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1. Introduction   

Since the first scanning electron microscope by Knoll (1935) and theoretical developments 
by von Ardenne (1938a, b) in the 30’s, this imaging technique has been widely used by 
generations of searchers from all the scientific domains to characterize the inner structure of 
matter. Even if the obtained information is essential for matter description or 
comprehension of matter transformation, the main constraints associated with classical 
electron microscopy, i.e. the necessity to work under vacuum and the necessity to prepare 
the sample before imaging, have always limited the possibilities to “post mortem” 
characterisation of samples and avoided observation of biological samples. 

Electron microscopists early identified the necessity to undergo these limits. The development 
of a SEM chamber that is capable of maintaining a relatively high pressure and that allows 
imaging uncoated insulating samples began in the 70’s and has been “achieved” in the late 90’s 
– early 00’s (Stokes, 2008) with the commercialisation of the low-vacuum and environmental 
SEM. The availability of new generations of electron guns (and more particularly the field 
effect electron gun characterized by a very intense brightness), as well as the new generation of 
electronic columns that are now commonly associated with the environmental scanning 
electron microscopes opens new possibilities for material characterisation up to the nanometer 
scale. The development of this generation of microscopes have opened the door for 
performing real time experiments, using the electron microscope chamber as a microlab 
allowing direct observation of reactions at the micrometer scale. Many SEM providers or 
researchers have developed specific stages that can be used for the in situ experimentation in 
the scanning electron microscope chamber. This field is one of the most interesting uses of the 
ESEM that offers fantastic opportunities for matter properties characterisation. Even if 
numerous recent articles and reviews are dedicated to in situ experimentation in the VP/ESEM 
(Donald, 2003 ; Mendez-Vilas et al., 2008 ; Stokes, 2008 ; Stabentheiner et al., 2010 ; Gianola et 
al., 2011 ; Torres & Ramirez, 2011), no one describes all the possibilities of this technique. The 
present chapter will provide a large – and as exhaustive as possible – overview of the 
possibilities offered by the new SEM and ESEM generation in terms of “in situ experiments” 
focussing specifically on the more recent results (2000-2011).  

This chapter will be split into five parts. We will first discuss the goals of in situ 
experimentation. Then, specific parts will be devoted to in situ mechanical tests, experiments 
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under wet conditions, and a forth part dedicated to high temperature experiments in the 
SEM. Last, a specific part will be devoted to the “future” of in-SEM experiments. In each 
part, the main limits of the technique as well as the detection modes will be reported. Each 
part will be focussed on examples of the use of the technique for performing in situ 
experiments. 

2. Goals and implementation requirements of in situ experimentation 

The main goal of in situ experimentation in the SEM (or ESEM) chamber is to determine 
properties of matter through the study of its behaviour under constraint. This requires the 
combination of data collection over a given duration (on a unique sample) and image 
treatment for information extraction. The studied properties are generally related to 
microscopic phenomena and hardly assessable by other techniques. In situ experiment in the 
SEM chamber corresponds to both imaging systems in evolution under a constraint and 
imaging systems stabilized under controlled conditions. 

To achieve this goal, several requirements are necessary: 

• The duration of the phenomenon to be observed must be suitable with the image 
recording time. If the system evolution is too fast, it will be impossible to record several 
images and observe this evolution. At the contrary, if the reaction kinetic is low, the 
time necessary for image recording will be too long and incompatible with 
experimentation. The high and low limits can be estimated ranging between 2 minutes 
and 48 hours. 

• The system must remain stable under the environmental conditions and/or irradiation 
by the electron beam during the time necessary for image recording. In the case of 
easily degradable samples, it is necessary to adjust the imaging conditions (high 
voltage, beam current, aperture, working distance, detector bias…) constantly, as the 
sample environmental conditions are modified during the experiment. Thus, the effect 
of the electron beam on the sample morphology modifications must be verified. Some 
authors report that it can act as an accelerator (Popma, 2002) or inhibitor (Courtois et al., 
2011) of the observed reactions. 

• The image resolution must fit well with the size of details to be observed. 
Improvements in the image resolution have been achieved in the last decade thanks to 
the field effect emission guns. However, the presence of gas in the VP-SEM/ESEM 
chamber contributes to the incident electron beam scattering and subsequent 
degradation of the image resolution. Thus, the acquisition conditions must be adapted 
to the sample to be studied depending on the higher magnification to be reached. 

• The gaseous environmental conditions in which the studied system evolutes (or can be 
stabilized) must be reproduced in the SEM/LV-SEM/ESEM chamber. The development 
of the ESEM offers real new opportunities in term of composition of the atmosphere 
surrounding the sample. The large field detector and the gaseous secondary electron 
detector (Stokes, 2008) have been developed specifically for imaging under “high 
pressure” conditions (up to 300Pa and 3000Pa respectively) whatever the gas 
composition (air, water, He, He+H2 mixtures, O2). Other detectors have been developed 
for very specific applications (high temperature under vacuum (Nakamura et al., 2002), 
EBSD at high temperature (Fielden, 2005)). 
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• The constraint in which the studied system evolutes (or can be stabilized) must also be 
reproduced in the microscope chamber. Some devices are commercialized by official 
sellers. Among them, we must report the Peltier stage for temperature control in the -10 
to 60°C range, hot stages for temperature control up to 1500°C, stages for mechanical 
tests (Figure 1). Some authors have developed their own specific stages adapted to the 
problem to be treated (Fielden, 2005; Bogner et al., 2007). However, the development of 
miniaturized stages that can be positioned in the SEM chamber without creating 
perturbations on the incident electron beam can be really challenging. This will 
probably be a key in the development of in situ experimentation in the next years 
(Torres & Ramirez, 2011). 

 

a  b  

Fig. 1. a) hot stage  (FEI) b) Hot tension/compression stage integrated into an SEM 
(Kammrath & Weiss Co.) (After Biallas & Maier, 2007 ; Gorkaya et al., 2010). 

The basis of in situ experimentation in the SEM is the study of the morphological 
modifications of the sample under constraint. Thus, this requires recording of numerous 
high quality images for image post treatment and data extraction in order to characterize the 
reaction or matter properties. The sample size can vary from 1µm to 50mm, and the image 
resolution is in the 1-10nm range, depending on recording conditions. The images are SEM 
images, i.e. with a large depth of field and with grey level contrasts. In-SEM 
experimentation can be extended to a wide range of applications, corresponding to very 
different materials (plants (Stabentheiner et al., 2010), food (Thiel et al., 2002 ; James, 2009), 
paper (Manero et al., 1998), soft matter, polymers, metals, ceramics, solids, liquids…) or 
problems (plant behaviour, chemical reactivity, properties characterization, sintering, grain 
growth, corrosion…). In the literature, the main part of the data reported has been acquired 
using an environmental scanning electron microscope. 

3. In situ mechanical tests 

Boehlert (2011) have recently underlined the interest of performing in situ mechanical tests 
in the SEM and summarized it as follows. “In situ scanning electron microscopy is now 
being routinely performed around the world to characterize the surface deformation 
behavior of a wide variety of materials. The types of loading conditions include simple 
tension, compression, bending, and creep as well as dynamic conditions including cyclic 
fatigue with dwell times. These experiments can be performed at ambient and elevated 
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temperatures and in different environments and pressures. Most modern SEMs allow for 
the adaptation of heating and mechanical testing assemblies to the SEM stage, which allows 
for tilting and rotation to optimal imaging conditions as well as energy dispersive 
spectroscopy X-ray capture. Perhaps some of the most useful techniques involve acquisition 
of electron backscatter diffraction (EBSD) Kikuchi patterns for the identification of 
crystallographic orientations. Such information allows for the identification of phase 
transformations and plastic deformation as they relate to the local and global textures and 
other microstructural features. Understanding the microscale deformation mechanisms is 
useful for modeling and simulations used to link the microscale to the mesoscale behavior. 
In turn, simulations require verification through in situ microscale observations. Together 
simulations and in situ experimental verification studies are setting the stage for the future 
of material science, which undoubtedly involves accurate prediction of local and global 
mechanical properties and deformation behavior given only the processed microstructural 
condition”.  

As a direct consequence of the great interest of the collected information, many different 
works from several scientific domains have been published for long. Thiel & Donald (1998) 
and Stabentheiner et al. (2010) describe the deformation of plants (carrots and leaves 
respectively) during room temperature tensile tests performed in the ESEM chamber. 
Similar tests are also reported with food (Stokes & Donald, 2000) and they are regularly 
performed on polymers (Poelt et al., 2010; Lin et al., 2011), composites (Schoßig et al., 2011) 
and metals (Boehlert et al., 2006; Gorkaya et al., 2007). Mechanical tests on metals, alloys and 
ceramics can also be performed at high temperature (Biallas & Maier, 2007; Chen & Boehlert, 
2010). High temperature EDSB, developed by Seward et al. (2002), offers the possibility to 
observe phase transformations in materials as a function of temperature, as well as the direct 
visualization of the associated microstructural modifications (Seward et al., 2004). 

 

c 

Fig. 2. (a) & (b) Single cell surgery without cell bursting using Si-Ti nanoneedle , (c) Force-
cell deformation curve using Ti-Si and W2 nanoneedles at three different stages, i.e. (a) 
before penetration, (b) after penetration and (c) touching the substrate. (Ahmad et al., 2010). 

www.intechopen.com



 
In Situ Experiments in the Scanning Electron Microscope Chamber 

 

35 

Several recently developed techniques allow characterizing materials at the nanometer scale 
through both technological miniaturization and advancements in imaging and small-scale 
mechanical testing. Ahmad et al. (2010) have developed a coupled ESEM-atomic force 
microscope to characterize single cells mechanical properties (Figure 2). This ESEM-
nanomanipulation system allowed determining effects of internal influences (cell size and 
growth phases) and external influence (environmental conditions) on the cell strength. 
Gianola et al. (2011) reports the development of a quantitative in situ nanomechanical testing 
approach adapted to a dualbeam focused ion beam and scanning electron microscope. In 
situ tensile tests on 75 nm diameter Cu nanowhiskers as well as compression tests on 
nanoporous Au micropillars fabricated using FIB annular milling are reported, the scientific 
question being the mechanical behaviour of nanosize materials. Both examples probably 
represent what will be the future of in situ mechanical tests using scanning electron 
microscopes. 

4. In situ experimentation under wet conditions 

4.1 Conditions for experimentation 

Combination of the use of the ESEM and a Peltier stage with the development of specific 
detectors allows the possibility to control both specimen temperature and water pressure 
around the sample (Leary & Brydson, 2010). Water can be condensed or evaporated on the 
demand from the sample (Figure 3). This allows performing in situ experiments in a 
temperature-pressure domain that is reported on Figure 3a (dot zone). An easy to perform 
experiment, illustrated by a 6 images series, corresponding to the NaCl dissolution (during 
the increasing of the water pressure in the ESEM chamber and consecutive water 
condensation, at constant temperature) in water followed by the crystallization of NaCl 
(decrease of the water pressure) is reported on Figure 3b. This example corresponds to an 
“isothermal experiment”. Another ways to work are to perform isobar experiments or to 
heat or cool a sample using a constant relative humidity (iso-RH experiments). These 
techniques allow the characterization of structural transitions of hydrated samples as a 
function of temperature (Bonnefond, 2011).  

4.2 Biology and soft matter applications 

This technique is particularly well adapted for the observation or experimentation on 
biological samples (Muscariello et al., 2005). Images of small and highly hydrated samples 
such as liposomes have been obtained by several authors (Perrie et al., 2007 ; Ruozi et al;, 
2011) without any particular sample preparation. Perrie et al. (2007) have also been able to 
dynamically follow the hydration of lipid films and changes in liposome suspensions as 
water condenses onto, or evaporates from, the sample in real-time. The data obtained 
provides an insight into the resistance of liposomes to coalescence during dehydration, 
thereby providing an alternative assay for liposome formulation and stability (Perrie et al., 
2010). However, Kirk et al. (2009) report that ESEM imaging of biological samples must 
remain combined with the classical techniques for sample preparation. Several works are 
specifically dedicated to in situ experimentation. Stabentheiner et al. (2010) state that “one 
unrivaled possibility of ESEM is the in situ investigation of dynamic processes that are 
impossible to access with CSEM where samples have to be fixed and processed”. These 
authors have studied the anther opening that is a highly dynamic process involving several 
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tissue layers and controlled tissue desiccation. This phenomenon can be observed because 
the sample is very stable under the ESEM conditions (Figure 4). Another recent study is 
relative to the closure of stomatal pores by Mc Gregor & Donald (2010). Even if the 
possibility for experimentation on biological samples is clearly demonstrated, the authors 
outline the fact that the electron beam damages are important even at low accelerating 
voltage (Zheng et al., 2009). Another surprising example that can be reported is the direct 
observation of living acarids available online: in the movie, colonies of acarids are directly 
observed in the ESEM chamber under several conditions (FEI movie). 

 

 

Fig. 3. (a) Simplified phase diagram for water indicating the ESEM domain (dot zone) and 
schemes to understand how isothermal or isobar experiments are performed.  
(b) Solubilisation and crystallization of NaCl directly observed in the ESEM chamber. 
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Fig. 4. In situ anther opening of C. angustifolia observed in LV-ESEM. 1) At the beginning, 
the valves of the anther are closed; 2) opening starts at the end of the stomium; 3) polyads 
are already seen; 4) opening proceeds till the valves are completely bent back and all eight 
polyads are presented (scale bar = 100µm). Time span from 1) to 3) was 25 min; 4) imaged 1 
h after the start of the opening process (after Stabentheiner et al., 2010) 

4.3 Applications on cements 

Several works have been performed in order to study the reactivity of cement materials 
versus humidity. Hydration or dehydration (Sorgi & De Gennaro, 2007; Fonseca & Jennings, 
2010; Camacho-Bragado et al., 2011) of phases have been followed and used to extract 
kinetic parameters (Montes-Hernandez, 2002 ; Montes & Swelling, 2005 ; Maison et al., 
2009), as reported on Figure 5. In this work, the author uses ESEM image series to determine 
a three-step mechanism for bentonite aggregates evolution with relative humidity 
corresponding to an arrangement of particles followed by a particle swelling and a full 
destructuration. In SEM experiments are also used to characterize chemical reactivity 
(Camacho-Bragado et al., 2011). It has been recently used to characterize reaction of fly ash 
activated by sodium silicate by Duchene et al. (2010). These authors have determined very 
accurately the different steps of the reaction determining that the sodium silicate activator 
dissolves rapidly and begins to bond fly ash particles. Open porosity was observed and it 
was rapidly filled with gel as soon as the liquid phase is able to reach the ash particle. The 
importance of the liquid phase is underlined as a fluid transport medium permitting the 
activator to reach and react with the fly ash particles. The reaction products had a gel like 
morphology and no crystallized phase was observed.  

4.4 Hydration and dehydration experiments 

As previously reported for liposomes, new opportunities for the study of polyelectrolyte 
microcapsules versus their resistance to relative humidity and temperature modifications 
are opened and under consideration. The image series reported on Figure 6 clearly illustrate 
the possibility to image the native soft capsule at high relative humidity without any 
deformation. When decreasing the water pressure near the capsule, the object is deformed 
and do not shrink as observed when it is heated in water at temperature higher than 25°C 
(Basset et al., 2010). Thus, the walls of the object do not rearrange but collapse when 
submitted to a relative humidity decrease.  

Similar tests have been performed on self-organized metal-organic framework compounds 
(Bonnefond, 2011). According to the image series reported on Figure 7, when the water 
pressure decreases, the size of sample remains constant up to a given water pressure (i.e. 
relative humidity) and for a transition pressure, the sample size decreases regularly. This 
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can be associated to a local reorganisation in the sample that corresponds to a water loss 
associated to the sample collapsing The enthalpy of water ordering in the sample can be 
derived from the recorded image series as reported by Sievers et al.  

 
Fig. 5. Swelling kinetics of raw bentonite aggregates scale using ESEM-digital image 
analyses coupling (after Montes & Swelling, 2005).  

 

 

Fig. 6. ESEM micrographs of polyelectrolyte microcapsules suspended in double distilled 
water. Microcapsules were subjected to controlled dehydration in the ESEM sample 
chamber at T=5°C. At an operating pressure of 800Pa, vesicles appeared as spherical 
structures. (a) Gradual decrease of the operating pressure to 350 Pa showed regular 
deformation of the microcaspsules (b to h) 
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Fig. 7. Dehydration experiments performed on self-assembled organo-metallic compounds 
at T=22°C and corresponding size modification versus water vapour pressure (Bonnefond, 
2011). 

The effect of dehydration on lamellar bones was also studied by in situ ESEM experiments 
(Utku et al., 2008). The obtained results indicate that dehydration affects the dimensions of 
lamellar bone in an anisotropic manner in longitudinal sections, whereas in transverse 
sections the extent of contraction is almost the same in both the radial and tangential 
directions. 

An original work on the heterogeneous ice nucleation on synthetic silver iodide, natural 
kaolinite and montmorillonite particles has been performed using the “increasing water 
pressure at constant temperature” (Zimmermann et al., 2007) in the temperature range of 
250–270 K. Ice formation was related to the chemical composition of the particles. The 
obtained data are in very good agreement with previous ones obtained by diffusion 
chamber measurements (Figure 8). 

4.5 Characterization of surface wetting properties 

Characterization of the wetting properties of surfaces through the formation of 
microdroplets or nanodroplets is another important investigation field that can be explored 
using the ESEM. A recent review by Mendez-Vilas et al. (2009) has highlighted the main 
fundamental and applied results. Several strategies for the contact angle between water and 
the surface determination are reported (Stelmashenko et al., 2001; Stokes, 2001; Lau et al., 
2003; Wei, 2004; Yu et al., 2006; Jung & Bhushan, 2008; Rykaczewski & Scott, 2011). The 
investigation of the hydrophobicity and/or hydrophilicity of a catalyst layer have been 
performed using ESEM for the first time by Yu et al. (2006). These authors have determined 
the micro-contact angle distribution as a function of the catalyst microstructure. 
Microdroplets growing and merging process was observed directly in the ESEM chamber by 
Lau et al. (2003). 
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Fig. 8. Supersaturation versus temperature diagram for silver iodide (After Zimmermann et 
al., 2007).  

 
Fig. 9. Microdroplets growing and merging process under ESEM during increasing 
condensation by decreasing temperature. (After Jung & Bhushan, 2008) 

4.6 Using the Wet-STEM mode 

The development of the Wet-STEM by Bogner et al. (2005, 2007) allows observing samples in 
the transmission mode in the ESEM chamber, and more particularly, it offers the possibility 
to image directly nanoparticles dispersed in a few micrometer thin water film (Bogner et al., 
2008), emulsions or vesicles (Maraloiu et al., 2010), without removing the liquid 
surrounding the objects of interest. One must keep in mind that images with soft matter, 
and more generally sample sensitive to the electron beam are very hard to obtain. 
Nevertheless, this technique also opens new research fields using in situ experimentation 
that only begin to be explored for wettability or deliquescence studies. By combining Wet-
STEM imaging with Monte-Carlo simulation (Figure 10), Barkay (2010) have studied the 
initial stages of water nanodroplet condensation over a nonhomogeneous holey thin film. 
This study has shown a preferred water droplet condensation over the residual water film 
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areas in the holes and has provided corresponding droplet shape and contact angle. On a 
similar way, Wise et al. (2008) have studied water uptake by NaCl particles prior to 
deliquescence by varying the relative humidity in the Wet-STEM environment (Figure 11). 

 
Fig. 10. Bright field image of 100 nm polystyrene latex spheres. Insert is the calibrated 
intensity corresponding to the dark line in the image (After Barkay (2010)) 

 
Fig. 11. ~40 nm NaCl particles as the RH was increased past the deliquescence point. Water 
uptake [(a)  (b)] prior to full deliquescence (c) is clearly observed. (After Wise et al., 2008) 

4.7 Development of specific materials for experimentation 

Several specific devices have been developed to characterize specific properties or reactions. 
Two of them will be shortly described below. 

Chen et al. (2011) have developed an experimental platform that can be used to investigate 
chemical reaction pathways, to monitor phase changes in electrodes or to investigate 
degradation effects in batteries. They have performed in situ experiment runs inside a 
scanning electron microscope (SEM) and tracked the morphology of an electrode including 
active and passive materials in real time. This work has been used to observe SnO2 during 
lithium uptake and release inside a working battery electrode. 
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Direct imaging of micro ink jets inside the ESEM chamber has been achieved using a specific 
device developed by Deponte et al. (2009), using a two-fluid stream consisting of a water 
inner core and a co-flowing outer gas sheath. ESEM images of water jets down to 700 nm 
diameter have been recorded. Details of the jet structure (the point of jet breakup, size and 
shape of the jet cone) can be measured. The authors conclude that ESEM imaging of liquid 
jets offers a valuable research tool for the study of aerosol production, combustion 
processes, ink-jet generation, and many other attributes of micro- and nanojet systems. 

5. High temperature in the SEM 

5.1 Application domains of HT-(E)SEM 

Specific stages (and associated detectors) have been developed to heat samples up to 1500°C 
directly in the microscope chamber (Knowles & Evans, 1997; Gregori et al., 2001). The 
environmental scanning electron microscope (ESEM) equipped with this heating stage is an 
excellent tool for the in situ and continuous observation of system modifications involved by 
temperature. It allows recording image series of the morphological changes of a sample 
during a heat treatment with both high magnification and high depth of focus. The 
experiments can be carried out to observe the influence of all these parameters on the 
studied phenomenon under various conditions (heating rates, atmosphere compositions, 
variable pressure, final temperature and heating time). Images have been recorded up to 
1400°C, with a decrease of the image resolution when the sample temperature increases 
(Podor et al., 2012). It is possible to work under vacuum (classical SEM) or under controlled 
atmosphere (H2O, O2, He+H2, N2, air...). Different types of studies have been reported, 
relative to corrosion of metals (Jonsson et al., 2011), oxidation of metals (Schmid et al., 2001a, 
2001b ; Oquab & Monceau, 2001 ; Schmid et al., 2002 ; Abolhassani  et al., 2003 ; Reichmann 
et al., 2008 ; Jonsson et al., 2009 ; Mège-Revil et al., 2009 ; Quémarda et al., 2009 ; Delehouzé 
et al., 2011), reactivity at high temperature (Maroni et al., 1999 ; Boucetta et al., 2010), phase 
changes (Fischer et al., 2004 ; Hung et al., 2007 ; Beattie & McGrady, 2009), hydrogen 
desorption (Beattie et al., 2009, 2011), redox reactions (Klemensø et al., 2006), microstructural 
modifications (Bestmann  et al., 2005 ; Fielden, 2005 ; Yang, 2010), magnetic properties 
(Reichmann et al., 2011), sintering (Sample et al., 1996 ; Srinivasan, 2002 ; Marzagui & 
Cutard, 2004 ; Smith et al., 2006 ; Subramaniam, 2006 ; Courtois et al., 2011 ; Joly-Pottuz  et 
al., 2011 ; Podor et al., 2012), thermal decomposition (Gualtieri  et al., 2008 ; Claparède et al., 
2011 ; Goodrich & Lattimer, 2011 ; Hingant et al., 2011), crystallisation (Gomez et al., 2009) in 
melts (Imaizumi et al., 2003 ; Hillers et al., 2007) and study of self-repairing – self-healing – 
properties of materials (Wilson & Case, 1997 ; Coillot et al., 2010a, 2010b, 2011) … 

Even if numerous researchers are invested in HT-ESEM, only few of them have been 
successful in pursuing dynamic experiments at temperatures higher than 1100°C. Two 
recent studies report experiments performed at T=1350°C (Subramaniam, 2005) and 1450°C 
(Gregori et al., 2002). However, the resolution of the images remains poor (more than 1µm) 
mainly due to water cooling induced vibrations. Furthermore, the precision on the measure 
of the sample temperature remains poor (temperature differences up to 150°C with the 
expected temperature are sometimes measured). A recent device has been proposed by 
Podor et al. (2011) to overcome this difficulty. 

A complete review specifically dedicated to in situ high temperature experimentation in the 
ESEM will be available soon. Several examples of in situ studies performed at high 
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temperature in the ESEM chamber will be reported below, on the basis of original data 
acquired in our laboratory. 

5.2 Investigation of the crystallization behaviour in silicate melts 

The crystal growth and morphology during isothermal heating of glass melts can be directly 
observed using the hot stage associated with the ESEM. The image series reported on Figure 
12 have been recorded during 10 minutes while heating the borosilicate melt sample 
isothermally at T=740°C. The development of large crystals in the melt rapidly yields to the 
complete crystallization of the melt. The crystal morphology presents cells filled with a 
second phase and the crystal formation yields to the deformation of the sample surface. 
Hillers et al. (2007) have used such data to quantify the variation of crystal length with time. 
They have established that the growth is only linear during the first minutes; afterward the 
growth rate decreases progressively with time. 

This technique can also be used to determine the temperature of formation of the first 
crystals at the melt surface and to observe their formation. In the case of glass-ceramics, the 
density of nuclei as well as their size and shape development can be directly observed and 
used for crystallization kinetic determination (Vigouroux et al., 2011, in prep).  

 

 

 

Fig. 12. Growth of crystals in a borosilicate melt during 10 minutes isothermal heat 
treatment at 740°C observed using the hot stage associated with the ESEM. 

5.3 Decomposition of compounds 

In situ thermal decomposition of composites, oxalates, oxides have been reported by several 
authors. Images of the heat treatment of a mixed uranium-cerium oxalate grain from 25°C to 
1235°C are gathered on Figure 13. Morphological changes with temperature are directly 
linked with the oxalate decomposition as stated by Hingant et al. (2011) in the temperature 
range 25-500°C. The sample shrinkage observed when T>500°C is probably related with the 
first stage of the sintering process – i.e. beginning of bond formation between the 
nanograins and with the oxide grain growth (that can not be directly observed at this stage 
by HT-ESEM, but that is confirmed by X-Ray diffraction). Such a process has also been 
recently reported by Claparede et al. (2011) and Joly-Pottuz et al. (2011).  
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Fig. 13. Decomposition of a uranium-cerium mixed oxalate observed during in situ heating 
in the ESEM chamber and relative size and shrinkage modifications. 

5.4 Study of sintering and grain growth 

Several studies are relative to the sintering and grain growth processes in metals and 
ceramics. Depending on the system, the experiments have been performed in the 
temperature range 300-1450°C. The main interest of these studies is the possibility of direct 
observation of the individual grain behaviour during heat treatment. The example that is 
reported on Figure 14a corresponds to the heat treatment of the grain decomposed in situ 
(Figure 13). The image resolution is high enough to observe the nanograins growth inside 
the square plate agglomerate. Consequently, relative shrinkage and average grain diameter 
are extracted by image processing (Figure 14b). Assuming that the final density of the 
agglomerate is 99%, the sintering map is directly derived from these experimental data 
(Figure 14c). Thus, in situ sintering experiments can allow the establishment of the 
trajectories of theoretical sintering. Such data have never been already reported in previous 
studies, mainly due to the poor resolution of the recorded images. 

The effect of the electron beam on sintering is controversy. Indeed, Popma (2002) noted that 
a local sintering stop was achieved by focusing the electron beam at a certain position 
during the in situ sintering experiments in the ESEM (performed on ZrO2 nanolayers). On 
the contrary, Courtois et al (2011) performed experiments on the sintering of a lead 
phosphovanadate and concluded that the electric current induced by the electron beam was 
found to reduce the effective temperature of sintering by 50 to 150°C as well as to accelerate 
the kinetics of shrinkage of a cluster composed of sub-micrometric grains of material. Such 
effects were not evidenced in our study: the local sintering on sample surface zones that 
were not observed (i.e. exposed to the electron beam) was identical to the local sintering 
determined on the observed zone. 
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Fig. 14. (a) Sintering and grain growth of a uranium-cerium mixed oxide observed in situ in 
the ESEM chamber at T=1235°C, after 55’, 70’, 90’, 95’, 130’, 140’ (a). Corresponding Relative 
(b) Shrinkage and Average grain diameter versus duration and (c) derived sintering map - 
Grain growth versus densification rate –  

6. Conclusions and perspectives 

In situ scanning electron microscopy experimentation, that is generally associated with the 
use of the ESEM, allows the study of very different problems, the main limit being the 
availability of specific devices. Torres & Ramirez (2011) have written the best conclusion 
indicating that “the new generation of SEMs shows innovative hardware and software 
solutions that result in improved performance. This progress has turned the SEM into an 
extraordinary tool to develop more complex and realistic in situ experiments, achieving even 
at the subnanometer scale”. In the near future, new SEM imaging modes, nanomanipulation 
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and nanofabrication technologies (Miller & Russell, 2007 ; Romano-Rodriguez & 
Hernandez-Ramirez, 2007 ; Wich et al., 2011) will make possible to replicate more closely the 
conditions as the ones associated to the problems to be treated. In situ ESEM will probably 
be used to overcome technical and fundamental challenges in many scientific domains. The 
recent developments of a high temperature stage in the FIB (Fielden, 2008), a new 
tomography mode in the ESEM (Jornsanoh et al., 2011) and of the atmospheric scanning 
electron microscope (Nishiyama et al, 2010 ; Suga et al, 2011) can be cited as examples for 
this future. 
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8. References for videos 

Reactivity of a salt with silicate 
melt at high temperature 

http://www.dailymotion.com/icsmweb#videoId=xjknrt 

Sintering of CeO2 at T=1200°C http://www.youtube.com/watch?v=4ijIUdQe3M4 
Self-healing of a metal-glass 
composite at high temperature 

http://www.dailymotion.com/icsmweb#videoId=xjknpp 

Deformation of vesicles during 
dehydration 

http://www.dailymotion.com/icsmweb#videoId=xjk75u 

NaCl solubility and  
precipitation in water 

http://www.dailymotion.com/icsmweb#videoId=xk22i9 
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