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Morphological and Photovoltaic Studies 
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Mukul Dubey and Hongshan He* 

Center for Advanced Photovoltaics, Department of Electrical Engineering & 
Computer Science South Dakota State University, Brookings, SD, 

USA 

1. Introduction 

Highly ordered nanostructures, especially TiO2 NTs, have attracted considerable research 
interest in recent years due to their diverse applications in photocatalysis, photonic crystals, 
sensors, batteries and photovoltaic devices. The photophysical, photochemical, electrical 
and surface properties of these nanostructured materials depend highly on their 
morphology because of the quantum size effect. Hence it is critical to study the effect of 
morphology of the ordered nanostructures for device applications. In this chapter we will 
only focus on the TiO2 NT morphology in context of their applications in dye-sensitized 
solar cells (DSCs).  

DSC is an electrochemical device that converts sunlight to electricity. The major components 
of DSC are photoelectrode, counterelectrode and electrolyte sandwiched between them. The 
photoelectrode is a dye-coated wide band gap semiconductor, such as TiO2, on a transparent 
conducting oxide (TCO) glass substrate. Dye molecules absorb sunlight and the electrons in 
the ground state are excited to the excited state. The electrons in the excited states inject into 
the conduction band of TiO2. The injected electrons transports to the TCO electrode via 
diffusion through TiO2 NPs. The electrons then flow through the external circuit to the 
counterelectrode, which is usually a platinized TCO glass. The redox species in the 
electrolyte, usually iodide, take the electron from counterelectrode, and are reduced to tri-
iodide, which further gets oxidized by providing its electron to the ground state of dye 
molecule for its regeneration. There are several factors that affect the efficiency of DSC such 
as absorption band of dye molecule, electron injection efficiency from dye to TiO2, redox 
potential of electrolyte and charge transport through TiO2. The morphology of TiO2 
photoelectrode is one critical factor that plays a pivotal role in the conversion of sunlight to 
electricity in DSCs. Remarkable breakthrough in photoelectrode by changing the planar 
structure to randomly packed mesoporous structure of TiO2 NPs improved the efficiency from 
less than 1 % to 8% by Grätzel et al. The mesoporous structures are promising due to their high 
surface area for the adsorption of photosensitzer leading to the improved light absorption and 
hence high efficiency. The photoelectrode was further optimized by introducing a compact 
layer with small TiO2 NPs and a scattering layer with large TiO2 NP underneath and at the top 
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of normal TiO2 NPs respectively. Both improved electrical and optical properties of 
photoelectrode and hence the device efficiency. With those structures and ruthenium 
bipyridine dyes, a respectable efficiency of 11.5% has been achieved rendering the DSCs as 
promising and cost-effective alternative to its otherwise expensive silicon technology. 

 

Fig. 1. (a) Schematic representation of electron transport in TiO2 NPs based photoelctrode; 
(b) electron transport in TiO2 NT based photoelectrode 

The electron collection efficiency is a critical factor governing the overall photo conversion 
efficiency of solar cell. Various investigations suggest that the random morphology of 
polycrystalline TiO2 NPs exhibits high defect density, which leads to the electron losses via 
recombination and the reduced electron collection efficiency. The presence of numerous 
defects, grain boundaries and surface states provides several trapping/detrapping and 
recombination sites in the electron transport pathway. The presence of defects reduces the 
electron mobility leading to increased recombination and hence reduced cell performance. 
In this regard anodic TiO2 NTs proposed by Grimes et al is considered as an excellent 
electron acceptor for DSC. Architecturally, these NTs are well aligned in regular array 
perpendicular to the substrate leading to rapid unidirectional electron transport with 
reduced recombination. A schematic for difference in dimensionality of electron transport 
between random nanocrystalline particle network and one-dimensional NT is shown in 
Figure 1. The electron from dye molecules migrate directly from top of the NT to the bottom 
for electron collection without migration in a three dimensional network. A close to 100% 
electron collection efficiency at the bottom of the nantotube was observed. In addition, NTs 
also have strong light scattering behavior which increases the optical path length in the film 
and improve the light absorption efficiency for high solar cell efficiency. 

Despite being promising both electrically and optically, the highest energy conversion 
efficiency obtained from NT based DSCs is only ~ 7%, which is much lower than the 
conventional NP based DSC. One of the disadvantages identified was the back illumination 
geometry of devices due to the presence of non-transparent Ti metal underneath the TiO2 
NT arrays. The TiO2 NT arrays are usually grown directly from a thin layer of Ti metal, 
which is difficult to remove. This requires photo illumination from the counterelectrode (a 
platinum coated transparent conducting electrode) side as shown in Figure 2. The back 
illumination leads to significant loss in the photon flux by reflection from the platinum and 
absorption in the electrolyte. It was difficult to realize front illumination since the NTs were 
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grown on titanium substrate and no technique was known to either grow or transfer the NT 
films on to the transparent conducting substrate. 

 

Fig. 2. (a) TiO2 NP based DSC with front illumination geometry from photo-electrode side; 
(b) TiO2 NT based DSC with back illumination geometry from counter-electrode side 

Front illumination in TiO2 NT-based DSCs can be realized through several recently reported 
methods. The first method is the growth of NTs on glass substrate with sputtered Ti metal 
on top. The sputtering must be performed at high temperatures to prevent peeling after 
anodization. Grimes et al recently reported a new method for sputtering Ti on FTO glass at 

low temperature that produced TiO2 NTs with lengths up to 33 µm after anodization. A cell 

with a 17 µm NT array achieved a conversion efficiency of 6.9%. Two concerns emerge with 
this process: (1) the time- consuming nature of sputtering several tens of micrometer Ti may 
increase cost, and (2) the FTO layer on the glass could be damaged during anodization.  

The second method is to remove the NT array from the Ti foil and attach it to FTO glass. In 
2008, Jong Hyeok Park et al put anodized Ti foil in 0.1 M HCl aqueous solution for 1 hour, 
obtained an NT membrane, and attached it to FTO glass with the help of titanium 

isopropoxide. They achieved 7.6% efficiency with 8 µm NT arrays. Although the team 
claimed that NT membranes could be handled with tweezers, optical images in their 
publication suggested that these NT membranes were very fragile. In 2009, Qinwei Chen et 
al reported a re-anodization process that was followed by immersing the foil in 10% aqueous 
H2O2 solution for 24 hours and resulted in large sized NT membranes. The NTs were then 
attached to FTO glass with the help of a TiO2 NP paste to achieve a conversion efficiency of 
5.5%. Long-time immersion in solution diminishes the attractiveness of this mild process. 

He et al also developed a method that can lift off the NT arrays in less than four minutes. 
The yellow membrane could easily be transferred to other substrates without any fracturing. 
He et al also developed a unique low temperature method to tightly plant the NT 
membranes on FTO glass. The NTs were embedded inside the NP layer. The DSCs with 
these films exhibited 6.1% efficiency using N719 as dye. It was found that the geometry of 
NT orientation on the glass substrate also plays a significant role in determining the 
efficiency of DSC. The test tube geometry of NTs with one end open and other end closed 
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provides freedom in choosing the configuration of the freestanding NT fixation on substrate 
with either closed end or the open end on to the substrate. This finding suggests that both 
optically and electrically open end of the NT on to the substrate is superior to the other 
orientation and hence can help significantly in improving DSC efficiency. 

Another challenge for the effective use of NT for DSC application is how to grow highly 
ordered TiO2 NT arrays. Many researchers have reported that the NT tends to cluster 
together and form bundles which not only inhibits the infiltration of dye and electrolyte 
throughout the thickness of film but also increases recombination by incorporating disorder 
induced defects. It was reported that fine polishing of the titanium substrate prior to growth 
minimized the cluster formation. Several reports also indicated that the bundle and micro 
crack formation in the film was due to the capillary stress during the sample drying process. 
The supercritical CO2 oxide drying technique was introduced, which indeed reduced the 
formation of clusters; however, the complete understanding of cluster formation is still 
elusive and requires further study.  

To summarize the morphology of TiO2 NT plays a critical role in dye-sensitized solar cell. 
Study of the effect of morphology of TiO2 NT on DSC performance is therefore worthy of 
pursuit for achieving high conversion efficiency of the DSCs. In the following sections, we 
will discuss the growth mechanism of TiO2 NTs and approaches for highly ordered TiO2 NT 
array of NTs for DSC applications. We will also discuss how the effect of orientation of the 
NT on the TCO glass affects the photovoltaic properties of DSC. 

2. Growth mechanism of TiO2 NTs 

This section reviews the growth mechanism of TiO2 NTs by potentiostatic anodization 
technique in fluoride-containing electrolyte. The NT formation in acidic electrolyte 
containing F- ion is generally agreed to occur via the field assisted formation and dissolution 
of oxidized titanium surface. It involves two critical steps that occur simultaneously: 
formation of TiO2 on the titanium surface and the dissolution of oxide. The process can be 
described by following two reactions: 

( )( )

[ ] ( )( )

2 2

2
2 6 2

2 4 4 ..................... 1

6 4 2 ........... 2

Ti H O TiO e H Oxidation

TiO F H TiF H O Dissolution

− +

−− +

+ → + +

+ + → +
 

In this two-electrode setup, titanium serves as anode and platinum as cathode. The 
electrolyte is composed of ethylene glycol, ammonium fluoride and water. A constant DC 
voltage is applied across the electrodes as shown in Figure 3. After some time, a layer of 
TiO2 NTs will form on the surface of Ti metal. Figure 4 shows schematically how the TiO2 
NTs are formed. When pristine Ti is immersed into electrolyte solution, it is surrounded by 
various ionic species such as OH- and F-. (a) Once the DC voltage is applied these ionic 
species tends to oxidize the surface of titanium substrate (b) forming a thin barrier layer of 
TiO2 as depicted in the equation 1 of reaction mechanism. Simultaneously the process of 
dissolution of TiO2 layer in presence of F- ion occurs leading to the formation of random 
pores during the initial stage of growth process (c). The F- ions localize to the bottom of the 
pore i.e. at the oxide/metal interface which further undergoes oxidation and dissolution 
processes. Since the concentration of F- ion is more at the bottom of the pore due to the 
external electric field; the effective dissolution of TiO2 is more pronounced at the pore 
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bottom leading to vertical cavity formation (d to f). The formation of round shape at the 
bottom of tube is still a topic of debate. It is proposed that this is results of volume 
expansion of TiO2 compared to the space available from metal loss leading to high stress at 
the interface, high electric field distribution density at pore bottom and enhancement in 
acidity at the pore bottom due to the external electric field.  

 

Fig. 3. Electrochemical anodization set up. 

 

Fig. 4. (a) Titanium substrate in the ionic environment of electrolyte; (b) Formation of porous 
oxide layer on exposed surface of titanium right after field is switched on; (c) Initial random 
pore growth by dissolution; (d) elongation of pore geometry after few minutes of 
anodization; (e) development of regular array of pore geometry in the field direction;  
(f) fully developed NT array. Red and Black dots represent the fluoride & hydroxide ions 
respectively. 
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3. Effect of substrate morphology on growth of TiO2 NTs 

The formation of NTs largely depends on the type and concentration of ionic species present 

in the electrolyte as well as the extrinsic parameters such as anodization voltage, time and 

temperature. By controlling these factors, TiO2 NTs having different length, diameter, and 

wall thickness can be obtained. However, it should be noted that field assisted directional 

dissolution of the oxide layer formed on titanium foil is a crucial step towards the formation 

of NTs which so far have been shown to depend on many variables such as electrolyte 

composition, concentration, anodization voltage and time, but least importance was given to 

the effect of substrate morphology on the growth of NTs which is discussed in the next 

section. We found that the morphology of titanium substrate also plays a key role in the 

morphological order of the NT thus formed. This section highlights the effect of 

morphological features of titanium substrate on NT growth which is further connected with 

the microscopic morphology drawing outline for the plausible reasons for the clustering of 

NTs and cost effective way to deal with it.  

3.1 Effect of mechanical treatment of titanium substrate on TiO2 NT growth 

Commercial Ti foil with thickness ~ 250 µm is usually used for the growth of the TiO2 NTs 

arrays. Before the anodization the Ti foil is cleaned by detergent, ethanol, toluene, and 

deionized water sequentially to remove any impurities on the surface. There are several 

commercial providers for Ti foil with high purity; however, the surface morphology of these 

as-purchased Ti foils is quite different. It was found the as-purchased Ti foil has many crack 

sites distributed throughout the surface of the substrate. Figure 5 shows the typical SEM 

image of the surface of one sample from Sigma-Aldrich. Many cracks were observed on the 

surface. The size of the cracks ranges from several hundred nanometer to several 

micrometer. The presence of such cracks leads to the formation of vertical gaps on the 

substrate leading to the absence of material up till certain depth. In addition there are 

several submicron range heterogeneous morphologies present in the vicinity of crack sites 

which render high degree of roughness to the substrate. The existence of cracks on the Ti 

surface leads to high degree of non-uniformity in the morphology of NTs thus formed 

resulting in the cluster and bundle formation of NT. Figure 6 (a) shows the SEM image of  

   
(a)    (b) 

Fig. 5. (a) Cracks or vertical gaps present on the surface of as purchased commercially pure 
titanium substrate; (b) magnified image of crack showing the absence of material up till 
certain depth. 
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surface morphology for NTs grown on as purchased commercially pure titanium foil for 15 

minutes. The fingerprint of substrate crack structures and submicron heterogeneously 

distributed morphology near crack site were clearly observed on the NT film.  

 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

Fig. 6. (a) TiO2 NTs after 30 min anodization; (b) TiO2 NT with a whirlpool geometry at 

crack site; (c) TiO2 NT cluster formed at crack lines; (d) Collapsed TiO2 NTs at crack lines;  

(e) TiO2 bundles throughout sample and (f) TiO2 bundles under higher magnification 

We further investigated the local morphology of NTs near the crack sites which is shown in 
higher magnification SEM image of Figure 6 (b). Whirlpool geometry of NT distribution at 
the crack site was observed, which shows the strong influence of substrate morphology on 
the initial growth of NTs. This effect was more pronounced in the NT under short 
anodization time. The clusters are formed near the crack lines of the substrate. Uniformed 
NTs are observed on the surface without any cracks. We also observed that the tubes over 
the edges of cracks tended to collapse on each other forming intercrossed tubes as shown in 
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Figure 6 (d). The collapsing of the NTs on each other can potentially lead to the cluster 
formation which can be seen from Figure 6 (e & f). 

Based on the results of anodization on commercially purchased Titanium, it can be observed 
that smooth surface for anodization is very crucial to obtain highly ordered morphology of 
NTs. Han et al and Lee et al reported two step anodization processes to obtain ordered 
morphology of NTs. In their report first anodization was performed for shorter time 
followed by removal of the first NT layer. The surface of Ti after removal of first layer was 
very smooth leading to highly ordered morphology of NT formed in the second step. On the 
other hand Kang et al reported electropolishing technique in which Ti substrate was 
electropolished to render it a smooth surface followed by anodization to form ordered NT 
structure. Both electropolishing and two step anodization processes were found promising 
to obtained highly ordered NT array. 

However, these processes involves complex two step processes which is time consuming 

and expensive. An alternative approach could be the mechanical polishing of the substrate 

to remove cracks. To this end we have tried to polish the Ti substrate using fine sand paper. 

However, our SEM results shows that even with very fine sand paper the micron size 

scratches are developed on the surface scratches are developed on the surface. It can be 

clearly seen that there It can be clearly seen that there were significant clumping and 

clustering of the NTs. Additionally at many other places NTs were found to be completely 

broken. Based on the results it can be inferred that even the fine mechanical polishing can 

form micron level roughness which cannot be used to grow highly ordered NTs. 

3.2 Effect of chemical treatment of titanium substrate on TiO2 NT morphology 

In order to further verify the effect of local substrate morphology on NT growth, we etched 
the titanium substrate for 30 minutes in 0.75 M hydro fluoric acid (HF) introducing high 
degree of surface roughness to the substrate. Figure 8 (a) shows the morphology of rough 
surface of titanium after etching. TiO2 NTs were then grown on the etched substrate for 15 
minutes. It was observed that the initial pore formation for NT growth takes the local 
geometry of the substrate as shown in Figure 8 (b). The local pore formation might largely 
depend on the direction of local electric field was further confirmed by the NT formation in 
the etched substrate. Figure 8 (c) shows the SEM image of a large pit formed on the substrate 
due to etching. The pit shown in the image can be visualized to have three different planes 
i.e. x-y, y-z and x-z. It is interesting to note that the pore formation can be seen on all these 
three planes with their cross-sections perpendicular to the respective plane clearly 
indicating that the initial pore formation does depend on the direction of local electric field 
at the breakdown site this further depends on the local morphology of the substrate as 
shown in Figure 8 (d). The dependence of NT growth associated with the local electric field 
distribution corresponding to the substrate morphology can be a profound reason for the 
bundle and cluster formation in NTs which was further confirmed from SEM results. Figure 
8 (e) shows the SEM image of NT at one of the crack sites of the NT film grown on etched 
substrate. It can be clearly observed that the NTs at crack site grew in different direction. 
Considering x-y plane to be the plane of substrate and z as direction normal to the substrate 
which is the preferred direction of NT growth, it can be clearly seen that the cross-sectional 
plane of NTs are facing in two different directions, one parallel to x-y plane highlighted with 
red circle and other in z- direction highlighted with yellow circle. The NTs facing x-y 
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direction bends toward the z- direction. The initial bending followed by z growth of NTs 
was further confirmed in Figure 6 (f) where it can be observed from one of the pits that the 
initial pore formation on the walls of the pit is in all three directions. However as the NTs 
grew longer they start bending in one direction which latter completely follows one 
directional growth. Interestingly it can be seen that the initial bending ranging to several 
microns leads to the collapse of NTs on each other leading to the formation of clusters. 
Hence formation of highly ordered NTs can be severely influenced by the substrate 
morphology. 

 (a) (b) 

(c)  (d) 

Fig. 7. (a) SEM image of polished Ti substrate; (b) bundle formation and non-uniformed 

TiO2 NT morphology; (c) side view showing different length of NTs and the bundle 

formation; (d) unevenly packed TiO2 NTs 

Removing structural disorder from NTs was recently a key concern in the area of DSC. 

Some techniques including post growth ultrasonic treatment and supercritical CO2 drying of 

NT samples showed promise in removing of the structural disorder. These techniques are 

very useful if the disorder in NT morphology is induced through impurities in the 

electrolyte, viscosity of the electrolyte or during drying of NTs after growth. Their 

applications to remove substrate induced disorder are limited. We employed a chemical 

etching process to solve this problem. The Ti substrates were immersed in 0.75 M HF 

ranging from 1 to 15 minutes. The cracks present on the substrate were removed completely 

in 10 minutes of etching time. Figure 9 (a) shows the SEM image of titanium foil etched for 5 

minutes in 0.75 M HF where the crack features could still be observed. Figure 9 (b) shows 
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 (a)  (b) 

 (c)   (d) 

 (e)

 (f) 

Fig. 8. SEM images of (a) etched Ti substrate; (b) TiO2  NTs grown  on etched Ti; (c) large pit 

of TiO2 NTs on etched Ti; (d) TiO2 NT at a crack site on etched Ti; (e) TiO2 NT at the edge 

of one pit (f) non uniform local electric field distribution near the rough surface of titanium. 

the cracks or vertical gaps completely disappeared after 10 minutes of etching but also 

introducing high degree of surface roughness induced on the substrate. Further etching the 

substrate for 15 minutes led to highly disordered coarse surface as can be seen in Figure 9 

(c). A closer investigation of individual pits formed after 10 minutes etching of the substrate 

as shown in Figure 9 (d) revealed that these pits offer a very smooth concave shaped surface 

with average size of 5 – 10 µm. This observation suggested that highly oriented NTs can be 

grown over these smooth surfaces with short range of order on the surface of the substrate. 

Further concavity of the pit structure can lead to small bending in the NTs with cross-

section plane facing towards the center of conic cross-section. The small bending of NTs can 

further help preventing the NTs to interact and collapse over the NTs formed in the 
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neighboring pits, providing global order in the overall morphology of NTs. In order to 

verify our assumption we performed 30 minutes of anodization to grow shorter NTs on the 

titanium substrate etched for 10 minutes in 0.75 M HF. Figure 10 (a) shows the SEM image 

of NTs grown on etched substrate for 30 minutes anodization time. The image clearly shows 

that the NTs followed the local morphology of each pit taking the overall geometry of the 

substrate. In addition clustering or collapse of NTs was also not observed anywhere on the 

surface suggesting that overall order in the morphology can be achieved by this process. 

However, the method can find its applicability only when longer NTs can be successfully 

grown with long range order which is the essential need for solar cells. To investigate the 

morphology of longer NTs, we performed anodization of the etched substrate for 5 hrs 

which can lead to the formation of ~ 20 µm long NTs. 

 

 (a)  (b) 

 (c)  (d) 

Fig. 9. SEM images of titanium substrate etched in 0.75 M HF under different etching time. 

(a) 5 minutes; (b, d) 10 minutes; (c) 15 minutes.  

Interestingly the SEM image of Figure 10 (b) shows that the NTs even after 5hrs of anodization 

time followed highly ordered morphology without cluster formation anywhere on the 

substrate. It was also evidenced that the NTs retained the concave geometry of the substrate 

shown highlighted in yellow circle of Figure 10 (c). The overall morphology of the NTs were 

observed to be comprised of several small concave shaped honeycomb structure grouped 

together to form structured NT film which can be seen from SEM image of Figure 10 (d). Thus 

it can be seen that the morphology of the NTs significantly depends on both the morphology 

of the substrate and simple chemical pretreatment of the substrate can prove to be useful in 

growing oriented NTs which might further help in improving the efficiency of DSC. 

www.intechopen.com



 
Scanning Electron Microscopy 

 

548 

 

 (a)  (b) 

 (c)  (d) 

Fig. 10. SEM images of TiO2 NTs under 5 hrs anodization on etched Ti substrate.  

(a) anodized surface at higher magnification; (b) anodized surface at lower magnification; 

(c) highly ordered NT with local concavity shown highlighted in yellow circle; (d) several 

concave geometries  highlighted in yellow circles 

4. Effect of TiO2 NT morphology on PV performance of DSC 

The TiO2 NTs on the Ti substrate can be used directly for the fabrication of DSCs. The Ti 

metal will function as same as TCO layer in conventional Gratzel type DSCs. Due to the 

non-transparency of Ti metal to the sunlight, the cell has to be illuminated from counter 

electrode (back illumination). In 2007, Grimes et al reported 6.89 % conversion efficiency of 

this type of cell using ruthenium dye (N719) as light absorber, 20 µm long TiO2 NT arrays 

for dye adsorption, and iodide/tri-iodide as electrolyte. Several other groups who fabricated 

DSCs with this configuration achieved efficiencies ~3% under similar conditions. In 2009, 

Grätzel et al reported a 3.59% conversion efficiency of DSCs using ruthenium dye (N719) as 

a light absorber, 14 µm long TiO2 NT array for dye adsorption, and ionic liquid as 

electrolyte. He et al also achieved an efficiency of 3.45% with this configuration. Since TiO2 

NT arrays are often attached on the Ti foil and difficult to lift off, the NT arrays with Ti foil 

were used directly for cell fabrication. Sunlight must come from the rear of the cell. The 

absorption and reflection of sunlight by electrolyte and Pt counterelectrode respectively lead 

to reduction in photon flux reaching the dyes. Various techniques were reported from 2008 – 

2010 for the growth, liftoff and fixation of NTs on transparent conducting substrate but they 

either lacked reproducibility or was time consuming.  

www.intechopen.com



 
Morphological and Photovoltaic Studies of TiO2 NTs for High Efficiency Solar Cells 

 

549 

In our work Freestanding NT films were obtained by preferential etching of the TiO2/Ti 

interface followed by its fixation on TCO with colloidal TiO2 paste as adhesive layer. The 

SEM image of freestanding NT film reveals that one end of the NT is open while other end is 

closed rendering it to be like a test tube structure. Figure 11 (a) shows the morphology of 

open end of NT while Figure 11 (b) shows the surface morphology of the closed end side of 

NT. The freestanding NTs can be used in two different orientations for fixation on TCO 

substrate; one with open end of NT facing the substrate while other with closed end of NT 

facing the substrate as shown in Figure 12. This section thus tends to highlight the effect of 

NT orientation on DSC performance. It was reported earlier that the closed end of NT facing 

the substrate might be helpful in improving the efficiency of DSC by serving as a barrier 

layer in between substrate and TiO2 active layer improving the charge transport by 

minimizing the substrate/TiO2 interface recombination analogous to the compact layer in 

NP based DSC. 

 

 (a)  (b) 
 

Fig. 11. (a) Top view of NT showing one end to be open; (b) bottom view of NT showing 
other end to be closed  

 

Fig. 12. Simplified DSC structure with CED and OED orientation of NT on TCO 
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In contrast it was also reported that ~ 2 – 3 µm thick layer of TiO2 at the closed end of NT 
might serve as an insulating layer between TCO/TiO2 layers which can be detrimental for 
effective charge transport from active layer to the electrode. In order to investigate the effect 
of closed end layer on PV performance, we fabricated DSC with two different orientations 
i.e. closed end facing the substrate and open end facing the substrate, hereafter referred to as 
CED and OED respectively. The DSCs fabricated with these two structures have apparently 
shown a big difference in their PV performance as can be seen from the J-V characteristics 
shown in Figure 13 (a).  

 

Fig. 13. (a) J-V curve under illumination for cells with OED and CED structures; (b) EQE 
curves for cells with OED and CED structures 

It was found that the OED structure had higher efficiency of 6.58% as opposed to 4.17% 
efficiency of CED structure. It was found that cell with OED structure exhibited higher 
values of short circuit current density (JSC), open circuit voltage (VOC) and fill factor (FF) 
compared to CED structure. The J-V data for the photovoltaic performance of two cells is 
provided in Table 1. 

 

Orientation of 
NT 

NP layer 
thickness (µm) 

NT length 
(µm) 

JSC (mA/cm2) VOC (mV) FF (%) η (%) 

OED 3 22 14.75 666 67.05 6.58 

CED 2.7 23 9.5 642 68.45 4.17 

Table 1. J-V data for cells with OED and CED orientation of NTs. 

In order to further support our J-V data we performed the external quantum efficiency 

(EQE) measurements on two cells as shown in Figure 13 (b). The EQE data was found to be 

very consistent with our J-V data where OED structure have shown greater quantum 

efficiency compared to CED structure.  The current densities calculated from the EQE 

measurements were found to be ~ 15 and 10 mA/cm2 for OED and CED structures 

respectively which were in close agreement with the J-V data. Overall the cell performance 

indicated the superiority of the OED over CED orientation.  
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 (a)  (b) 

 (c)  (d) 

Fig. 14. Shows the cross-sectional SEM image of TiO2 NTs on FTO glass (a) CED orientation; 
(b) CED NT/TiO2 NP interface; (c) OED orientation; (d) OED  NT/ TiO2 NP interface 

In order to investigate the reason for difference in the PV performance of two structures we 

performed the cross-sectional SEM imaging of CED and OED structures shown in Figure 14. 

The interface between colloidal TiO2 NP layer and the NT for CED structure (shown in 

Figure 14 (a & b)) can be seen to have gaps in between these two layers which suggest that 

the electron transfer between these two layers is not efficient leading to excessive slow down 

of the electrons at this interface increasing the recombination probability. We attribute the 

poor interface quality of this structure to the round shaped closed end of the NT which 

might have prevented the colloidal particles to partially penetrate into the tube leading to 

weak interface formation which upon high temperature sintering of the film might have 

introduced gaps at the interface. Interestingly this feature was not observed in the case of 

OED structure as can be seen from the cross-sectional image of Figure 14 (c & d). The NTs 

were found to have formed very good interface by embedding itself into the NP matrix 

leaving behind no gaps. It can be seen from the image that even after sintering at high 

temperature the interface retained its good morphology. 

In order to investigate the reason for higher photocurrent in OED structure we performed 

dye loading measurements for two cells. The dye loading densities for cells with OED and 

CED structures were found to be ~ 7.16 x 10-6 mol g-1 and 3.58 x 10-6 mol g-1 respectively 

which indicates higher dye loading for OED compared to CED structure and hence higher 

photocurrent. In addition we also anticipate that the improved photocurrent can also be a 

result of higher confinement of light in the active layer of TiO2 due to the nano-dome 

structure of closed end being on top leading to the increase in optical path length and hence 
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improved absorption. A schematic for light confinement effect for CED & OED structures 

are shown in Figure 15 (a & b) respectively. Overall it can be seen that orientation of the NTs 

for cell fabrication also plays a critical role in determining the efficiency of DSC. 

 

Fig. 15. (a) Schematic of light propagation through NT photoelectrode on FTO with (a) CED 
structure; and (b) OED structure 

5. Conclusions 

We found that morphology of NTs largely depends on the macro and microstructural 

topology of the substrate. Removal of substrate induced disorder in the morphology might 

be difficult by using simple ultrasonication or drying processes. A simple chemical 

pretreatment of substrate leads to substantial change in the morphology of grown NTs that 

can help in obtaining highly oriented and ordered TiO2 NT arrays. The chemical 

pretreatment technique can find potential utility for being simple, cost effective and less 

time consuming. In addition we also found that the orientation of the NTs was critical in 

determining the efficiency of DSC. Hence a meticulous choice of NT orientation along with 

surface texturing of substrate can significantly help in engineering NT morphology for its 

successful implementation as a promising material for solar cells as well as other 

optoelectronic device applications. 
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