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1. Introduction  

The fungal lignin-degrading enzymes lignin peroxidase (LiP, E.C. 1.11.1.14), Mn-dependent 

peroxidase (MnP, E.C. 1.11.1.13), and phenol oxidase (laccase) (Lac, E.C. 1.10.3.2) can 

degrade or polymerize organic pollutants such as polychlorophenols, polycyclic aromatic 

hydrocarbons, and chlorinated hydrocarbons (Fernando and Aust, 1994; Hammel, 1989; 

Hirano et al., 2000; Levin et al., 2003; Lin et al., 1990; Lovley et al., 1994; Mohn and Tiedje, 

1992; Reddyy et al., 1998). However, to maintain such fungal lignin-degrading enzymes at 

adequate levels for degradation or detoxification (bioremediation), appropriate additions of 

both microorganisms and nutrients are essential over long periods of time. Recently, 

phytoremediation technology has gained attention for its potential as an ecological 

remediation tool of contaminated soil and water, as plants can grow autotrophically. 

Establishment of effective phytoremediation technology is a suitable strategy for the long-

term remediation of contaminated areas. Phytoremediation includes some processes based 

on the plant functions as follows; phytostabilization, which is accumulation of pollutants in 

the rhizosphere by absorption on the root surface, precipitation, and complexation of 

pollutants; rhizodegradation, which is degradation of pollutants by interaction with 

rhizosphere microorganisms; phytoaccumulation (phytoextraction), which is uptake and 

accumulation of pollutants by plants; phytodegradation (phytotransformation), which is 

uptake and degradation of pollutants by plants; and phytovolatilization, which is uptake 

and volatilization of pollutants by transpiration from contaminated area. To widely apply 

the benefit of phytoremediation, improvement and reinforcement of the abilities for uptake, 

accumulation and degradation of pollutants using genetic engineering are one of the 

important development subjects. 

There have been many reports of phytoremediation using transgenic plants. For example, 

glutathione S transferase and cytochrome P450 expression showed high resistance to 

pesticides (Gullner et al., 2001; Doty et al., 2000), the overexpression of bacterial mercury 
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reductase showed high resistance to organic mercury (Bizilly et al., 2003) and effective 

volatilization of ionic mercury (Haque et al., 2010), pentaerythritol tetranitrate reductase-

expressing plants were able to degrade glycerol trinitrate and 2,4,6-trinitrotoluene (French et 

al., 1999), introduction of bacterial genes involved in polychlorinated biphenyl (PCB) 

degradation in plants showed removal of PCB from a contaminated area (Novakova et al., 

2009), the bacterial arsenite S-adenosylmethyltransferase expression induced arsenic 

methylation and volatilization (Xiang-Yan et al., 2011), the expression of gamma-

glutamylcysteine synthetase and the genes involved in phytochelatin synthesis in plant 

showed more resistance and accumulation of cadmium (Zhu et al, 1999, Wawrzyński et al, 

2006 ), and the yeast metallothionein expressing tobacco showed effective copper uptake 

(Thomas et al, 2003).  

Recently, attempts are carried out to enhance the environmental remediation in 

contaminated area by using appropriate genetically modified plants with usage of fungal 

peroxidases. This chapter mainly focused on the removal of bis-phenol A (BPA; 2,2-bis(4-

hydroxyphenyl)propane), which is one of the major chemicals used in plastics and resins 

and is well known to disrupt endocrine systems in humans and other animals, from 

contaminated areas with usage of transgenic technology. Although many organisms can 

degrade and metabolize BPA, which can lead to a reduction of the estrogenicity and toxicity 

of BPA (Kang et al., 2006), lignin-degrading basidiomycete fungi are particularly powerful 

degraders of organic pollutants including BPA. These fungi produce oxidative enzymes, 

such as LiP, Lac, and MnP, which can degrade and polymerize BPA both in vivo and in vitro. 

Therefore, an overview of our recent results regarding the phytoremediation of BPA with 

fungal peroxidase-expressing transgenic plants by lignin peroxidase (LiP), laccase (Lac), and 

manganese peroxidase (MnP) were presented together with the other potential uses of these 

transgenic plants in this chapter. 

2. LiP-expressing transgenic tobacco 

cDNA (Accession no. AB158478.1) encoding LiP from the reverse transcription (RT) 

products of total RNA prepared from mycelia of Trametes versicolor IFO1030 was isolated. 

The cloned cDNA was ligated into binary vector pBI121 (Brasileiro et al., 1991) with double 

cauliflower mosaic virus (CaMV) 35S promoter sequence (Figure 1), and was introduced 

into the genome of the tobacco (Nicotiana tabacum Samsun NN) by the leaf-disk method via 

Agrobacterium tumefacience LBA4404 (Liang et al., 1989).  

Integration of the cDNA into the genome of tobacco was confirmed by polymerase chain 

reaction (PCR) upon 10 independent transgenic lines. Two of the lines showed growth 

inhibition and thus were excluded from further analysis. Western blot analysis with root 

extracts of transgenic tobaccos and antiserum raised against LiP protein were performed to 

confirm the production of LiP protein in roots of transgenic lines. . To prepare the antiserum 

against LiP of T. versicolor IFO1030, we synthesized one peptide, whose sequence was 
240CNGTTFPGTGDNQG254E, and conjugated it with keyhole limpet hemocyanin (KLH). The 

resultant peptide-KLH conjugant was injected into a 10-wk-old rabbit. After four injections, 

antiserum was collected and used for Western blot analysis. The expected signal was 

observed in the cell-free extracts of roots from LiP transgenic tobaccos (Figure 2). 
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Fig. 1. Gene construct of T-DNA region of Ti plasmid.  

RB, Right border of T-DNA; N-pro, promoter region of nopaline synthase gene; NPTII, 
neomycin phosphotransferase gene; N-ter, terminator region of nopaline synthase gene; 35S-
up, upstream region of cauliflower mosaic virus (CaMV) 35S promoter sequence; 35S-P, 
CaMV 35S promoter sequence; cvlip, cDNA encoding LiP of T. versicolor IFO1030 plus signal 
sequence; LB, left border of T-DNA. 

 

Fig. 2. Western blot analysis of LiP in cell-free extracts of roots of LiP transgenic lines. 

Lanes; 1, LiP transgenic line (FLP)-1; 2, FLP-2; 3, FLP-3; 4, FLP-4; 5, FLP-5; 6, FLP-8; 7, 
control plant. 

To test the ability of BPA removal by LiP-expressing transgenic plants, we transferred two-
month-old transgenic lines on MS medium (Murashige and Skoog, 1962) to fresh MS liquid 
medium containing 3 g/L of glucose and 100 Ǎg/L of kanamycin. After one week of 
incubation at 25°C, BPA was added to the medium at the final concentration of 100 ǍM and 
the medium was hydroponically incubated for another week. The six LiP-expressing 
transgenic lines showed 2- to 4-fold higher BPA removal ability than that of control plants 
during aqueous cultivation (Figure 3). LiP is a well-known enzyme that carries out direct 
and indirect oxidation of a number of environmental pollutants. Our confirmation that 
transgenic plants could express LiP in their roots and remove BPA will help us to establish 
improved methods for phytoremediation of contaminated environments. 

 

Fig. 3. Removal of BPA by LiP-expressing transgenic lines. 
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The levels of BPA were analyzed by HPLC (ǌ=278 nm). The values shown are the average of 
results from three independent experiments. Lanes; 1, control; 2, FLP-1; 3, FLP-2; 4, FLP-3; 5, 
FLP-4; 6, FLP-5; 7, FLP-8. Error bars on the graph indicate standard deviations (N=3). 

3. Lac-expressing transgenic tobacco  

Lac is a member of the multicopper oxidase family found in a wide range of organisms such 

as animals, plants, bacteria, and fungi. The reduction of oxygen to water is accompanied by 

the oxidation of substrate by laccase.  

cDNA encoding Lac (Accession no. D13372.1) from the reverse transcription products of 

total RNA prepared from mycelia of T. versicolor IFO1030 was cloned. The cDNA under the 

control of double CaMV 35S promoter was introduced into the genome of N. tabacum 

Samsun NN by the leaf-disk method via A. tumefacience LBA4404 (Figure 4).  

 

Fig. 4. Gene construct of T-DNA region of Ti plasmid.  

cvL3, cDNA encoding Lac of T. versicolor IFO1030 plus signal sequence. Other abbreviations 
are listed in Figure 1. 

 

Fig. 5. Active staining of secreted Lac from the roots of transgenic lines. 

Concentrated 60 Ǎg of crude extracellular protein was analyzed by IEF and active staining 
using 4-chloro-1-naphthol. Lanes, 1, Concentrated aqueous cultivation medium of T. 
versicolor IFO1030; 2, control; 3, Lac transgenic line (FL)-4; 4, FL-5; 5, FL-9; 6, FL-20; 7, FL-22; 
8, FL-23. 
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Two-month-old transgenic lines, which were incubated on MS medium, were transferred to 

fresh MS liquid medium and subjected to further incubation. After two weeks, to confirm 

the expression of Lac protein and secretion from the roots of each transgenic line into the 

rhizosphere, we concentrated the aqueous culture medium and analyzed it by iso-electric 

focusing electrophoresis (IEF) and active staining using 4-chloro-1-naphtol (Figure 5). Six 

independent transgenic lines apparently secreted active Lac protein into their rhizosphere, 

and we tested four of those to determine their ability to remove BPA. As described above, 

four independent transgenic lines were cultivated hydroponically. After one week of 

incubation, BPA was added to the medium at the final concentration of 100 ǍM and 

hydroponic incubation was done for another week. The ability to remove BPA of these Lac-

expressing transgenic tobaccos was more than 5-fold that of the control line during 

hydroponic cultivation (Figure 6). 

 

Fig. 6. BPA removal ability of Lac transgenic lines. 

The levels of BPA were analyzed by HPLC (ǌ=278 nm). The results shown are the average of 

three independent experiments. Lanes; 1, control; 2, FL-4; 3, FL-9; 4, FL-20; 5, FL-22. Error 

bars on the graph indicate standard deviations (N=3). 

All of these Lac-expressing transgenic tobaccos were somewhat shorter than control plants 

at the flowering stage, and most of the transgenic anthers failed to dehisce after blooming, 

while the anthers of control plants were normally dehiscent (Figure 7). In addition, the 

nondehiscent anthers were brown in contrast to the greenish control lines. Brown 

pigmentation and rough epidermis were observed on the surface of transgenic anthers. 

Greater Lac activity was detected in the cell-free extracts of transgenic anthers than in the 

controls; however, there was no correlation with lignin contents in transgenic anthers 

(Figure 8). Histochemical analysis of anther tissues revealed apparent deformation of the 

stomium in transgenic plants (Figure 9). Beals reported that the stomium in anther tissue 

plays a crucial role in the dehiscence of anthers in tobacco (Beals, 1997), indicating that such 

deformation of stomium observed in the transgenic anther tissue might affect the 

appearance of the nondehiscent phenotype. The expression of Lac could promote the 

efficient removal of BPA, but it also influences some aspects of flower development.  
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Fig. 7. Phenotypes of anthers of Lac transgenic lines.  

Transgenic and control tobaccos were cultivated at 24°C. a, Transgenic flower with 
nondehiscent anthers. b, Control flower with normal anthers. c, Stereomicroscopic view of a 
transgenic anther. d, Stereomicroscopic view of a normal anther.  

 

 

Fig. 8. Laccase activity and lignin content in anther tissues. 

Transgenic and control tobaccos were cultivated at 24°C. a, Laccase activity. Cell-free 
extracts were prepared from both transgenic and control anthers before they dehisced. 
Laccase activity was calculated using the extinction coefficient (6400 M-1cm-1) of oxidized 
guaiacol (ǌ=436nm), and activity was expressed as definitive units (1 unit = 1 mol guaiacol 
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oxidized per min) (Eggert et al, 1996). b, Lignin content. Lignin was quantified by the Klason 
method. The results shown are the average of three independent experiments. Error bars on 
the graph indicate standard deviations (N=3). Lanes; 1, control; 2, FL4; 3, FL9; 4, FL20; 5, FL22 

 

Fig. 9. Histochemical analysis of anther tissues.  

Safranin-stained thin sections of a mature anther from a transgenic (a) and a control plant 
(b). ep, epidermis; st, stomium; en, endothecium cell. 

4. MnP-expressing transgenic hybrid aspen  

MnP is a heme peroxidase that can oxidize phenolic compounds in the presence of Mn (II) 

and hydrogen peroxide. Mn (II) is oxidized to Mn (III) by MnP; the resultant Mn (III) makes 

a chelating compound with an organic acid, and then organic compounds such as BPA are 

oxidized by the chelating compound. Previously, we isolated a cDNA (Accession no. 

AR429405) encoding MnP from T. versicolor and introduced it into the genome of N. tabacum 

Samsun NN. The transgenic tobacco could express MnP and produce Mn (III) as a result of 

Mn (II) oxidation in the rhizosphere during hydroponic cultivation (Iimura et al., 2002). 
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Moreover, isolated cDNA was also introduced into the genome of hybrid aspen Y63 

(Populus seiboldii x Populus gradientata) under the control of double CaMV 35S promoter 

(Figure 10), as described previously (Kajita et al., 2004). Integration of the T-DNA into the 

genome of each transgenic line was confirmed by PCR. Although the expression of cDNA 

encoding MnP was confirmed by RT-PCR in six independent transgenic lines, MnP activity 

was detected in four of the six lines (Figure 11). The BPA-removing activities of the four 

MnP-expressing transgenic hybrid aspens were more than twice that of the control lines 

(Figure 12). Interestingly, the expression of the MnP gene showed no phenotypical 

differences between the MnP-expressing and control plants, unlike the expressions of the 

LiP and Lac genes. The lack of negative effects of MnP expression on growth and 

development will be advantageous when it is used in phytoremediation. Our results 

showed that the transgenic plants could express MnP in their roots and contribute to the 

effective removal of BPA from a hydroponic medium. 

 

Fig. 10. Gene construct of T-DNA region of Ti plasmid.  

fmnp, cDNA encoding MnP of T. versicolor IFO1030 plus signal sequence. Other 
abbreviations are listed in Figure 1. 

 

Fig. 11. MnP activity in root exudates of transgenic lines. Undamaged root tissues were 
dipped in 50 mM malonate buffer (pH 4.5) containing 1 mM manganese sulfate. After 
incubation for 24 hrs at 37°C, the absorbance of supernatant was measured at 270 nm. Lanes; 
1, control plant; 2, MnP transgenic line (FM)-1; 3, FM-2; 4, FM-3; 5, FM-4; 6, FM-7; 7, FM-8. 
Error bars on the graph indicate standard deviations (N=3). 
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Fig. 12. BPA removal ability of MnP transgenic lines. 

The levels of BPA were analyzed by HPLC (ǌ=278 nm). The values shown are the average of 
results from three independent experiments. Lanes; 1, control; 2, FM-2; 3, FM-3; 4, FM-4; 5, 
FM-7. Error bars on the graph indicate standard deviations (N=3). 

As described above, fungal peroxidase (LiP, Lac, and MnP)-expressing transgenic plants 

showed effective BPA removal ability, but no reaction products of BPA conversions by these 

fungal peroxidase-expressing transgenic plants were detected under our analytical 

conditions. The enzymatic reaction of fungal peroxidases is non-specific and free radical-

based, so it is difficult to detect the reaction products. BPA might be degraded or 

polymerized, as reported in some previous studies of lignolytic enzymes (Hirano et al., 2000; 

Fukuda et al., 2001; Tsutsumi et al., 2001; Uchida et al., 2001). The increase of BPA removal 

efficiency by the fungal peroxidase expression in plants would contribute to the 

development of remediation systems for the cleanup of contaminated areas. 

5. Conclusions 

Plants can metabolize BPA. Cultured cells of plants were able to glucosylate BPA (Nakajima 

et al., 2002; Hamada et al., 2002), and, in seedlings, BPA was absorbed from roots and 

translocated to leaves after glucosylation (Nakajima et al., 2002). In addition, some 

glycosylated forms of BPA showed less estrogenic activity than that of non-glycosylated 

BPA (Morohoshi et al., 2003), and oxidative enzymes in plants such as peroxidases 

stimulated the degradation and polymerization of BPA (Sakuyama et al., 2003). Although 

the ability of plants to detoxify might be useful for remediation of soil and water 

contaminated with BPA, the expressions of fungal peroxidases in plants by genetic 

engineering, as reviewed above, reinforces their ability with respect to the detoxification of 

BPA. Furthermore it is worth noting that the MnP- and Lac-expressing transgenic plants 

could remove pentachlorophenol effectively from contaminated areas during hydroponic 

cultivation (Iimura et al., 2002; Sonoki et al., 2005). Plants could secrete Lac and generate Mn 

(III) in the rhizosphere, and then the Lac and Mn (III) might be able to affect hydrophobic 

substrates, such as pentachlorophenol, which is difficult for plant roots to absorb. 
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Plants producing fungal secretory peroxidases would provide us useful tools for the 
remediation of areas contaminated with environmental pollutants. Further studies on the 
effective expression and the secretion of introduced enzymes and the application with other 
substrates will play an important role in the development of phytoremediation technology. 
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