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1. Introduction 

All organisms in their complexities of shapes, structures and functions use the same 

building blocks, elements, assembled and cemented together by energy. But only a subset of 

the elements available on Earth is used by the organisms in their biomass (Figure 1). 

Furthermore, the elements most commonly used by living beings (e.g., H, C, N, O, P, S, Na, 

K, Ca, Fe) are essential components of all organisms biomass. This reveals on one hand the 

common origin of all species and on the other hand the very specific requirements of the 

various life processes, to which only a subset of the elements are adapted (see Fraústo da 

Silva & Williams 2001 for a thorough discussion of the adequacy of elements to their 

biological functions). 

 

Fig. 1. The distribution of elements essential for life in the periodic table (from Fraústo da 
Silva & Williams 2001). 

Organisms need to get their elements from the environment. To do so, they engage in a 
variety of interactions with their physical environment and with the other species 
surrounding them. This fundamental need for elements and energy is thus the fulcrum of 
many ecological interactions. Furthermore, the sum of all element and energy consumption 
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rates in an ecosystem represents a major driver of the biogeochemical cycles of elements. On 
geological timescales, organism-driven cycling of elements has effected great changes at a 
biosphere level, which fed back on life itself (Lovelock & Margulis 1974; Mcelroy 1983). 

One would thus expect that the elemental nutrition of organisms would have been an early 
concern of ecologists and biogeochemists. Oddly enough, this was not the case, despite the 
fact that, very early on, Alfred James Lotka, a founding figure of ecology, called the 
attention of ecologists towards the crucial role of elements in shaping what he called the 
“drama of life”, i.e., the sum of all ecological interactions (Lotka 1925). His call has been 
mostly ignored during the following six decades. Instead, ecologists focused almost 
exclusively on energy fluxes between organisms. Apart from some specialized fields of 
ecology, and until recently, most ecological approaches ignored the potential role of 
elements in shaping ecological interactions, emphasizing instead the importance of energy 
acquisition. The reasons are many, some conceptual, others practical. Energy in ecosystems 
is generally fixed from light in newly-formed organic matter by photosynthetic plants 
(hence the term primary producers used to describe photosynthetic organisms). It is then 
transmitted to those organisms that consume plant production, herbivores and 
decomposers. Energy then moves up the food web, thanks to predators eating other 
consumers. Once organic matter is consumed, the energy is either used for growth, excreted 
in molecules that cannot be used by plants, or dissipated as heat. Hence, there is no 
recycling of energy back to plants. The fate of all energy entering ecosystems through plants 
is either to be rapidly degraded into heat or buried into organic matter recalcitrant to 
decomposition. Energy flow within ecosystems is thus relatively simple. Consequently, its 
study led to straightforward, successful theories and concepts, such as Eltonian pyramids 
(Elton 1927), ecological efficiencies and food webs (Lindeman 1942). 

On the other hand, the nutrients flow in ecosystems is a cycle. For a given element, 
autotrophic organisms are those that incorporate in their biomass the element in its mineral 
form from the environment. Generally, they are also primary producers, but many 
heterotrophic microorganisms show this ability, too. Mineral elements in ecosystems come 
partly from external outputs, but the bulk comes from the decomposition of carcasses and 
wastes from the organisms themselves. On very long timescales, because the Earth is 
virtually a closed system, most available elements should cycle at least once through living 
organisms, short of those spurted from the depths of the planet by volcanoes. This cycling 
adds a level of complexity that can hardly translate into simple, general laws, as is the case 
for energy (Loreau 2010). Faced with this complexity, few theoreticians attempted to look 
for generalities about the flows of matter in food webs and ecosystems, despite Lotka’s 
(1925) longstanding call (DeAngelis 1992). 

Admittedly, there have been some fields in which approaches based on elemental 
composition were applied. Moreover, there have been some sporadic attempts at taking into 
account the repercussions of the organisms elemental composition on their interactions or 
on the availability of nutrients in ecosystems. The next section is dedicated to a presentation 
of these fields that considered the role of elements in biology, but did not serve in their time 
as stepping stones towards a comprehensive theory of the role of elements in biological 
interactions. The field of ecology had to wait until the early nineties for such a theory, called 
“Ecological Stoichiometry”, to emerge. It is a recent, exciting theory, presented in the third 
section, which tackles the role of elements in ecological interactions with a novel and 
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promising approach. It views organisms as a single molecule, made of a combination of the 
various essential elements (C, N, P, Fe…). Accordingly, it treats ecological interactions as 
chemical reactions, during which elements are exchanged between a consumer, its resource 
and the environment. It generally assumes that the organisms stoichiometry is constant, i.e., 
that their elemental composition is homeostatic. But this assumption is not essential to the 
theory. More essential is the mass conservation principle, which constrains the ecologists to 
track the fate of all the important elements exchanged in an ecological interaction. 

This theory has led to major advances in our understanding of ecological interactions across 

biological scales. Among them, there are: the realization that the growth of higher, complex 

organisms can be limited by the availability of one specific element in their food (Urabe & 

Watanabe 1992); the uncovering of indirect effects from plants on their supply of mineral 

nutrients through herbivores, because of mismatches between their elemental compositions 

(Sterner 1990); the exposure of a causal relationship between the elemental compositions of 

organisms and their growth rates (Elser et al. 2003a). Surprising insights from the theory also 

extend to other fields of biology, such as reproductive biology (Bertram et al. 2006), human 

cancer (Elser et al. 2007), evolution (Souza et al. 2008) and genomics (Acquisti et al. 2009). The 

earliest contributions of ecological stoichiometry to biology are covered in the 4th section. 

The latest contributions are covered in the 5th section. These advances led to the coinage of a 

new term, “Biological Stoichiometry”. This term is meant to emphasize the potential of the 

theory to link processes across all the scales of biology, from molecules to the biosphere. The 

last section of this chapter will briefly evaluate how far the theory has gone in this unifying 

endeavour and what are the challenges ahead of biological stoichiometry, before it can claim 

to realistically portray some of the important interrelations between molecular and 

ecosystemic processes. 

2. The long road to ecological stoichiometry  

Justus von Liebig was probably the first influential scientist to apply chemistry to study 
plant and animal physiologies in a systematic way. It is probably his vision, that there was 
no distinction between chemical reactions within and outside organisms, that led him to 
investigate the elemental compositions of organisms and the effects of this composition on 
biotic processes such as plant growth and decomposition (Playfair & Liebig 1843). 

He came to realize that plant nutrition could be entirely satisfied by inorganic compounds, 
as long as they contained all the elements that made up plant biomass. Liebig’s law of the 
minimum (Figure 2) emerged from this work and has become a central law of ecology. This 
law was the first example of an application of the principle of conservation of matter to the 
biological realm, albeit restricted to plants. For society at large, Liebig’s work led to the 
invention and large-scale application of inorganic fertilizers, in other words, what was later 
known as the “Green Revolution”. 

Liebig’s work on plant mineral nutrition started a long tradition of research on plant 
growth limitation by elements. It also oriented researchers towards the pursuit of the 
original source of mineral nutrients in soils. Quickly, it was understood that microbes 
(bacteria and fungi) were the main providers of mineral nutrients to plants through their 
decomposition of organic matter in soils. This organic matter itself originates from dead 
parts of plants (shed leaves, fallen twigs and trunks, dead roots…) or from animal waste. 
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To a lesser degree, Liebig’s work also attracted attention to the role of animals as 
resuppliers of elements to plants. Overall, it helped entrench a prevalent view of 
ecosystems where plants are at the centre, bringing inorganic nutrients into the world of 
organic matter, and consumers are dissipators of energy and resuppliers of inorganic 
nutrients to plants, with decomposers taking the largest stack. The abiotic components of 
ecosystems considered are mainly those that affect mineral uptake by plants and the 
decomposition of organic matter into minerals (e.g., atmospheric deposition of minerals, 
leaching, temperature, light conditions…). This model came to reinforce the energy-based 
food chain model formalized by Lindeman (1942). The effect of elements on the growth 
and reproduction of animals and microbes was seldom considered, although Liebig 
himself invoked the possibility that the availability of elements in an animal’s diet could 
limit its growth (Playfair & Liebig 1843). Elements were not yet seen as a factor able to 
affect the food webs structure and dynamics. 

 

Fig. 2. Liebig’s Law of the Minimum and the barrel analogy. 

Later developments, however, made it harder to ignore the importance of the elemental 

needs of some consumers, both for their growth and for their recycling of nutrients. For 

example, it was known since a long time that microbial decomposers could, in some 

circumstances, take up inorganic elements instead of mineralize them (Waksman 1917). This 

uptake of mineral nutrients by heterotrophic microbes was called immobilization. It was 

quickly understood that the main controlling factor for microbial decomposition or 

immobilization of nutrients was the mineral content of the microbial biomass in relation to 

the content of organic matter (Figure 3). 

The ecological consequences of the microbial decomposers making up shortages of 
essential elements in their resource by tapping into the stocks of inorganic nutrients were 
worked out later on (Bratbak & Thingstad 1985; Harte & Kinzig 1993; Daufresne & Loreau 
2001a; Cherif & Loreau 2007). Nutrient-limited primary producers tend to generate 
carbon-rich organic matter, promoting microbial immobilization. This leads to a paradox, 
with nutrient-limited plants driving themselves towards stronger nutrient limitation by 
promoting immobilization. How, then, do limiting nutrients cycle back to plants and 
support continuous primary productivity if they are locked into the biomass of microbial 
decomposers? The solution to this paradox was found when food web studies in both 
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aquatic and terrestrial ecosystems established that most bacterial production is generally 
consumed by heterotrophic predators also called microbivores (mainly protists, such as 
amoebae, ciliates and flagellates and, in soils, nematodes). The elements locked in the 
biomass of the ingested microbial decomposers are then mineralized as catabolic by-
products, or because microbivores themselves fall prey to other predators higher up the 
food web, closing what was called the “microbial loop” (Caron 1994; Clarholm 1994; 
figure 4). 

 

Fig. 3. Mineralization (A) and immobilization (B) of mineral nitrogen by a microbial 

decomposer, depending on whether organic matter is too rich or too poor in nitrogen, 

respectively, in comparison to the decomposer nitrogen requirement. 

Following the breakthrough of the microbial loop concept, a change in the paradigm of 

decomposition occurred. Now, the whole detrital food web, not only microbial 

decomposers, was seen as contributing to the mineralization of the elements essential to 

plant growth. In this new model, the elemental composition of microbial decomposers plays 

a central role. On one hand, it determines the extent of immobilization occurring. On the 

other hand, it also affects the excretion of elements by microbivores, since elements in excess 

of microbivores needs are excreted (Nakano 1994). Unfortunately, this increasing awareness 

of the roles of the elemental compositions of microbes, organic matter and microbivores 

within the communities of researchers interested in soils, did not spread to other fields of 

ecology, at least until the emergence of the ecological stoichiometry theory. 
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Fig. 4. The microbial loop in soils. Microbial decomposers (fungi and bacteria) immobilize 
the inorganic elements (here N). They are consumed by microbivores (here nematodes) who 
release the immobilized N as a by-product of catabolism and are consumed by other 
consumers (here mites). 

The closest to an early stoichiometric thinking, anterior to the ecological stoichiometry 

theory, appeared in oceanography, a discipline interested into patterns at a larger spatial 

scale than most other disciplines, but which turned its attention towards the phytoplankton, 

among the smallest organisms on the planet. Biomass elemental composition was part of 

oceanographic thinking since at least the 40s, thanks to the work of Alfred Clarence Redfield 

(1934). Redfield compared the contents of carbon, nitrogen and phosphorus in the 

phytoplankton of open ocean areas to dissolved nutrient concentrations in surface water 

and regenerated in the deep ocean (Table 1). The similarity between these ratios led him to 

state that the plankton chemical composition determined, on geological time, the chemical 

composition of the ocean (Redfield 1958). 

 

Table 1. Atomic ratios of elements in components of the oceanic biochemical cycle (Adapted 
from Redfield 1958) 
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Furthermore, Redfield proposed that the phytoplankton balanced its consumption of 
nitrogen relative to phosphorus by fixing the atmospheric nitrogen when P was in excess, so 
that their ratio became equal to that of their chemical composition (the now famous N:P 
Redfield ratio equal to 16). This is equivalent to assuming that it was the phosphorus that, 
on geological timescales, limited the growth of phytoplankton, while nitrogen was simply 
adjusted by the biological activity of the nitrogen-fixing phytoplankton (Redfield 1958). 

This stoichiometric model of the oceanic biogeochemical cycle has prompted work on the 
elemental stoichiometry of recycling in oceans (e.g., Berner). Moreover, it encouraged much 
speculation on the genesis and maintenance of the ocean and the atmosphere chemical 
properties (Walker 1974; Griffith et al. 1977; Lovelock & Watson 1982). Curiously, this did 
not lead to any serious attempt to generalize these results to other ecosystems, other 
elements beyond nitrogen, phosphorus and carbon, or the roles of other trophic levels 
beyond the phytoplankton. 

On the other hand, the assertion that phosphorus should be the element limiting the growth 
of phytoplankton contradicted accumulated empirical evidence showing that the oceanic 
phytoplankton was primarily limited by nitrogen (Smith 1984). This contradiction spurred 
several decades of studies on the growth and chemical composition of phytoplankton grown 
in the presence of several potentially limiting factors, especially nitrogen and phosphorus 
(Droop 1974; Rhee 1978; Goldman et al. 1979; Tett et al. 1985). These experiments showed 
that both the chemical composition and type of growth-limiting element vary among 
phytoplankton species. Although constant at the scale of ocean basins, the Redfield ratio is 
thus probably the result of several processes rather than a fixed property of the 
phytoplankton (Falkowski 2000; Geider & La Roche 2002; Klausmeier et al. 2004). 

The accumulation of knowledge on the diversity of elemental requirements, limitations and 

chemical compositions among phytoplankton species led to believe that it was possible to 

explain the "paradox of the plankton" proposed by George Evelyn Hutchinson (1961). 

Hutchinson wondered how the phytoplankton could harbour so many species (in the order 

of several tens) in the relatively homogeneous environment of surface waters, despite the 

low number of resources shared by these species. This seemed to contradict the principle of 

competitive exclusion, which predicts that there cannot be more species than limiting 

resources at equilibrium (Hardin 1960). 

Based on earlier work (Macarthur & Levins 1964; Rapport 1971; Leon & Tumpson 1975), 

David Tilman developed a theory that could predict the outcome of resource competition 

between several species of phytoplankton according to their elemental requirements, their 

chemical compositions and external supplies of elements in the ecosystem (Tilman 1980). 

Later, expanding his theory to integrate spatiotemporal fluctuations in external supplies, 

he demonstrated that these variations allowed the coexistence of more species than 

resources (Tilman et al. 1982). He thus provided what he considered as a definitive 

response to Hutchinson’s “paradox of the plankton”. Furthermore, seeking to explain 

possible sources of variation in the supplies of elements, he advanced the hypothesis that 

"If some nutrients (e.g., phosphorus) are regenerated more rapidly than others, 

zooplankton may significantly affect phytoplankton community structure by changing 

nutrient supply rates and ratios" (Tilman et al. 1982). Only a few steps remained until the 

ecological stoichiometry theory. 
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3. Ecological stoichiometry: An attempt at a systematic approach 

In 1988, Elser and colleagues observed a correlation between the type of element limiting the 

growth of the phytoplankton and the species composition of the zooplankton community of 

experimental lakes in Michigan (Elser et al. 1988). When the zooplankton community was 

dominated by copepods, the phytoplankton was limited by nitrogen, whereas it was limited 

by phosphorus when dominated by cladocerans such as Daphnia. They already knew that 

the zooplankton recycled nitrogen and phosphorus with different efficiencies (Lehman 

1984). They could not explain, though, the different effects of copepods and cladocerans, 

especially since many differences between the two types of zooplankton could intervene: 

copepods are mainly small and select the species they consume, while cladocerans are 

generally larger (up to several millimetres) and consume very effectively all the species 

captured in their filters. An explanation was soon offered by R. W. Sterner (1990) when he 

showed theoretically that zooplankton species with different chemical compositions should 

recycle elements with different efficiencies, provided that their chemical composition is kept 

constant over time. Andersen and Hessen (1991) then found that copepods and cladocerans 

were widely dissimilar in their chemical composition; copepods are rich in nitrogen while 

Daphnia are richer in phosphorus. Moreover, they found little variation in their 

compositions over time, despite variations in the composition of their resources. 

All these related observations and hypotheses merged together to give the first fully-
stoichiometric description of a trophic interaction: " Herbivore species with a high ratio of 
N:P in their tissues should resupply nutrients at a relatively low N:P ratio compared to 
herbivore species with low body N:P" (Sterner et al. 1992). The increased availability of the 
element in excess of the herbivores needs should drive the phytoplankton to a limitation by 
the same factor that limits the growth of herbivores (N for herbivores with a high ratio of N: 
P and P for those with a low N: P) (Figure 5). 

Surprisingly, the main criticisms of this hypothesis concerned a point that is not essential to 
the mechanism that underlies it, but derives from subsequent works (Hessen 1992; Urabe & 
Watanabe 1992). The possibility of a direct limitation of the growth of the zooplankton by 
mineral elements, either N or P, raised many objections from researchers thinking that 
resource limitation of growth was possible only by biochemical substances such as amino 
acids or fatty acids (Brett 1993, Müller-Navarra 1995). Links between growth rate and diet 
elemental content were seen as simple correlations. Much research was then devoted to 
prove or disprove the negative effects of nitrogen and phosphorus-deficient phytoplankton 
on the growth of the zooplankton (Sterner et al. 1993; Anderson & Hessen 1995; Urabe et al. 
1997; Urabe & Sterner 2001). 

Regeneration of nitrogen and phosphorus by the zooplankton with a ratio reflecting the 

difference between its chemical composition and that of its resources is a part of the 

hypothesis that was largely confirmed afterwards (Sterner & Smith 1993; Urabe 1993; 

Balseiro et al. 1997; Elser & Urabe 1999). On the other hand, the alteration of phytoplankton 

limitation that is supposed to result from this differential recycling of elements by 

zooplankton was, if not less studied, rarely highlighted. Some studies showed indeed a 

strong effect of herbivore chemical composition and recycling on the phytoplankton growth 

limitation (Carpenter et al. 1993; Rothhaupt 1997; MacKay & Elser 1998). Other results did 

not concur with the predictions from the stoichiometric hypothesis (Moegenburg & Vanni 
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1991; Urabe 1993). Daufresne and Loreau (2001b) provided an elegant explanation of these 

discrepancies by showing theoretically that the effect of herbivores on the plants limitation 

depends not only on their chemical composition, but also on the physiological response of 

plants to herbivory. Indeed, the decrease in plant biomass caused by herbivory results in 

increased elemental requirements of plants to compensate for the loss. These additional 

requirements can vary between elements and between phytoplankton species. The nature of 

the limiting element promoted by herbivores is determined by the result of these 

physiological adjustments and the differential recycling of elements by herbivores. 

 

Fig. 5. The stoichiometric hypothesis of consumer-driven elemental limitation of 
phytoplankton. P-rich Daphnia (upper panel) ingest N in excess from the phytoplankton. 
Getting rid of this excess, they enrich the environment in N and thus drive the 
phytoplankton towards P limitation. N-rich copepods (lower panel) drive the 
phytoplankton towards N limitation by a similar mechanism.  

Efforts were also undertaken to broaden the stoichiometric approach beyond the sphere of 
pelagic freshwater organisms and towards other ecosystems. Several studies have therefore 
turned to other habitats: marine (Elser & Hassett 1994), arctic (Dobberfuhl & Elser 2000), 
terrestrial (Elser et al. 2000), benthic (Frost et al. 2002), arid (Schade et al. 2003) and even fossil 
ecosystems (Elser et al. 2006). Other organisms and trophic levels were also investigated: 
bacteria (Chrzanowski & Kyle 1996; Makino et al. 2003), protists (Grover & Chrzanowski 
2006), vertebrates (Vanni et al. 2002), and insects (Woods et al. 2002; Markow et al. 2006). 

Most of the advances in ecological stoichiometry, from its birth to the early years of this 
century are well summarized in the book "Ecological stoichiometry: The biology of elements 
from molecules to the biosphere" published in 2002 by Sterner and Elser. It is worth noting 
though, that no comprehensive review of the topic has appeared since then. 
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4. Understanding stoichiometry: The biological bases of the economy of 
elements in organisms 

Different organisms vary widely in their elemental composition. This variation is what 

makes the study of stoichiometry relevant for developing a better understanding of 

ecological interactions. On a different level, these elemental differences also lead to 

questions about the underlying biological causes for these differences. Sterner and Elser’s 

synthetic book (2002) represents the first attempt at an in-depth investigation of the origins 

of the differences among the elemental stoichiometries of organisms. 

A first obvious source of stoichiometric diversity is the various extents to which organisms 

invest in structural materials that often present distinct stoichiometric signatures. Well-

known examples are the investment of molluscs in calcium carbonate shells, which should 

increase their calcium content, the hydroxyapatite-based bones of vertebrates, the siliceous 

frustules of diatoms and the carbon-rich, nitrogen-poor woody stems of many terrestrial 

plants. A precursor to the ecological stoichiometry theory, William A. Reiners (1986) 

assumed a fixed composition for the protoplasm of all organisms (the cellular components, 

without any structural material) and assigned all variations in elemental composition to 

variations in the proportions of different structural material. Since then, it became obvious that 

protoplasms can differ in their elemental compositions, such that even relatively taxonomically 

close species can show different stoichiometries (Andersen & Hessen 1991). The basic building 

blocks of organic matter (amino-acids, lipids, carbohydrates, nucleotides…) and the polymers 

assembled from them (proteins, nucleotides…) show obvious stoichiometric differences 

(Figure 6). 

 

Fig. 6. Nitrogen and phosphorus composition of important biomolecules. Percentage 

nitrogen and percentage phosphorus are given in terms of weight. Dotted lines depict 

standard values of atomic (molar) N:P ratios, the most commonly used units reported in 

ecological stoichiometry studies (reproduced from Elser et al. 1996) 

Among these biomolecules, proteins and nucleic acids stand out, being very abundant and 

having contrasting elemental compositions. Proteins are rich in N and nucleic acids are rich 

in P. It was postulated and then shown that otherwise close organisms that differ in their 
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proportions of proteins and nucleic acids also differ in their N:P ratios (Sterner & Elser 

2002). The next step was to look at the distribution of these molecules within cell 

components and organelles. Through cell fractionation techniques and calculations, it 

quickly became clear that ribosomal RNA (rRNA) generally represent the major stock of 

nucleic acids and P within cells (Elser et al. 1996). Proteins and associated N atoms are more 

evenly distributed within cells, although mitochondria emerge as a particularly N-rich 

organelles (Sterner & Elser 2002). These observations led to one of the first and major 

unexpected predictions to stem from the ecological stoichiometry theory, namely the 

“growth rate hypothesis”. This hypothesis is simply a causal link made between the 

observation that rRNA generally represent the major stock of P in cells and organisms on 

one side, and the observation that the need for ribosomes increases with growth rate on the 

other side (Elser et al. 1996). From there came the hypothesis that there should be a direct 

relation between the growth rate of organisms and their P content. Since proteins and 

nucleic acids have similar N contents, replacing one with another should not alter the N 

content. So, there should be also a direct relation between growth rate and the N:P ratio. The 

hypothesis was put to test, using data collections and experiments. Many studies showed 

results that are congruent with the growth rate hypothesis in various taxa (Elser et al. 2003a; 

Karpinets et al. 2006). However, it was found to be of limited validity across other taxa, 

because of species-specific differences in the percentage of P linked to RNA (Matzek & 

Vitousek 2009). Moreover, maintenance costs for high P levels in biomass can also impair 

the relation between P content and growth rate (Urabe & Shimizu 2008). Finally, P content 

was often decoupled from growth rate when organisms were grown under a limiting factor 

other than P, probably because they can store P that is in excess of their needs (Elser et al. 

2003a; Matzek & Vitousek 2009). 

Curiously, although there is a strong association between mitochondria and cell N content, 

there was no hypothesis set forth to predict potential relations between cell N content and 

physiological correlates of mitochondrial cellular density. More generally, the role of N 

content has been understudied in biological stoichiometry, probably reflecting the fact that: 

i) N content is less variable than P content ii) P-rich Daphnia are model organisms in many 

fields of ecology and genetics and iii) P is thought to be the predominant limiting factor in 

freshwater ecosystems and the main agent of anthropogenic eutrophication. 

In summary, there are three main factors that determine the elemental composition of 
organisms: i) the relative amounts of important biomolecules in cells, such as proteins and 
RNA; ii) the type and amount of structural material in the organism; and iii) the reserves of 
elements that are supplied in excess of the organismal requirement. Each of these three 
factors is related to ecologically relevant life history traits, thus building a bridge between 
the stoichiometry and the ecology of organisms. For example, P content in P limited 
organisms, is related to RNA content which itself is a function of growth rate (the Growth 
Rate Hypothesis). Organisms with more structural material, tending to be larger than 
related species with fewer structures, show lower specific metabolic rates (Brown et al. 2004). 
Species storing non-limiting resources fare better than similar organisms without storage 
when the resource becomes limiting, but at the expenses of a higher maximum growth rate 
(Sommer 1985). Hence, progress in understanding the underlying biological determinants of 
the organisms stoichiometry is relevant, not only because it advances our knowledge of the 
physiology of organisms, but also because it sheds light on the ecology of organisms as 
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affected by their stoichiometry. The previous section described how Ecological 
Stoichiometry opened up the way to link the organisms stoichiometry to the biogeochemical 
cycles within ecosystems. This section shows how Biological Stoichiometry represents a link 
from molecules to the ecology of organisms. Since Biological Stoichiometry encompasses 
Ecological Stoichiometry, then it is a theory that has the potential to link molecules to 
ecosystems, as claimed by its main proponents in their reference work (Sterner & Elser 
2002). Nevertheless, the theory just set the tools (the elemental composition regulation in 
organisms) and the method (balancing the multi-elemental exchanges between organisms) 
to reach such integration across the levels of biology, without offering a-priori predictions 
about how processes at different biological levels articulate. These predictions need to be 
worked out by mixing stoichiometric reasoning with observations. Such was the case for the 
Growth Rate Hypothesis, which stemmed from the observations that a majority of P in cells 
is associated with rRNA, itself associated with growth rate, and concluded that fast-growing 
organisms should be P-rich and thus more sensitive to P deficiencies in their food. The next 
section is meant to present some of the most recent advances towards this integrative goal. 

5. Recent advances in biological stoichiometry 

Following Sterner and Elser’s 2002 book, researchers in the field of biological stoichiometry 

pursued two main directions. On one hand, there was an urge to have a more accurate 

knowledge of the mechanisms by which organisms regulate their elemental composition, in 

order to more realistically link their stoichiometric properties to their impacts on the cycles 

of elements. On the other hand, other researchers carried on with the process of extending 

the use of the stoichiometric approach to other fields in biology, always with the objective of 

integrating seemingly separate fields. 

Consumers that strive to keep their elemental composition constant, in the face of 

stoichiometrically imbalanced resources, need to alter their gross growth efficiencies for 

elements in a controlled way (Figure 7). These gross growth efficiencies, in turn, determine 

the differential recycling of elements by consumers (Sterner 1990). 

How consumers regulate their gross growth efficiencies was, and still is, largely unknown. 

In the absence of empirical data, in early stoichiometric models, the gross growth efficiency 

of the element limiting the consumer growth was set to a maximum value, ensuring 

maximal growth, while the gross growth efficiencies of the other elements were adjusted to 

yield a constant stoichiometry for the consumer (Figure 7). But theoretically, there is an 

infinite number of possible alternative strategies (Andersen 1997). Recent experiments also 

show that net assimilation of the limiting element is not necessarily at its maximal efficiency 

(DeMott et al. 1998) and that non-limiting elements too have impacts on growth (Boersma & 

Elser 2006; Zehnder & Hunter 2009). Moreover, it was shown that the quantity of resources, 

besides their stoichiometric compositions, affects the gross growth efficiencies of elements 

(Anderson & Hessen 2005). Furthermore, models that included a description of the 

distribution of elements among the various biomolecules in cells have shown that it is not 

even always possible to set one element as the growth- limiting factor (Anderson et al. 2004). 

It thus became clear that more physiologically grounded models of the use of elements by 

organisms were needed. Anderson et al’s now classical model (2005) strikes a good balance 

between physiological realism and simplicity, including processes such as biomass 
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turnover, assimilation costs, maintenance costs, and respiration. These endeavours to 

understand the regulation of organismal stoichiometry by including the metabolism of 

biomolecules lead to connections between biological stoichiometry and nutritional sciences 

(Raubenheimer et al. 2009). 

 

Fig. 7. Relation between the gross growth efficiencies of two unspecified elements (X and Y) 
as imposed by the constraint of a homeostatic regulation of the stoichiometry of a consumer. 
A) Mass balance equations for consumption. B) Definition of the gross growth efficiency. C) 
Stoichiometric constraint imposed on the GGEs for X and Y, as a consequence of the constancy 
of the X:Y ratio of consumers. D) A simple model that assumes a maximal GGE for the limiting 
element leads to the GGE of the non-limiting element to be a function of the maximal GGE, 
and the X:Y ratios of the consumer and its resource (adapted from Sterner 1990). 

Physiological adaptation is the short-term response of consumers to imbalanced resources. 

Analyses at the levels of genomes and transcriptomes, showed that transcriptional changes 

are among the mechanisms used by consumers to achieve stoichiometric homeostasis. For 

example, transcriptional changes in the expression of phosphate transporters, activation of 

alternative metabolic pathways, changes in allocations to roots (for plants), are triggered 

under P deficiency (Jeyasingh & Weider 2007). Recent studies uncovered long-term 

evolutionary responses to element deprivations: N-deprived organisms react by substituting 

N-rich amino-acids by amino-acids with N-poor residues in their expressed proteins or by 

expressing shorter mRNAs (Grzymski & Dussaq 2011). They also show RNAs with more N-

poor nucleotides (Elser et al. 2011). As for DNA, since GC and AT pairs have almost the 

same N content, N limitation seems to have less effect. These advances on the links between 

elemental limitation and cell polymer composition lead to the coining of a new term: 

“stoichiogenomics” (Elser et al. 2011). 
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Away from these ventures into the heart of the cellular machinery, other researchers looked 

for new insights from applying stoichiometric approaches to yet untouched fields. For 

example, models and experiments had shown that primary producers with a very low 

nutrient content could drive grazers to extinction and prevent their invasion of a habitat 

where they are absent (Andersen et al. 2004). This barrier to herbivore establishment led to 

speculations that the lack of grazers before the early Cambrian explosion and their 

“sudden” appearance afterwards could be linked to a change in the P supply at the scale of 

the globe (Elser et al. 2006). The same authors tested the hypothesis using modern 

stromatolites, which are very similar to the fossilized Cambrian stromatolites. 

Another unexpected fallout from the application of the stoichiometric approach is the 

uncovering of stoichiometry-related effects on the relation between sexes and on the process 

of sexual selection. Sexes often differ in their investment in sex-related characters and 

organs. This difference is likely to be reflected in their elemental needs and use of their 

resources (Morehouse et al. 2010). A well-studied example is the positive correlation found 

between the phosphorus body content in male crickets and their song performance. Another 

area in which the stoichiometric approach proved fruitful hits closer to our everyday 

concerns: our health. An ingenious application of the growth rate hypothesis to cancer, gave 

rise to the hypothesis that fast-growing cancerous tumours should be richer in P. Thus, they 

should enter into competition with their neighbouring healthy cells for P and possibly see 

their growth be P-limited (Elser et al. 2007). This hypothesis brought forth by ecologists, that 

sees tumours as an ecosystem in itself, attracted favourable attention from the medical 

world (Baudouin-Cornu 2008; Pienta et al. 2008) and has potential medical applications 

((Elser et al. 2003b). Because pathogens share the same requirements for elements as their 

hosts, they too can be affected by shortages in some key elements, such as iron (Smith 2007). 

Competition between host cells and pathogens for elements as well as external supplies of 

elements become an important parameter of the outcome of infections (Hall et al. 2009). 

Hence, the stoichiometry of diseases opens the door for more rational medical treatments 

through nutrition (Cotter et al. 2011). 

6. Future needs and challenges ahead 

Biological stoichiometry proved to be astonishingly successful in bringing new insights in 

seemingly disconnected fields of biology, such as molecular evolution, palaeontology and 

parasitology. But these advances have not yet allowed us to draw a complete picture of the 

elements role in structuring biological entities from molecules to ecosystems. Huge gaps 

remain between levels: for example, the stoichiometric theory currently attributes a unique 

elemental composition to all individuals within one population. But it is known that 

stoichiometry varies with ontogeny (E.g., Main et al. 1997). Hence, the stoichiometry of a 

population probably differs from the stoichiometry of its individual components and might 

vary through time, a fact rarely considered (Nakazawa 2011). 

Life is complex: different organisms might show different strategies to regulate their 
elemental composition (Mitra & Flynn 2005, 2007); food webs are diverse, both horizontally 
(i.e., within the same trophic level) and vertically (i.e., across trophic levels). Predictions that 
apply to one trophic level may prove erroneous if they neglect other species from the same 
(Danger et al. 2008) or from different trophic levels (Cherif & Loreau 2009). These additional 
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complexities need to be fully incorporated into the theory of Biological Stoichiometry before 
it really can link molecules to ecosystems. This is obviously a long journey but the road is 
already drawn on the map! 
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