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1. Introduction 

Nowadays, a skyrocketing growth is observed worldwide in the bit rates of transmitted 
information, which is associated with development of broadband information transmission 
types. The annual global internet protocol (IP) traffic will exceed half a Zettabyte in four 
years. At just under 44 Exabytes per month, the annual run rate of traffic in the late 2012 will 
be 522 Exabytes per year. Driven by high-definition video and high-speed broadband 
penetration, the consumer of IP traffic will bolster the overall IP growth rate so that it 
sustains a steady growth rate through 2012, growing at a compound annual growth rate 
(CAGR) of 46 percent (see Fig. 1) [Cisco Systems, 2008].  

 

Fig. 1. Global IP Traffic Forecast (2006–2012) [Cisco Systems, 2008]. 

In turn, to provide high-quality transmission it is necessary to develop the next generation 
optical networks (NGONs) that would transmit properly huge volumes of information. The 
optical transmission systems from the very outset have been able to offer new possibilities 
for solving problems of ever increasing urgency that are dictated by the need for frequency 
bands and transmission speed. Such networks have become one of the most important 
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components in the telecommunication hierarchy, whose integration with standard network 
services and applications promotes rapid evolution of fiber optics and its wide 
implementation into all telecommunication branches (see Table 1 [McGloin & Reid., 2010]). 

 

Transmission 
Network  

CORE METRO ACCESS 
CROSS 
CONNECTIONS  

Length > 100 km 10 km 
Approx. 20 km (ITU 
recommendation), 
normally < 10 km

< 100 m 

Laser type  DFB DFB,VCSEL DFB or Fabry-Perot VCSEL 

Wavelength 
1550 nm 
central ± 
30 nm

1310 nm;  
1550 nm 

1310 nm; 
1490 nm;  
1550 nm

850 nm; 1310 nm 

Modulation 
scheme 

External 
External or 
internal

Internal Internal 

Bit rate 10 Gbit/s 10 Gbit/s < 2.5 Gbit/s 
Depending on 
protocol type 

Multiplexing 
scheme 

DWDM 
or CWDM

CWDM WDM 
Depending on 
protocol type 

Table 1. Evolution of fiber optics and its wide implementation into all telecommunication 
branches 

Currently, many research topics in the field of optical transmission systems (mostly 
grounded on novel modulation techniques) are focused on increasing the total data 
transmission speed of an individual optical fiber [Abbou et al., 2008, Bhamber et al., 2007, 
Bobrovs et al., 2008]. An alternative − but equally valid − approach to increasing the data 
transmission is to decrease the wavelength division multiplexing (WDM) channel spacing to 
high-dense dimensions while keeping the existing data transmission speed for an exact 
channel [Ozoliņš et al., 2011, Bobrovs et al., 2009].  

High performance optical filters make the groundwork for realization of high-speed high-
density WDM (HDWDM) transmission systems [Pfennigbauer & Winzer, 2006]. High 
channel spacing and data transmission rate set strict requirements for HDWDM filter 
characteristics, so any imperfections in their parameters, such as amplitude and phase 
responses, could become critical. The low channel separation from adjacent channels is one 
of these imperfections in optical filter parameters [Agrawal, 2001, Ozoliņš et al., 2009].  

2. Implementation of HDWDM transmission system  

Due to these rapidly growing capacity requirements for long-haul transmission, the optical 
wavelength division multiplexing systems are advancing into high data transmission rate and 
dense channel spacing to utilize the available bandwidth more effectively. In order to maximize 
the system capacity and to minimize the performance degradation caused by transmission 
impairments the system investigation and optimization are very important. To increase the 
spectral efficiency is important for building efficient HDWDM transmission systems, since this 
allows the optical infrastructure to be shared among many wavelengths. This approach reduces 
the cost per transmitted information bit in a fully loaded and optimized transmission system.  
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2.1 Selection of HDWDM main components  

The complexity of a system’s design in optical communications can be seen as the result of a 
large number of components with different parameters and operational states. The 
description of the interaction between the optical signal and transmission disturbances is a 
multi-dimensional issue, whose solution depends on the relation between different system 
parameters. The right approach to the optimization of system settings and derivation of 
design rules must take into account the interaction of effects which take place in each 
component. In this section, the system components needed for realization of an HDWDM 
transmission system are described.   

The role and realization of an optical transmitter become important with increased channel 
data rates in the system. While the optical transmitters at lower channel data rates are less 
complex and easier to realize by direct modulation of a laser diode, the realization becomes 
more complex with the increasing channel data rate, thus raising the requirements on 
electrical and optical components of the optical transmitter. The conventional optical 
transmitter employs the amplitude/intensity modulation (AM, IM) of the laser light (better 
known as on-off keying (OOK)), because different signal levels for marks and spaces are 
characterized by the presence of optical power. The amplitude modulation can be realized 
by direct or external modulation of the laser diode. For the realization of transmission 
systems with channel data rates larger than 2.5 Gbit/s, the external modulation presents a 
better solution, because the impact of laser internal chirp on optical signal can be reduced 
efficiently, but, on the other hand, the complexity of optical transmitters increases.  

 

Fig. 2. Mach-Zehnder Modulator (MZM) principles: a) structure b) transmission function 
[Kaminow et al., 2009]. 

External modulation can be realized with a LiNbO3-based Mach-Zehnder modulator (MZM) 
(see Fig. 2) [Kaminow et al., 2009]. The operational principles of MZMs are based on the 
electro-optic effect, which is characterized by variation in the applied electrical field causing 
changes of the refractive index in the modulator arms. The variation of the refractive index in 
the modulator arms induces a change of material propagation constant ǃ, resulting in different 
phases in both modulator arms. The input optical signal is divided by a 3-dB coupler into two 
equal parts – in lower and upper arm of the MZM. The external modulator is driven by an 
electrical signal with corresponding data rate. Depending on the electrical driving signal, 
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different transmission speeds can be realized. If no electrical field is applied, both signals 
arrive at the same time (in-phase) at the MZM output and interfere constructively. If an 
electrical filed is applied, signals in different arms are shifted in phase relative to each other. 
Depending on the phase difference between the MZM arms, the signals can interfere 
constructively or destructively, resulting in an amplitude modulation of the modulator input 
signal. In this signal generation method, the laser source acts as a continuous wave (CW) 
pump. In conventional systems, the CW pumps are realized with distributed feedback laser 
(DFB) (the most important and widely used single mode laser type for the 1550 nm region). 
DFB lasers are realized by the implementation of through a Bragg’s grating structure inside the 
cavity between the reflecting surfaces of a laser [Voges & Peteramann, 2002]. The main 
characteristics of the DFB lasers are high side-mode suppression ratios (> 50 dB) enabling 
stable single-mode operation, a small spectral line width (0.8...50 MHz) and large output 
optical power (10...40 mW) (see Fig. 3) [Funabashi, 2001]. 

 

Fig. 3. Simplified fiber optical transmission system. 

After the MZM, such a signal is sent directly to a transmission medium, where optical 
pulses are propagating over different distances of a single-mode fiber (SMF). For 
compensation of losses in the fiber and in optical components it is necessary to use the 
technique for amplifying optical signals. The optical amplifiers represent one of the crucial 
components in an optical transmission system. Despite the minimum attenuation at 1550 
nm, fiber losses significantly limit the transmission performance with increased 
transmission distance. Optical amplification can be realized using different amplifier 
concepts and mechanisms, e.g. semiconductor optical amplifiers (SOA), rare-earth (erbium, 
holmium, thulium, and samarium) doped fiber amplifiers, or, more recently, Raman 
amplifiers [Kaminow et al., 2008, Binh, 2008]. All these amplifier types are based upon 
different physical mechanisms resulting in different device characteristics and application 
areas. The rare-earth-doped fiber amplifiers provide optical amplification in the wavelength 
region from 500 to 3500 nm. The most important representative of these amplifier types is 
the erbium-doped fiber amplifier (EDFA), which is widely used today in optical 
transmission systems since it provides efficient optical amplification in the 1550 nm region. 
The EDFAs present the state-of-the-art technology in conventional optical transmission 
systems, and they can be used as in-line amplifiers (placed every 30-80 km), power boosters 
(amplifiers at the transmitter side) or pre-amplifiers (amplifiers in front of the receiver) 
independently of the channel bit rate in the system [Thyagarajan & Ghatak, 2007]. 
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After transmission through the optical fiber, a multiwavelength optical signal needs to be 
separated in individual channels. This is realized through implementation of band-pass 
filters (BPFs), which transmit optical power within a definite wavelength window only, and 
reflect or absorb the rest. In the case of a single-channel transmission the function of an 
optical BPF is to separate the channel information from the noise which has been added, 
e.g., by optical amplifiers. This noise is generally broadband, and can often be described as 
quasi-white: it has a constant level in the power spectrum [Kashyap, 2010, Venghaus, 2006]. 
By applying a BPF to select the wavelength channel, the useful information is retained and 
most of the noise is filtered resulting in an improvement of the optical-signal-to-noise ratio 
(OSNR). Such a filter can also be used to select a particular channel in a HDWDM 
application from several channels that are transmitted in a common HDWDM transmission 
system [Azadeh, 2009, Venghaus, 2006]. The role of an optical receiver is to detect the 
transmitted signal by the opto-electrical transformation of the signal received by a photo-
diode (e.g. PIN or APD). Furthermore, additional electrical equalization is performed 
together with electrical signal amplification enabling further signal-processing (e.g. clock-
recovery) and performance evaluation (e.g. quality measurements). 

In fiber optical transmission systems, the degradation effects can be categorized by the 

random noise and waveform distortion. For long-span HDWDM systems, signal waveform 

distortion can be generated by linear chromatic dispersion, polarization mode dispersion 

(PMD), nonlinear optical effects (NOE) in optical fibers, or their combination [Chen et al., 

2006, Pan et al., 2010]. In high-speed (more than 2.5 Gbit/s) time division multiplexing 

(TDM) optical systems having short optical pulses and wide optical spectrum the effect of 

complex dispersion dominates in the system performance degradation. In multiwavelength 

WDM optical systems the inter-channel crosstalk originated by fiber nonlinearity, such as 

cross-phase modulation (XPM) and four-wave mixing (FWM), is a limiting factor. To 

maximize the WDM network capacity, the system’s design and optimization have to take 

into account all the contributing factors - such as the channel data rate, transmission 

distance, signal optical power, fiber linear and nonlinear optical effects and, of course, the 

channel interval [Venghaus, 2006]. In a HDWDM system the last factor is the most 

important for a high-quality solution which depends directly on the optical filters. 

2.2 Optical filters for HDWDM systems 

The wavelength filters in optical transmission systems are a special subgroup of physical 
components defined in such a way that they select or modify parts of the signal spectrum. In 
fact, the optical wavelength filters are defined as referred to the modifications that they 
induce in the frequency spectrum. In electronic systems, relevant filters play a crucial role in 
numerous signal processing applications. Similarly, optical filters play an equally crucial 
role in the optical domain [Venghaus, 2006, Kaminow et al., 2008]. 

Multiplexing and de-multiplexing functions are performed by narrowband filters, cascaded 

and combined in various ways to achieve the desired result. The filters in optical HDWDM 

transmission systems are classified into the following types: notch filters, power 

equalization filters, all-pass filters and band-pass filters [Szodenyi, 2004]. 

As was said above in sub-section 2.1, band-pass filters (BPFs) transmit optical power within a 
definite wavelength window only, and reflect or absorb the rest. The bandwidth of an optical 
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BPF typically depends on the optical transmission system type [Venghaus, 2006]. For example, 
in HDWDM the sharpness of the optical BPF amplitude transfer function is of great importance, 
while in the coarse wavelength division multiplexing (CWDM) it is a minor factor because of a 
wide frequency interval between the adjacent channels. In these systems the major role is 
played only by the optical BPF bandwidth, and in the DWDM systems also the shape of the 
amplitude and phase transfer function should be taken into account. Although different kinds 
of filters are necessary in a HDWDM transmission system, BPFs are by far the most important, 
since they are prerequisite for add and drop, multiplex, interleave and routing functionalities 
which are essentials for a HDWDM transmission system realization [Agrawal, 2001].  

Travelling through a multiple optical BPF, the optical signal experiences spectral narrowing 
due to temperature instability of filtering devices and to central frequency fluctuations of 
light sources, which could be the main factor of degradation in future transmission systems. 
Therefore, it is necessary to find out the minimal filter’s full width half maximum (FWHM) 
which ensures appropriate quality of transmitted data signals. Still, the filter bandwidth is 
not the exclusive parameter of which we need to be aware: the phase transfer function of 
optical band-pass filters is also of great importance for transmitting information via 
HDWDM transmission systems. 

It is possible to employ three different transfer functions of the optical filter (see Fig. 4) for 
realization of HDWDM system schemes. These functions were chosen because with the 
Lorentzian optical filter’s transfer function we can approximate: Fabry Perrot filters, micro- 
ring resonators; raised cosine filters: arrayed waveguide gratings with flat tops, diffraction 
gratings, and particular cases of thin film filters and fiber Bragg gratings (with apodization); 
supergaussian filters: arrayed waveguide gratings with supergaussian transfer function, and 
thin film filters with low refraction index modulation [Venghaus, 2006]. 
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Fig. 4. First-order amplitude transfer (a) and group delay (b) functions of different optical 
filters shown in the inset (with FWHM bandwidth 0.4 nm or 50 GHz).  
The graphs are obtained by/using OptSim simulation software. 

As is seen from Fig. 4b, the greater group delay is for the Raised Cosine optical band-pass 
filter whose amplitude characteristics are the closest to an ideal filter’s amplitude 
parameters. The ideal amplitude transfer function of a band-pass filter has an almost 
rectangular shape, providing a perfect transmission (without distortion) of the whole signal 
within the filter bandwidth, and cutting undesired signals out of the band [Venghaus, 2006]. 
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3. Performance evaluation criteria  

The right choice of the performance evaluation criteria for characterizing the optical 
transmission lines is one of the key issues in designing efficient high-speed systems. The 
evaluation criteria should provide precise determination and separation of dominant system 
limitations, which is crucial for suppressing the propagation disturbances. They should also 
provide comparison of experimental and numerical data to verify the numerical models 
applied. 

3.1 Evaluation of bit error ratio (BER) 

The bit error ratio (BER) evaluation is a straightforward and relatively simple method for 
performance evaluation based on counting the errors in the received bit streams. The error 
counting in a practical system with a transmission speed greater than 1 Gbit/s can be a long 
process, especially for realistically low BER values (< 10–9). For investigation of performance 
of an optical transmission system by simulation, several effective statistical methods have 
been developed [Binh, 2009]. 

Conventional methods of Q-factor and hence BER calculation are based on the assumption 

of Gaussian noise distribution. However, new methods relying upon statistical processes 

with account for the distortion dynamics of optical fibers are necessary in order to include 

the common patterning effects.  

The former statistical technique employs the expected maximization theory in which the pdf 

of the detected electrical signal is approximated as a mixture of multiple Gaussian 

distributions.  

The latter technique is based on the generalized extreme values (GEV) theorem [Bierlaire et 

al., 2007, Markose & Alentorn, 2007]. Although this theorem is well-known in other fields 

(financial forecasting, meteorology, material engineering, see e.g. [Kotz & Nadarajah, 2000] 

to predict the probability of occurrence of extreme values, it has not yet been applied in 

optical communications.  

Exactly as the BER set used in experimental transmission, the BER in the simulation of a 

particular HDWDM system configuration is calculated. In this case the BER is the ratio of 

the occurrence of errors (Nerror) to the total number of transmitted bits (Ntotal) and given as: 

ܴܧܤ  = 	 ୒೐ೝೝ೚ೝே೟೚೟ೌ೗  (1) 

The Monte-Carlo method offers a precise picture via the BER metric for all modulation 

formats and receiver types. The optical system configuration under a simulation test must 

include all the sources of impairments imposing on signal waveforms, including fiber 

impairments and amplified spontaneous emission (ASE) [Binh, 2009].  

3.2 Optical signal-to-noise ration (OSNR)  

The optical signal-to-noise ratio (OSNR) is a widely used evaluation criterion for 
characterizing the system performance in already deployed transmission lines. The 
optical noise created by transmission media and devices around an optical signal reduces 
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the receiver’s ability to correctly detect the signal. This effect can be suppressed by an 
optical filter placed before the optical receiver. Depending on the amplifier infrastructure 
used in a transmission system, the OSNR is proportional to the number of optical 
amplifiers and to the gain flatness of a single amplifier. This latter can be an especially 
critical issue in HDWDM systems, because of the gain non-uniformity in multi-span 
transmissions.  

In practice, the OSNR can be found by measuring the signal power as the difference 

between the total power of the signal peak and the background noise; this latter, in turn, is 

determined by measuring the noise contributions on either side of the signal peak. 

However, it is difficult to separate measurements of the signal and noise power, because the 

latter in an optical channel is included in the signal power. The determination of this 

parameter in a HDWDM system can be made by interpolating it between the adjacent 

channels [Binh, 2009].  

For a single EDFA with output power, Pout, the OSNR is given by [Jacobsen, 1994]: 

 ܱܴܵܰ = ௉೚ೠ೟ேಲೄಶ = ௉೚ೠ೟൫ேிீ೚೛ିଵ൯௛௩஻೚	,	 (2) 

where NF is the amplifier noise figure, Gop is the optical amplifier gain, hv is the photon 

energy, and Bo is the optical bandwidth found by measurement. However, OSNR does 

not provide good estimation to the system performance when the main degrading 

sources involve the dynamic propagation effects such as dispersion and Kerr 

nonlinearity effects.  

When addressing the value of an OSNR, it is important to define the optical measurement 
bandwidth over which the OSNR is calculated. To obtain this value, the signal power and 
noise power are derived by integrating all the frequency components over the bandwidth 
[Rongqing & O’Sullivan, 2009].  

In practice, the signal and noise power values are usually measured directly, using the 

optical spectrum analyzer (OSA), which does the mathematics for the users and displays the 

resultant OSNR versus wavelength or frequency over a fixed resolution bandwidth. The 

value of Δλ = 0.1 nm at 1550 nm, is widely used as a typical value for calculation of the 

OSNR. 

4. HDWDM system experimental and simulation models 

Our experimental transmission system (see Fig. 5) employs two optical channels with 

external intensity modulation (IM), and non-return-to-zero (NRZ) pulse shapes. The laser is 

always switched on and its light waves are modulated via the electro-optic MZM by output 

of data pulse sequence of a pulse pattern generator (PPG), using the principles of 

interferometer constructive and destructive interference to achieve ON and OFF of the light 

waves. After the MZ modulator the signal is sent to a single-mode fibre (SMF), where 

optical pulses are propagating over a 40 km distance. The utilized fiber has a large core 

effective area of 80 μm2, attenuation ǂ = 0.2 dB/km, nonlinear refractive coefficient nk = 

2.5·10-20 cm/W and dispersion 16 ps/nm/km at the reference wavelength λ = 1550 nm 

[Kaminow et al., 2009]. 
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Fig. 5. The setup used for investigation of HDWDM transmission [Bobrovs et al., 2010]. 

At the fibre end each channel is optically filtered with an Anritsu Xtract tunable optical filter 
(see Fig. 6). An essential parameter of such a filter is its centering on the signal to be 
extracted. Its position has to be adjusted regarding the signal harmonics [Ivanovs et al., 
2010].  

The Anritsu Xtract tunable optical band-pass filter covers all transmission bands of a 
standard single mode optical fiber. The filter operates in the range of 1450-1650 nm, 
covering the E, S, C and L bands and, partially, the U band. The main drawback of this BPF 
is 6 dB insertion losses, which is a limiting factor in realization of high-speed HDWDM 
transmission systems for moderate distances without optical amplifiers. 

 

Fig. 6. The measured amplitude responses of the Anritsu Xtract tunable optical band-pass 
filter at different FWHM values. 
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To evaluate the output signal characteristics, an optical direct-detection receiver was used, 
with an electrical fourth-order Bessel–Thomson electrical filter having a 3 db bandwidth of 
7.5 GHz. In practice, a 40 km span is preferred by most network providers since it allows a 
compromise between the system’s costs and its performance [Binh, 2009]. 

For the performance evaluation and optimization of the experimental HDWDM system it is 
necessary to analyze the optical and electrical signal quality before MZM, after MZM and after 
SMF. The choice of arbitrary units on the Y-axis in the eye diagrams was purposeful – to make 
them more general in the cases when the plotted electrical quantity is current or voltage. 

As a result, we have designed a HDWDM transmission system with a variable data 
transmission speed up to 12.5 Gbit/s, the channel interval up to 12.5 GHz and optical power 
up to 23 dBm. In Fig. 7 one can see 2.5 Gbit/s HDWDM transmission systems with 18.75 
GHz and 25 GHz channel interval. As follows from the results, reducing the channel 
interval to 18.75 GHz gives rise to Kerr’s effect, which degrades the 2.5 Gbit/s signal quality. 
The signal eye-pattern overlaps with the mask (see Fig. 7c), which means that the signal 
quality does not ensure the BER=10–9 value. To obtain a system with an appropriate BER we 
should reduce the data transmission speed or increase the channel interval. As can be seen 
from Fig. 5, the 25 GHz channel interval ensures a good signal quality, and the signal eye-
pattern in this case does not overlap with the mask. 

 

Fig. 7. Output optical signal spectra and eye-patterns with defined masks for 2.5 Gbit/s 
system: a) common optical spectra, b) signal optical spectrum after filtering, c) eye-pattern. 
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Fig. 8. Simulation model of HDWDM system.  

In compliance with the experimental model we have created a simulation scheme (see Fig. 8) 
using OptSim software with the real parameters of all experimental devices. The accepted 
method of calculation is based on solving of a complex set of differential equations, taking 
into account optical and electrical noise as well as linear and nonlinear effects. We have used 
a model where signals are propagating as time domain samples over a selectable bandwidth 
(in our case, a bandwidth that contains all channels). 

The Time Domain Split Step (TDSS) method was employed to simulate linear and nonlinear 
behavior for both optical and electrical components. The split step method is now used in all 
commercial simulation tools to perform the integration of a fiber propagation equation that 
can be written as [Binh, 2009]: 

 
     ,

,
A t z

L N A t z
z


 


 (3) 

Here  ,A t z  is the optical field, L is the linear operator that stands for dispersion and other 

linear effects, and N is the operator that is responsible for all nonlinear effects. The idea is to 

calculate the equation over small spans z  of fiber by including either a linear or a nonlinear 

operator [Belai et al., 2006]. For instance, on the first span only linear effects are considered, on 

the second – only nonlinear, on the third – again only linear ones, and so on. Two ways of 

calculation are possible: frequency domain split step (FDSS) and the above-mentioned time 

domain split step (TDSS) method. These methods differ in how linear operator L is calculated: 

FDSS does it in a frequency domain, whereas TDSS – in the time domain, by calculating the 

convolution product in sampled time. The first method is easy to fulfill, but it may produce 

severe errors during computation. In our simulation we have employed the second method, 

TDSS, which, despite its complexity, ensures an effective and time-saving solution. 

5. Results and discussions 

Fig. 9 shows the spectral and eye diagrams in a simulative HDWDM communication system 
with 2.5 Gbit/s transmission speed per channel after a signal’s detection. It is seen there that in 
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the four-channel case the allowed interval is 12.5 GHz or 0.1 nm, with BER meeting the 
standard (< 10-9). If we raise the number of channels to 8, the output signal quality worsens; 
therefore, the channel interval should be raised up to 18.75 GHz (see Fig. 9). In turn, in the 16-
channel case a successful transmission is possible only using 25 GHz (or 0.2 nm) channel 
spacing. This is the optimal channel interval, which allows multiplexing the signals in a 
HDWDM system with a channel number exceeding 16. Further increase in the channel 
number would not change the chosen frequency interval (see Fig. 9). Considering the 25 GHz 
frequency interval as the chosen one, it is possible to upgrade the existing WDM 
communication systems with a 2.5 Gbit/s transmission speed per channel without increasing 
this speed while decreasing the channel interval down to the estimated value and adding 
signals to the freed frequency range, thus realizing an HDWDM transmission system.  

 

Fig. 9. 22.5 Gbit/s HDWDM communication system with 4/8/16 channels and 
12.5/18.75/25 GHz frequency intervals. The output spectrum of optical signal is shown after 
a 40 km SSMF line 

The fundamental limitation in the high-speed (over 2.5 Gbit/s per channel) systems is set by the 
total dispersion in the fiber optical transmission (FOTS) lines. Without managing the dispersion, 
the FOTS operation with a 10 Gbit/s transmission speed per channel is limited to the line length 
from 40 km to 50 km. Fig. 10 shows the eye diagrams and output signal spectra in HDWDM 
communication systems with 10 Gbit/s transmission speed for different frequency intervals.  

From Fig. 10 it is seen that a WDM communication system with a 10 Gbit/s transmission 
speed per channel and a frequency interval of 50 GHz could be optimized. In the four-channel 
case a decrease in the frequency interval to 31.25 GHz ensures a satisfactory BER value. 
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Fig. 10. 10 Gbit/s HDWDM communication system with 4/8/16 channels and 
31.25/37.5/37.5 GHz frequency intervals. The output spectrum of the optical signal and eye 
diagrams are shown for the end of a 40 km SMF line. 

With the number of channels increasing this value also increases. As a result, the optimal 
channel spacing in WDM systems with a 10 Gbit/s transmission speed per channel is 37.5 
GHz; the possibility exists to provide a high-quality transmission of signals over 40 - 50 km 
(see Fig. 11).   

 

Fig. 11. Output optical signal spectra and eye-patterns with defined masks for 10 Gbit/s 
system: a) common optical spectra, b) signal optical spectrum after filtering, c) eye-pattern. 
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In the process of investigation it has been established that the operators of 
telecommunication networks when using a WDM communication system's facilities are 
raising its total transmission speed gradually, depending on the requested information 
volume, adding new channels with different  transmission speeds (2.5 Gbit/s or 10 Gbit/s ), 
different coding formats (NRZ, RZ or Duobinary) and variable frequency intervals (12.5 
GHz, 25 GHz, 50 GHz, or 100 GHz); all this can result in the spectral overlapping and 
increased BER of the signal. We therefore have estimated the possibilities of a mixed 
HDWDM communication system applying different signal coding techniques (NRZ, RZ and 
Duo) in each channel (see Fig. 12).  

  

Fig. 12. A mixed scheme of the WDM communication system. The NRZ, RZ and Duobinary 
(Duo) intensity modulation formats are applied for the 2.5 Gbit/s and 10 Gbit/s signal 
transmission  

The design with a transmitter unit containing three combined channels is the simplest 
model, in which between two NRZ signals the RZ or Duo signals are located. The NRZ 
signal format is chosen as a base, since it is the format preferred by the majority of 
telecommunication operators. Further, the operation of a mixed HDWDM communication 
system was subjected to scrutiny, changing the transmission speed from 2.5 Gbit/s to 10 
Gbit/s per channel and the channel interval in a wide range − from 12.5 GHz to 100 GHz. 
Fig. 13 shows the potential of NRZ-RZ-NRZ mixed HDWDM systems (with only successful 
signal transmission displayed). The transmission speed used for each signal is 2.5 Gbit/s. In 
such a case the minimum channel interval is to be equal to or greater than 25 GHz. Only 
under such conditions a successful realization (i.e. with BER < 10-9) is possible for a mixed 
HDWDM communication system with NRZ-RZ-NRZ signals.  

When creating a mixed HDWDM communication system based on NRZ-RZ-NRZ formats of 
signals with a 10 Gbit/s transmission speed per channel it is possible to multiplex the 
signals with a 50 GHz frequency interval, since the quality of the output signal meets in this 
case the BER standard (see Fig. 14). Reducing the channel interval still further would impair 
the signal's characteristics. This means that the least frequency interval for the mixed NRZ-
RZ-NRZ HDWDM communication system under consideration is 50 GHz.  
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Fig. 13. A 2.5 Gbit/s mixed HDWDM communication system with NRZ-RZ-NRZ signals 
and a 25 GHz frequency interval. The output spectrum of the optical signal and the eye 
diagrams of the received electrical signal are shown 

This done, the operation of a mixed HDWDM communication system with NRZ-Duobinary-
NRZ signal formats was studied for a 2.5 Gbit/s transmission speed per channel. The 
conclusion was that it is possible to compact the signals with a 12.5 GHz frequency interval 
and a proper BER (< 10-9); this is two times more compact than in the NRZ-RZ-NRZ case, 
which would provide a highly efficient use of the spectrum (see Fig. 15). 

 

Fig. 14. A 10 Gbit/s mixed HDWDM communication system with NRZ-RZ-NRZ signals and 
a 50 GHz frequency interval. The output spectrum of the optical signal and the eye 
diagrams of the received electrical signal are shown. 
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Fig. 15. A 2.5 Gbit/s mixed HDWDM communication system with NRZ-Duobinary-NRZ 
signals and a 12.5 GHz frequency interval. The output spectrum of the optical signal and the 
eye diagrams of the received electrical signal are shown. 

www.intechopen.com



 
Realization of HDWDM Transmission System with the Minimum Allowable Channel Interval 207 

 

Fig. 16. A 10 Gbit/s mixed HDWDM communication system with NRZ-Duobinary-NRZ 
signals and an 18.75 GHz frequency interval. The output spectrum of the optical signal and 
the eye diagrams of the received electrical signal are shown 

At the same time, the increase in the transmission speed from 2.5 Gbit/s to 10 Gbit/s in a 
mixed NRZ-Duo-NRZ HDWDM communication system leads to frequency interval rising 
up to 18.75 GHz, which, as compared with the results for a NRZ-RZ-NRZ system provides a 
highly efficient exploitation of the spectrum (see Fig. 16). 

6. Conclusions 

Our results have proved once more that HDWDM is a powerful technique for increasing the 
capacity of fiber optics transmission systems. It may be crucial for enabling technology of 
ultra-high capacity on-chip optical interconnects, as well as chip-to-chip optical 
interconnects in massively parallel different optical systems. It has been shown that the BER 
and eye-diagram technique is a good means for evaluating the system performance that 
allows HDWDM system to be optimized for different parameters. 

In contrast to the conventional high speed approach of increasing WDM transmission 
capacity, we have demonstrated the minimal allowed channel spacing in HDWDM systems, 
and provided we are able to provide recommendations for future HDWDM solutions. 

In the measurements, different optical filter FWHM values (from 0.15 nm to 0.7 nm) were 
used. The best results were obtained for 0.15 nm, when the eye pattern was opened wider. 
For evaluation of the signal quality a visual method was employed, in which the eye pattern 
was evaluated visually in the electric signal analyser varying the quasi-rectangular optical 
filter FWHM value.  

At reducing the channel interval to 18.75 GHz the Kerr effects (self-phase modulation, cross- 
phase modulation, and four-wave mixing) degrades the 2.5 Gbit/s HDWDM system. The 
signal eye-pattern overlaps with the mask, which means that the signal quality does not 
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ensure in this case the BER value of 10-9. From the measurement results it follows that the 25 
GHz channel interval ensures a good signal quality and that the signal eye-pattern does not 
overlap with the mask. 

At 10 Gbit/s HDWDM transmission the channel interval should be 37.5 GHz to ensure the 
signal quality with the BER value of 10-9, which fits well the previous simulation results. 

It is established that the operators of telecommunication networks, when creating the 
HDWDM communication systems, raise the total transmission speed step-by-step in 
response to the increased request for the data volume. As a result, a mixed HDWDM system 
is formed, with different transmission speeds (2.5 Gbit/s or 10 Gbit/s), coding formats 
(NRZ, RZ or Duobinary) and frequency intervals (12.5 GHz, 25 GHz, 50 GHz, 100 GHz). 
Therefore, in order to ensure stabile functioning (i.e. BER < 10-9 for each signal) of a mixed 
HDWDM system the channel interval should exceed 25 GHz at a 2.5 Gbit/s transmission 
speed per channel. In turn, for stabile operation of a mixed 10 Gbit/s WDM system the 
frequency interval should be raised to 50 GHz.   

The Duobinary technique for signal coding ensures a better protection of the transmitted 
signals against Kerr effects as compared with the RZ coding. This allows a highly compact 
NRZ-Duobinary-NRZ system to be formed with the 12.5 GHz frequency interval and 2.5 
Gbit/s transmission speed per channel. In turn, in the case of a 10 Gbit/s transmission speed 
per channel it is possible to use an 18.75 GHz frequency interval. 
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