluting stent (Sorin Biomedica Cardio, Italy), indicated the performance of Janus 
was no better than a BMS141. Other tacrolimus-eluting stents and their long term outcomes 
are still under investigation142. 

Pimecrolimus: Pimecrolimus (SDZ ASM 981), an analogue of ascomycin, has similar effects and 
mechanism of tacrolimus. It has received substantial interest for its significant anti-
inflammatory activity, immunomodulatory capabilities and low systemic immunosuppressive 
potential143. 
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Curcumin: Curcumin, a component of turmeric, exhibits a variety of biological activities such 
as anti-proliferative activity, anti-inflammatory, anti-oxidant activity, wound healing ability, 
and anti-microbial activity144-146. Thus, curcumin is an excellent candidate in the application 
of coronary stents to inhibit the proliferation of SMCs and prevent inflammatory response, 
and hence prevent the occurrence of restenosis.  

Resveratrol: Resveratrol (3, 5, 4′- trihydroxystilbene), is a phytoalexin found in various plants, 
such as grapes, berries, peanuts and wines, and has many biological activities including 
anti-fungal, anti-bacterial, anti-viral, anti-oxidant, and anti-inflammatory activity147, 148. It is 
most important, however, that resveratrol has the potential to be used as a therapeutic agent 
in DES to inhibit thrombosis and restenosis because of its ability to block the aggregation of 
human platelets and prevent the proliferation of vascular smooth muscle cells149-152. 

CD 34 antibody: Contrary to SMC inhibition, a novel prohealing technology is used in the 
GenousTM stent (Orbus Neich, Fort Lauderdale, Florida), which is a stainless steel stent 
coated with murine monoclonal antihuman CD34 antibodies that attracts endothelial 
progenitor cell to enhance re-endothelialization. The reported results indicate that the 
GenousTM stent is effective and promising153-156. 

Anti-VEGF: Another similar concept is the bevacizumab-eluting stent (Biocompatibles Ltd., 
London, UK)157. Bevacizumab, a specific anibody of vascular endothelial growth factor 
(VEGF), was coated on the surface of BiodivYsio stent to inhibit the development of the vaso 
vasorum and thereby promote atheromatous plaque stability. Further investigation is in 
progress. 

Drug Combinations: Besides developing new individual drugs to inhibit thrombosis and 
restenosis, combining the known effective drugs together on the stents is a novel method. 
For example, pimecrolimus and paclitaxel were loaded together on Symbio stents; heparin 
and sirolimus were coated on Synchronnium stents; genistein were combined with 
sirolimus158.  

3. Current commercially available and investigational DESs 

Currently, four drug-eluting stents have been approved by the FDA for the U.S. market 
including: Sirolimus coated Cypher® stent (Cordis, Inc.), Paclitaxel coated Taxus® stent 
(Boston Scientific, Inc.), Zotarolimus coated Endeavour® stent(Medtronic, Minneapolis, 
MN) and Everolimus coated Xience® Stent (Abbott, Redwood city, California). Cook, MIV 
Therapeutics, Inc. and a few others including MicroMedical Group, Inc. have been working 
hard to enter the stent market as well. The table below provides a summary of currently 
available and investigational DESs and their status.  

Among currently available nonbiodegradable DESs, both Cypher® and Taxus® stents have 
been well- accepted by clinical cardiologists and patients. The incidences of in-stent 
restenosis in both stents are effectively confined to less than 10%. However, the common 
problem faced with both stents is late-stage thrombosis which occurs at approximately 0.4% 
after one year of implantation. Endeavour® and Xience® are relatively new to the market, 
and therefore their long-term clinical safety and efficacy need to be further investigated. 

Cypher® and Taxus® stents, the first generation of DESs, are constructed from 316L 
stainless steel, while recently approved Endeavour® and Xience® stents are made from 
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Cobalt chrome. All four approved DESs are coated with nonbiodegradable polymers. 
Nonbiodegradable polymers were used rather than biodegradable polymers primarily due 
to the bio-incompatibility issues of existing biodegradable polymers. 

FDA CE Mark

Taxus® Paclitaxel Nir® 132 316LSS SIBS BSC Approved

Cypher® Sirolimus BxVelocity 140 316LSS PEVA/PBMA Cordis, J&J Approved

Endeavour® Zotarolimus Driver 91 Cobalt PC Medtronic Approved

Xience ® Everolimus ML-VISION® 81 Cobalt Fluropolymer Abbott Approved

BioMatrix Biolimus A9 S stent N/A 316LSS PLA Biosensor Int yes

Nobori Biolimus A9 Nobori Stent 112 316lss PLA TERUMO yes

Xtent Biolimus A9  NX™ DES PLA Xtent inv.

BioFreedom Biolimus A9 112 316LL Biosensor Int inv.

Janus Tacrolimus 110 316ll Sorin yes

Yukon Sirolimus 87 316ll Yukon yes

Genous Anti-CD 34 antibody 100 316ll OrbusNeich yes

JACTax Stent Paclitaxol JACTax Stent 316L Labcoat inv.

     MIV Siroliumus Miv 87 Cobalt Hap MIV therapeutics

Brand Name

No polymer--microporous

No Polymer

PLA with microdroplet

Platforms

No polymer--Rreservoir

Polymers

Manufacturers Generations Drugs Strut 

thickness 
MaterialsPlatforms Nondegrad.

Current Status 

Biodegrad.

First

Second

PEVA: Poly(ethylene-co-vinyl acetate; PBMA: polybutyl methacrylate; PC: Phosphorylcholine; PLA: Poly(acitic acid); PTFE: Polyetrafluoroethylene; SIBS: styrene-b-isobutylene-b-

styrene; PLGA: Poly(Lactide-co-Glycolide); ACP: amorphous calcium phosphate; N/A : Not available, BVS: bioabsorable everolimus-eluting stent, Inv.: Investigation

New 

Generation 

and Pipeline

Cobalt--adjustable length

No polymer-Texture

 

Table 1. The current commercially available and investigational DESs and their status 

3.1 Cypher® stent 

Cypher® stent has 8-33 mm in length and is offered in 2.5-3.5 mm diameters. Its coating 

matrix is composed of three nonbiodegradable polymers: Parylene C coated primer layer for 

improving adhesion of polymer to the metal surface, followed by a layer of polyethylene-co-

vinyl acetate (PEVA)/poly n-butyl methacrylate (PBMA) copolymer containing the active 

agent of Sirolimus. The top layer is a drug-free coating of PBMA to control drug release and 

to prevent a burst effect. The Cypher® stent releases 50% of its Sirolimus content during the 

first week after implantation and 85% of the drug over 30 days. All of the Sirolimus is eluted 

over 90 days.  

3.2 Taxus® stent 

Taxus® stent comes in lengths of 8-28mm and diameters of 2.5-3.75mm. The stent is coated 
with non-biodegradable poly (styrene-b-isobutylene-b-styrene), known as TransLute 
polymer. The stent provides a burst release of Paclitaxel during the initial 48 hours followed 
by slow release over the next 10 days and no further release after 30 days.  

3.3 Endeavour® DES 

Endeavour® stent is a cobalt chrome stent with strut thickness of 91 µm (originally  
S660 stent). The stent was coated with 4.3 µm of phosphorylcholine polymer and the 
immunosuppressive drug: Zotarolimusan an analog of Sirolimus. 
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3.4 Xience® DES 

Xience® stent is the most recently FDA approved DES. The stent is made by using  
Abbott’s cobalt chrome Multilink® Vision stent as a platform, coated with 7.6um of 
nonbiodegradable fluropolymer and another Sirolimus analogue drug, Everolimus. 

4. Fully Biodegradable Drug Eluting Stent (BDES) 

Despite a tremendous amount of capital invested in developing fully biodegradable stents 
to overcome the drawbacks existing in current nonbiodegradable stents, only five fully 
biodegradable stents have been investigated in humans so far:  

1. The Igaki-Tamai bioabsorbable stent (Igaki Medical Planning Company, Kyoto, Japan) 
2. Biodegradable everolimus eluting XIENCE V stent (BVS, Abbott Vascular, Santa Clara, 

CA, USA).  
3. Tyrosine polycarbonate biodegradable stent (Reva Medical Inc, San Diego, CA) 
4. Salicylate-based polyanhydride ester biodegradable sirolimus-eluting stent (Ideal™ 

Bioabsorbable Therapeutics Inc., CA, USA), and  
5. Biodegradable magnesium alloy stent (Biotronik AG, Berlin, German)  

Table 2 below summarizes the physical, chemical and structural characteristics of these five 
stents (159). 

4.1 The Igaki-Tamai Bioabsorbable Stent  

Igaki-Tamai Bioabsorbable Stent is the first absorbable stent that was implanted in humans. 
It is constructed from poly-L-lactic acid (PLLA). The stent is designed in a zig-zag helical 
coil structure with a 170um strut thickness. The stent is delivered by a balloon-mounted self-
expanding sheathed system with warmed contrast medium. As PLLA is radiolucent, gold 
markers at each end provide radio-opacity for stent identification. The stent does not release 
any antiproliferative drug. In the preliminary, first-in-man prospective, nonrandomized 
clinical trial that enrolled 50 patients, a 4-year follow-up of all the patients (100%) revealed a 
low complication rate with 1 in-hospital stent thrombosis causing a Q-wave MI, 1 non 
cardiac death, and 18% repeat PCI and no surgical revascularization. Although there have 
been no further human coronary implants and the focus is now on a peripheral application, 
this stent is important in the history of PCI with absorbable stents. 

4.2 Biodegradable everolimus-eluting XIENCE V stent  

XIENCE Stent has a backbone of circumferential hoops of crystalline PLA, with a strut 
thickness of 150μm, linked directly together or held by straight bridges achieving a radial 
strength similar to the Multi-link Vision metal stent. At both ends of the stent, two adjacent 
radio-opaque metal markers facilitate correct fluoroscopic positioning. The stent was coated 
with everolimus( 8.2 μg/mm) and amorphous PLA matrix in the ratio of 1:1. Eighty percent 
of the coated drug is released in 30 days, which is similar to the release patterns of the 
Xience V™ and Cypher® DESs. The stent has been evaluated in an observational first-in-
man study of 30 patients with single de novo coronary artery lesions. At the 2-year follow-up, 
the device has been shown to be safe with no cardiac deaths, target lesion 
revascularizations, nor stent thromboses and only one non-Q wave MI. In-stent late loss 
amounted to 0.43 ± 0.44 mm at 6 months and 0.48 ± 0.28 mm at 2 years. Binary restenosis 
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was observed in 7.7% of patients (2/26) at 6 months and in 0% of patients at 2 years (0/19). 
One third of stent struts had resolved after 2 years as assessed by optical coherence 
tomography. Although these data are encouraging, the small number of patients enrolled in 
the trial and the simplicity of the lesions treated means that a great deal of work remains to 
be done before the device can be considered for routine use in clinical practice. The stent is 
currently commercially available in Europe.  

4.3 Tyrosine polycarbonate biodegradable REVA stent  

The REVA stent is made from monomeric units of the common amino acid L-tyrosine, 
chemically modified to incorporate iodine molecules so as to make this stent radiopaque. 
This polymer degrades to carbon dioxide and water in a similar fashion to PLA. The stent 
struts were designed with a “slide and lock’” feature that enables strut thickness to be 
reduced without compromising radial integrity. The RESORB first-in-man trial showed 
unfavorable outcomes between 4 and 6 months post-implantation with a higher-than-
anticipated target lesion revascularization rate driven mainly by reduced stent diameter  

4.4 Polyanhydride ester (PAE) polymeric stent 

The PAE stent is made by incorporating salicylic acid into the backbone of a PAE polymer. 
The stent surface is coated with Sirolimus with complete elution of the drug by 30 days. The 
stent offers the advantages of being absorbable and providing anti-inflammatory and 
antiproliferative properties. In the first-in-man Whisper trial, a stent with strut thickness of 
200um and a crossing profile of 2.0 mm with a stent-to-artery coverage of 65% was 
implanted in 8 patients. Because of the higher-than-expected intimal hyperplasia in this FIM 
study, a subsequent design with thinner struts, a higher dose of Sirolimus, and a lower 
percent wall coverage is currently under investigation. 

4.5 Absorbable magnesium stent  

The AMS stent is composed of 93% magnesium and 7% rare-earth metals. It degrades within 
the body over a 2-to-3-month time frame, forming inorganic salts containing calcium, 
chloride, oxide, sulfates and phosphates. The AMS stent has been evaluated in an 
observational study (PROGRESS) of 71 patients with an angiographic and IVUS assessment 
at 4 months and clinical follow-up at 1 year. The relatively high in-stent late loss of 1.08 ± 
0.49 mm at 4 months translated into a TLR rate of 48.4% at 1 year. The main contributors to 
restenosis, as detected by IVUS at 4 months, were a decrease of external elastic membrane 
volume and neointimal hyperplasia, but only small remnants of the stent material were 
observed at 4 months. 

5. Future Development of DES 

Ideal DES, from a clinical aspect, should possess the following characteristics: a remarkable 
ease of use, unparalleled efficacy, impeccable safety, and restoration of conduit vessel 
physiology. However, from an engineering point of view, it is impossible to incorporate all 
parameters to make an “apple-pie” DES. Therefore the next generation of DES will be 
continuously developed by optimizing these three components through a variety ways 
including the new material selection, new platform design, and new drug incorporation, etc.  
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The challenges faced by emerging technologies are to reduce restenosis in high-risk lesions, 
without compromising healing, in order to avoid late thrombotic complications and to 
improve system deliverability to allow treatment of more complex patients. Currently, a 
number of strategies are being utilized to achieve these goals through the development of 
novel stent platforms, coating with biodegradable polymers or moving away from 
polymers, and with new generations and/or combinations of biological agents that both 
inhibit proliferation and promote endothelialization. With the recent positive data from 
Abbott’s ABSORB trial, clinical consensus is building that fully bioabsorbable stents (BDS) 
represent the next generation in DES. Table 3 summarizes the potential benefits for the 
biodegradable DES. 

 

Faciltates noninvasive diagnosis imaging(MR/CT)

Surgical option not restricted

Easier repeat revascularization

May limit late-stent thrombosis

Allows late favorable positive remodeling

May reduce long-term dual antiplatelet therapy

Has Larger drug-loading capacity

Addresses patient's concerns about permanent implants

 

Table 3. Potential Benefits of Biodegradable Stent. 
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