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1. Introduction 

The assimilated carbon stored in terrestrial ecosystems is exported with water movement 

in both organic and inorganic forms, which are defined as particulate organic carbon 

(POC), dissolved organic carbon (DOC), and dissolved inorganic carbon (DIC). The 

transport of terrestrial carbon into streams, rivers and eventually the oceans is an 

important link in the global carbon cycle (Ludwig et al., 1996; Warnken and Santschi, 

2004). The Committee on Flux of Carbon to the Ocean estimated that of the organic carbon 

entering rivers globally, around 50% is transported to the ocean, 25% is oxidized within 

the system and 25% stored as POC in the system as sediment (Hope et al. 1994). As 

compared to the terrestrial carbon sinks (1.9 Gt-C/yr; Prentice et al., 2001), the organic 

carbon transport from terrestrial ecosystems to oceans is 0.4–0.9 Gt-C/yr (Meybeck, 1982; 

Hope et al., 1994; Prentice et al., 2001), representing a substantial component of the 

ecosystem carbon balance.  

The water and carbon cycles in forest catchments are important elements for understanding 

the impact of global environmental changes on terrestrial ecosystems. Various theories have 

been suggested to better understand water discharge (Horton, 1933; Betson, 1964; Kirkby, 

1978; Anderson and Burt, 1991; Kim et al., 2003) and its effect on carbon efflux processes 

from forest catchments (McGlynn and McDonnell, 2003; Kawasaki et al., 2005; Schulze, 2006; 

Kim et al., 2007b; Kim et al., 2010). Most of the results indicated that the hydrological 

flowpaths are important in carbon dynamics within the forest catchments. 

Data from major results show export of organic carbon to be highly correlated with 

annual river discharge and watershed size (Table 1; Fig. 1). Hydrological processes 

strongly affect organic carbon discharge from terrestrial ecosystems, especially in 

monsoon climate zone of East Asia, and 60-80% of annual organic carbon export to the 

ocean during summer rainy season (Tao, 1998; Liu et al., 2003; Kawasaki et al., 2005; 

Zhang et al., 2009; Kim et al., 2010).  
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Fig. 1. Annual DOC export by rivers from watersheds (modified from Ittekkot and Laane 
(1991), Hope et al. (1994), and Table 1) 

Ecosystem type, 
location 

Annual 
precipitation 

(mm) 

Annual 
runoff 
(mm) 

Watershed 
size 

(km2) 

Loss of organic carbon 
Reference DOC 

(t-C/ha/yr) 
POC 

(t-C/ha/yr) 
Huanghe, Semi-
arid area, Central 
China 

- 59 745,000 0.007 - 
Gan et al. 

(1983) 

Yichun, Humid 
temperate area, 
North-eastern 
China 

500-650 - 2500 0.03 - Tao (1998) 

Luodingjiang 
River, Subtropical 
mountainous, 
Southern China 

1534 844 3164 0.012 0.011 
Zhang et 
al. (2009) 

Guandaushi, 
Subtropical forest, 
Taiwan 

2300-2700 - 0.47 0.025 - 
Liu et al. 

(2003) 

Tomakomai, Cool 
temperate mixed 
forest, Northern 
Japan 

1200 - 9.4 0.0052 0.0076 
Shibata et 
al. (2005) 

Kiryu, Temperate 
conifer, Central 
Japan 

1645 911 0.006 0.01 - 
Kawasaki 

et al. (2005) 

Gwangneung, 
Temperate 
deciduous, 
Central Korea 

1332 809 0.22 0.04 0.05 
Kim et al. 

(2010) 

Han River, 
Temperate area, 
Central Korea 

1244 - 26,018 0.04 0.02 
Kim et al. 

(2007a) 

Table 1. Export of organic carbon East Asian watersheds 
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Forests are the major terrestrial biome, in which soils and vegetation are the primary sources 
of DOC and POC in streamwater. Within the forest soil profile, concentrations of DOC 
typically are highest in the interstitial waters of the organic-rich upper soil horizons 
(McDowell and Likens, 1988; Richter et al., 1994; Dosskey and Bertsch, 1997). Both column 
experiments and field observations have indicated that significant transport of DOC occurs 
by preferential flow, given that the state of adsorption equilibrium cannot be reached, owing 
to the reduction of the contact time between DOC and the soil surface (Jardine et al., 1989; 
Hagedorn et al., 1999). Understanding the flow paths of DOC discharge from forested 
catchments to streams is important because DOC provides a source of energy to 
microorganisms in water systems (Stewart and Wetzel, 1982) and carbon fixation in the soil 
(Neff and Asner 2001; Kawasaki et al., 2005). 

Since the 1970s 2.3 million hectares of land have been planted with coniferous species such 
as Pinus Koraiensis, Abies holophylla and Larix leptolepis in South Korea. Because coniferous 
forests lose and consume water resources much more than deciduous forests due to higher 
leaf area index (LAI) and year-round transpiration, theses planted coniferous forests may 
deteriorate the physical properties of the topsoil owing to the water repellence of the soil 
surface and decrease the availability of water resources by high evapotranspiration rates. 
To conserve soil and water resources, densely planted coniferous forests must be 
managed using silvicultural techniques (e.g. pruning, thinning) that could influence water 
quantity and quality. In South Korea, various studies have shown that forest management 
practices in coniferous forests decreased the amount of interception loss and increased 
discharges during the dry season. Clear cutting resulted in catastrophic augmentation of 
runoff and soil loss. The water quality of stream headwaters improved after thinning and 
pruning because these techniques tended to ameliorate soil physical properties and 
increase soil ion exchange capacity.  

1000   1200     1400      1600    1800 

(a) (b) (c) 

 

Fig. 2. Accumulated climatological precipitation (mm) at 60 stations for (a) annual total 
precipitation, (b) summer (from June to August) in South Korea. (c) Percentage (%) of 
accumulated climatological precipitation with respect to annual total precipitation summer. 
(Seo et al., 2011) 
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Hydrological circumstances in South Korea are unfavourable to manage water resources. 

Temporal and spatial variations of rainfall are very large (Fig. 2). Annual rainfall ranges 

from 754 to 1,683 mm. In South Korea, more than 50% of the annual precipitation falls in the 

summer monsoon season (Fig. 2(b, c)), which quickly discharges to the ocean due to the 

steep slopes and short river lengths (<500 km). Therefore, the water regime in the catchment 

undergoes drastic changes with recurring wet and dry seasons, which makes it difficult to 

interpret and predict hydrological processes and subsequently their effect on nutrients 

cycling (Kim et al., 2009).  

The amount of water storage capacity in a forest stand increases with the forest aging, when 
a forest stand grows, the amount of litter falls and roots also increases. The mineral soils and 
humus materials tend to aggregate into their structure. The aggregation may change the 
distribution of pore sizes and often increase the total porosity of soil. Forests have been 
called 'Green Dam' or 'Reservoir' because of its function of controlling the flood and drought 
through a litter layer and topsoil like a sponge filter. Net infiltration rate of a well-developed 
forest soil has been estimated 76 mm/hr in comparison with 8mm/hr of a bare land (Brooks 
et. al. 1991). Generally, infiltration capacity of soil in a deciduous forest is higher than that in 
a coniferous forest because the litter fall of the former is easily decomposed and 
incorporated with mineral particles compared to that of the latter. Most of stream water in 
South Korea comes from mountain headwaters as mountains occupy 65% of the total area. 
Stream in forested headwaters yields clean water. Forest soils hold the water like sponge, 
which is 3.3 times more than the soil in a bare land. Water holding capacity of forest soil in 
Korea is estimated about 18 billion tons, as shown in Table 2 (Ministry of Science and 
Technology, 1992). 

 

Bed rock Igneous Metanorphic Basalt 
Sedimentary 

Lime Total 
I II 

Maximum storage 
capacity(%) 

A  34.3 40.1 32.4 36.1 33.9 39.8  
B  39.5 44.4 35.1 39.0 35.5 41.1  

Total storage  
(0.1 billion tons) 

A  15.2 20.0 5.0 4.0 1.5 2.1  
B  36.5 60.3 8.5 14.2 4.6 7.9  

Sub-total 51.7 80.3 13.5 18.2 6.1 10.0 179.8 

Table 2. Water holding capacity of forest soils depending on bed rock in South Korea 
(Ministry of Science and Technology, 1992) 

Despite decades of dedicated scientific efforts on these fundamental questions, it is still 

difficult to find a robust interpretation even for some basic hydrological processes such as 

discharge and runoff. The up to date results showed that the geophysical  

and meteorological conditions greatly affect the hydrological processes (Hooper et al.,  

1990; Elsenber et al., 1995; Katsuyama et al., 2001; McGlynn and McDonnell, 2003; Kim  

et al., 2010).  

In this chapter, we have implemented a comprehensive ecohydrological measurement 
system at the temperate forest catchment in South Korea. Most importantly, high quality 
long-term data of hydrological and meteorological conditions have been collected, which 
may be also important in monitoring global environmental changes and their effects. The 
study was also designed based on a nested watershed concept (smaller catchments are 
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nested in successively larger catchments) to investigate how catchment processes change as 
scale varies. In this chapter, we introduce the concepts and techniques that were 
implemented to investigate the movement of water and carbon in a forest catchment. We 
also briefly discuss preliminary results and their implications for the interactions between 
hydrological and biogeochemical processes in a temperate forest catchment.  

2. Hydrological cycle of forested catchments in South Korea 

2.1 Interception loss and evapotranspiration 

The differences in the amount and process of interception loss and evapotranspiration 

depend on the factors of the forest structure and local climate. The forest structure includes 

the forest type, age and density. Generally, coniferous forests intercept rain and snowfall 

more than deciduous because the former has higher LAI and longer leaf-period than the 

latter. 

The first research on interception loss by tree canopy and stem in Korea had conducted in 

1935 for determining the total and net precipitation at the forest stand in Korea Forest 

Research Institute (Kim and Jo, 1937). The experiment was conducted during 23 months on 

the natural 50-year-old red pine (Pinus densiflora) with the tree height of 12 m and DBH of 18 

cm. It showed that the annual total and net rainfall were 1,194.2 mm and 1,066.3 mm, 

respectively. The percentage of interception loss from the total rainfall varied from less than 

10% in the season to more than 26% in the growing dormant season. 

To clarify the effects of forest types on interception, three types of forest were chosen in 

Gwangnung experiment station during the period of 1982 to 1988, namely natural matured- 

deciduous, planted young-coniferous and rehabilitated mixed forest. The results of the 

research are shown in Table 3 (Lee et al. 1989). Among the three forest types, the planted 

young-coniferous forest showed the most interception loss of 32.6%, compared to 29.1% in 

natural matured-deciduous and 18.5% in rehabilitated mixed forest. Even though the 

naturally matured deciduous has the largest forest structure of 80 years old, its amount of 

interception loss resulted in less percentage compared with the planted young-coniferous 

for the cause mentioned above. 

 

Forest type 
Precipitation 

(mm) 
Intensity 
(mm/hr) 

Throughfall 
(mm) 

Steamflow 
(mm) 

Interception 
(mm) 

Interception 
(%) 

Mixed 1733.2 6.7 
1312.6 
(75.8) 

99.2 
(5.7) 

321.4 18.5 

Coniferous 1477.3 6.0 
945.2 
(64.0) 

50.4 
(3.4) 

481.5 32.6 

Deciduous 1172.4 6.2 
758.7 
(64.7) 

72.2 
(6.2) 

341.5 29.1 

( ) means % for precipitation 

Table 3. The amount of interception loss by three forest types in South Korea 

In other results, the young coniferous forest of 26-year-old Pinus rigitaeda and deciduous 

forest of 16-year-old Quercus mongolica intercepted 17.4 and 13.9% of the total rainfall, 
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respectively, during the period of July 1986 to September 1987 in Seoul National University's 

Gwanak arboretum (Kim and Woo 1988a, b). 

It is difficult to measure the exact amount of interception loss due to the large variations of 

forests and climate factors. Several forest hydrologists have tried to predict the amount by 

using an interception model. There are three kinds of interception model for the estimation 

of the processes and amount of interception; the dynamic, analytical and regression-

methods. The dynamic-interception model was developed using the forest stand structure 

and Penman-Monteith model to predict the amount of evaporation under saturation 

condition (Kim and Woo 1997). 

Another loss component of hydrological cycle in forested catchment is evapotanspiration 

from tree canopy during a period of no rainfall. The amount of evapotranspiration can be 

estimated by using the water budget method in a short term or a calculating method like 

penman or Thornthwaite method. The amount of evapotanspiration estimated by 

Thornthwaite method in three forest types is shown in Table 4 (Kim 1987). 

 

(unit: ton/day/ha) 

Month 
Type 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Yangjua 0.0 0.0 2.7 15.7 31.0 38.4 48.5 47.7 31.2 15.2 3.6 0.0 
Mixedb 3.5 4.1 8.7 11.5 16.3 18.4 25.7 26.1 20.6 10.5 10.7 7.3 
Gwangnunga 0.0 0.0 3.2 17.8 31.4 40.3 50.6 49.9 32.4 17.0 4.0 0.2 
Coniferousb 6.3 6.6 15.7 14.0 33.3 34.0 44.4 56.4 40.3 17.8 12.0 8.2 
Deciduousb 6.0 4.2 11.5 10.8 20.9 35.7 17.9 29.3 24.6 17.8 10.7 8.2 

a  means the amount of evaportranspiration by Thornthwaite method. 
b  means the amount of evaportranspiration by short-term water budget method. 

Table 4. Monthly evaportranspiration determined by means of Thornthwaite and short-term 
water budget methods. 

2.2 Discharge and soil loss variations depending on land cover 

In the 1960s and 70s, the main theme on forest hydrology was to evaluate soil and water 

conservation at the different land cover types. Because in those periods, most of the lands in 

South Korea were completely devastated all over the country, development of techniques on 

the erosion control was urgent, especially in the fields (Fig. 3). 

Lee et al. (1967) clarified that land cover type influence discharge in the small plot. They 

concluded that the coniferous plot produces the least discharge (26%) while bare land 

produces most (76%). They also found that the discharge in the bare land plot started at the 

rainfall of 10 mm and increased radically at the rainfall more than 80 mm, whereas in the 

coniferous plot started at the rainfall of 30 mm. 

Kim (1987) estimated effects of floods, direct flow reduction and long-term yields on forest 

by utilizing the measured rainfall-runoff data from the three above-mentioned experimental 

catchments. He found that the flood peak discharge of the young coniferous and mature 

deciduous stands were 49% and 36% of the devastated-mixed stand respectively. Also, the 
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direct flow dropped to 53% in the young coniferous stand and to 55% in the mature 

deciduous stand, compared to that of the devastated-mixed catchment.  

Lee et al. (1989) analyzed the runoff rate and soil at the the natural deciduous, the planted 
coniferous and the rehabilitated mixed forests, using the data from 1980 to 1988. The runoff 
rates of the three forest types in an order above were 61.9%, 48.5% and 71.3%, respectively. 
They concluded that the natural deciduous forest mitigated the peak of flow during the 
rainy season while it discharged more of low-flow during the dry season, in comparison 
with the rehabilitated mixed forest. The amount of soil loss during the rainy season was the 
highest in the rehabilitated mixed forest (2.2 ton/ha/yr) and the least in the deciduous one 
(0.7 ton/ha/yr). 

   

Fig. 3. Before and after the construction of a hillside planting work in South Korea 

Several techniques for analyzing the discharge components include surface runoff, interflow 
and groundwater, for different forest types in a long-term. The recession coefficient 
represents the rate of runoff that is released from a soil and streamside. If the recession 
coefficient of an independent event in the hydrograph changes statistically with the lapse of 
time, the hydrological characteristics of the forested catchment would be changed. Korea 
Forest Research Institute (1998) studied the hydrological variation of discharge, soil loss and 
recession coefficient in three small, forested catchments, using a long-term hydrological data 
from 1983 to 1992. This study included the naturally matured deciduous, planted coniferous 
and erosion-controlled mixed forest. The amount of discharge and soil loss varied with the 
rainfall and forest type. Fig. 4 (up left) shows the variation of the recession coefficient of 

surface runoff (1) for 10 years. 1 gradually decreases in the coniferous forest while it does 
not show the tendency in the others. This may be caused by the change of the forest 
structure in the coniferous forest after the planting. The amount of the initial loss by the 
interception and transpiration has been greatly increased since 1976 as the coniferous trees 
grow. However, the forest structures in others have not much changed since 1983. 

The recession coefficient of interflow (2) decreased in the coniferous and mixed forests 
with time Fig. 4 (up right). This can be interpreted by an increase in the soil storage capacity 
after the planting and erosion control work. As the amount of evapotranspiration increases, 
the storage opportunity of rainfall in the soil improves. Increment of the storage capacity 
may result in delaying the releasing time of interflow from the soil. 
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Fig. 4. Variation of the recession coefficient of surface runoff (up left), interflow (up right), 

and groundwater (down) for 10 years 

In the case of the recession coefficient of groundwater (3), only mixed forest showed a 

gradual reduction for 10 years (Fig. 4. down). The mixed forest has been a devastated land 

until erosion control work had finished in 1974. After the work, the soil layer rapidly formed 

and the soil's physical properties improved. 

2.3 Residence time of water in a forest catchment 

Various radioactive tracers have provided valuable information regarding hydrological 

processes, such as mean residence time of water, flowpaths during storm events, 

groundwater movement, and biogeochemical reactions occurring along the flowpaths 

(Michel and Naftz, 1995; Shanley et al., 1998; Sueker et al., 1999). For example, 3H and 14C 

have been widely used for determination of time scale of hydrological processes (Matsutani 

et al., 1993). However, these tracers are inadequate for studying hydrological processes in 

small and headwater catchments with expected time scales of a year or less because of their 

long half lives (decadesto thousands of years). In this study, we will introduce a short-lived 

cosmogenic radioactive isotope of 35S (half life = 87 days) for measuring the mean residence 

time of water in the Gwangneung catchment. 

The measured activity of 35S in water can be expressed as an equation: 

 C = Coe−┣t (1) 
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where Co is the initial 35S activity, ┣ is the decay constant (0.0079655), t is the number of days 

from the start of decay, and C is the measured 35S activity. The 35S activity in water provided 

information of the residence time of atmospherically deposited sulfate. Biogeochemical 

reactions such as adsorption/desorption in soil and groundwater are also important in 

affecting the calculated residence time of water in a forested catchment. Assuming a 

conservative response of sulfate in streamwater, the mean residence time of water was < 40 

days during the summer monsoon period in the natural deciduous forest catchment. 

However, the mean residence time of water increased to around 100 days in the dry season 

with increasing contribution of the base flow to the stream water (Fig. 5). These results 

demonstrate that 35S is useful in estimating the age of water exiting a small catchment where 

the time scales of hydrologic processes are on the order of 1 year or less.  
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Fig. 5. Temporal variation in mean residence time (MRT) calculated from 35S based method 
along with the precipitation and stream discharge (Kim et al., 2009) 

From this MRT estimate, the existence of substantial, long-term subsurface water storage is 

not supported in the studied catchment. The assumed rapid turnover of water in the 

catchment indicates that the hydrological conditions will respond to the change in 

precipitation directly and immediately. Therefore, surplus (flooding) and shortage (drought) 

of water supply may alternate at a relatively short time scale (even within a year) depending 

on the seasonal distribution of precipitation. A secure water resource planning in 

catchments of this type will require a reliable prediction and efficient management of 

precipitation and surface water bodies (Kim et al., 2009). 

2.4 Flow paths of water during storm events 

The identification of flow paths in forested catchments has been elusive because of 

difficulties in measuring subsurface flow. Forested catchments are spatially complex and 

subsurface flow is invisible. Hence, one can only infer the movement and mixing of water 

from the natural tracer elements that the water carries (Pinder and Jones, 1969). Using 

various tracers, the end-member mixing analysis (EMMA) has been used to elucidate flow 

paths and hydrological processes in several catchments (e.g. Hooper et al., 1990; 

Christophersen et al., 1990; Elsenbeer et al., 1995; Katsuyama et al., 2001). Numerous 

conceptual models have adopted the flow path dynamics proposed by Anderson et al. 

(1997), i.e., both pre-event soil water and bedrock groundwater contribute to the formation 
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of a saturated zone in the area adjacent to the stream (e.g., McGlynn et al., 1999; Bowden et 

al., 2001; Uchida et al., 2002). 

The EMMA can be applied for individual storm events to quantitatively evaluate the 

contribution of each solutions component. The source waters are called ｀end members’. 

The tracer concentrations of end members are more extreme than stream water since 

streamwater is a mixture of these sources (Fig. 6). In order to apply EMMA, (1) tracers 

should be conservative, (2) sources should be significantly different in tracer concentrations, 

(3) unmeasured sources must have same concentration with known sources or don't 

contribute significantly, and (4) the sources should maintain a constant concentration. 

Typical source waters are those from organic rich soil horizon, hillslope groundwater, valley 

bottom groundwater, throughfall, and precipitation. 
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Fig. 6. Three-component mixing diagram for each storm event (left) and mixing diagram 
showing stream water evolution and end-member composition in U space during six storm 
events (right) 

The hydrological characteristics of the six storm events observed during the summer of 2005 

are summarized in Table 5. The maxima of precipitation intensity and discharge intensity 

were observed on 1 July 2005, which were 17.7 mm/10min. and 1.0 mm/10min., 

respectively. Stream discharge as a proportion of total precipitation ranged from 15 to 60% 

with an average of 30%. The maximum discharge rate also was observed in E050701, but 

associated with 5 days’ antecedent precipitation.  

The end-member mixing analysis (EMMA) with principal components analysis (PCA) was 

applied to each storm event to evaluate quantitatively the contribution of each water 

component (Christophersen and Hooper, 1992; Burns et al., 2001). Three-component mixing 

diagrams are shown in Fig. 6. Stormflow in E050626 lay near the groundwater end-member, 

and moved to soil water in E050701. Stormflow were also closer to that of groundwater 

through E050709 and E050824. After moving near groundwater, stormflow were closer to 

that of throughfall in E050913 and E050930. Stormflow solutes in E050913 and E050930 were 

not significantly different from overland flow.  

In E050913 and E050930, the values of water-filled porosity in the surface layer (0–0.1 m) 
was about 5% higher than the maximum observed during the previous storm events. This 
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higher water-filled porosity (as compared to prior storm events) led to a low water 
infiltration rate and an increase in the contribution of surface discharge. Previous studies 
suggested that a maintained precipitation expands the saturation zone and increases 
macropore flows in the forested catchment (e.g., McDonnell, 1990). Such macropore flows 
deliver new water in which dissolved ion concentrations are low because of the short 
contact time with soil and bedrock (Burns et al., 1998). The calculated mean residence time 
of water based on the 35S analysis varied with changing water regime in the study area, 
ranging from 20 to 40 days during the summer monsoon period (Kim et al., 2009). 
Especially, for the stream water sample taken on 15 September when the surface runoff 
increased due to the storm event, the mean residence time of water also decreased abruptly 
(Kim et al., 2009; Fig. 5). 

 

 E050626 E050701 E050709 E050824 E050913 E050930 

Observed period 
26–28,  
Jun. 

1–3,  
Jul. 

9–10,  
Jul. 

24–26, 
Aug. 

13–15,  
Sep. 

30, Sep.–2, 
Oct. 

Total precipitation (mm) 160.5 104.0 40.5 83.5 85.5 87.0 

Max. precipitation 
intensity (mm/10min) 

11.1 17.7 2.5 4.5 7.5 2.5 

Total discharge (mm) 23.6 61.5 11.5 22.8 18.1 29.1 

Max. discharge intensity 
(mm/10min) 

0.32 1.05 0.06 0.14 0.28 0.16 

Total discharge / Total 
precipitation (%) 

15 60 28 27 21 33 

Antecedent precipitation 
(5 days) 

0.0 161.9 1.3 1.5 7.0 1.0 

Antecedent precipitation 
(10 days) 

1.3 161.9 154.3 19.5 7.0 43.5 

Table 5. Hydrological characteristic of storm events in 2005 

3. Dynamics of water and dissolved materials in forest soils  

The dynamics of water in the soil layer are important for the understanding of water storage 

and dissolved material fluxes in a forest catchment. In the field measurement, an intensive 

monitoring is useful using a precise multiplex Time Domain Reflectometry system to 

capture and characterize variation patterns of soil moisture on a steep hillslope. Here, we 

introduce the methods for estimating the water and dissolved material flux in soils with 

tensiometer and water table fluctuations. 

3.1 Estimation of soil water and dissolved material flux using a tensiometer 

Tensiometer consists of a pressure transducer which measures the pressure (when 

saturated) or tension (when unsaturated) that the soil moisture exerts on a column of water, 

a porous cup which is in contact with the soil water at the measurement level, and a water 

body with a PVC pipe. According to Kim (2003), the one-dimensional, vertical water flow 

equation for unsaturated soil in a compartment can be written as: 
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 Qin = Qout – E + ΔW (2) 

where Qin and Qout are input and output of water to and from the compartment, 
respectively, E is the evapotranspiration, and ΔW is the change of water content in the 
compartment during the period. For example, Qin in the 0-10 m soil compartment can be 
obtained from the throughfall measurement, and ΔW, E by direct observations. The 
calculated Qout, in turn, becomes Qin for the 0.1-0.2 m soil compartment. Therefore, the 
equation can be used to calculate the water flux through a series of compartments up to 1.0 
m soil depth.  

E can be calculated from temporal variations of evapotranspiration (Suzuki, 1980). 

qin
Input to compartment

dΩ
Change of quantity in compartment

Sink/Source
from compartment

qout
Output from compartment



Z

d1
d2

qin
Input to compartment

dΩ
Change of quantity in compartment

Sink/Source
from compartment

qout
Output from compartment



Z

d1
d2

 

Fig. 7. Calculation of dissolved material flux in soil compartment (Kim, 2003) 

 Ed1–d2 = cE (3) 

where Ed1–d2 is evapotranspiration in soil depth from d1 to d2, E is the total 
evapotranspiration from the entire soil column, and c is the proportion of Ed1-d2 to E. For 
example, c in the 0-0.1 m soil compartment (if the total soil depth is 1.0 m) during time t is 
calculated from the change of water content by using equation (4).  

 
 

         
0 10 0 10

0 10 0 10 10 20 10 20 20 30 20 30 30 50 30 50 50 100 50 100

t t t

t t t t t t t t t t t t t t t
c

 

         


 

    
         




        
(4) 

ΔW can be calculated from the change of water content, which is derived from the 

relationship between θ and ψ (Kosugi, 1994; Kosugi, 1996). 

     1 2 /2 1 2 /2ΔW t t t
d d d d 

      (5) 

where t
d  is water content during time t at soil depth (d1+d2)/2, and Z is soil thickness.  

Dissolved ions and compounds in soils move with water infiltration processes. Therefore, 
dissolved material flux is calculated by multiplying dissolved material concentration with 
the water flux. The calculation method of dissolved material flux is described in Fig. 7. The 
dissolved material flux is calculated from the change of quantity in a compartment. The 
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sink/source (α) property of the compartment can be estimated from qin, qout and the change 
of quantity in the compartment (dΩ), such as: 

 a = dΩ – (qin – qout) (6) 

where dΩ is calculated from the concentration of dissolved materials and water content. 

         1 2 /2 1 2 /2 1 2 /2 1 2 /2 /t t t t t t
d d d d d d d dd S S  

          (7) 

where  1 2 /2
t
d dS   is the dissolved material concentration during time t at soil depth 

(d1+d2)/2. The equation (7) indicates the change of dissolved material budget in the soil 

compartment during time t. Moreover, qin and qout at depth d can be described as: 

  1 1 / 2t t t
in d dq f f t     (8) 

  2 2 / 2t t t
out d dq f f t     (9) 

where 1
t
df  is dissolved material flux at soil depth d1 during time t. 

3.2 Estimation of water infiltration rate using a water table fluctuation  

The water infiltration rate can be calculated indirectly from the groundwater recharge rate. 

To estimate the water infiltration rate, the groundwater recharge rate from the water table 

fluctuation can be calculated as follows (Moon et al., 2004): 

 y

h
S

P
 
 
  (10) 

where α is the recharge rate, h is the change of groundwater level, P is precipitation, and Sy 
is the specific yield. On specific conditions, groundwater recharge rate may practically 
represent the infiltration rate. We can also estimate the dissolved material flux, such as 
dissolved organic carbon (DOC) by multiplying groundwater recharge rate with the 
measured concentration. This technique has been applied to the headwater region in the 
Gwangneung catchment, and its reliability has been critically evaluated by comparing with 
other methodologies. The uncertainty of this technique is largely due to the measurement 
error of specific yield (Sy) caused by the heterogeneity of geologic materials, and other 
factors influencing the water table fluctuation such as changes in atmospheric pressures, air 
entrapment during the infiltration of water, irrigation, and pumping (Choi et al., 2007). 

According to the results from the water infiltration rates, 0.44 t-C ha-1 DOC was infiltrated 
into the soil from late June to early October in 2005, which represented approximately 8% of 
the stored carbon in the forest floor (5.6 t-C ha-1; Lim et al., 2003) and 30 to 50% of NEE (-0.84 
to 1.56 t-C ha-1 yr-1; Kwon et al., 2010) (Fig. 8). These results indicate that a considerable 
amount of decomposed organic matter is stored in the soil through water movement 
processes. If most of the infiltrated DOC were to accumulate as soil organic carbon in the 
shallow soil and to be decomposed in the deep soil, then 0.5% of the soil carbon (92.0  
t-C ha-1; Lim et al., 2003) would be retained from DOC during the summer monsoon (Fig. 8). 
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While these values seem to be relatively small, soil organic carbon can be accumulated in the 
mineral soil for an extended period (e.g., Michalzik et al., 2003); potentially making the 0.5% 
of soil carbon retained from DOC during the summer monsoon an important component of 
the forest carbon budget to consider (e.g., Battin et al., 2009). 

Based on these estimates of NPP ranging from 4.3 to 5.8 t C ha-1 yr-1, the observed amount of 
total DOC and POC effluxes is roughly 2% of the annual NPP – a small but non-negligible 
amount in terms of net ecosystem carbon exchange (NEE). Considering the averaged NEE of -
0.84 t C ha-1 yr-1 (negative sign indicates net uptake of carbon by the forest; Kwon et al., 2010), 
approximately 10% of NEE would escape from this forest catchment as DOC and POC (Fig. 8). 
Our results further indicate that 50 and 80% of the respective annual DOC and POC effluxes 
were transported out of this forest catchment during the summer monsoon period. 

GPP**
11.1±1.5 t C ha-1 yr-1

Soil C* (0~0.3 m)
92.0 t C ha-1 DOC efflux

0.04 t C ha-1 yr-1

POC efflux
0.05 t C ha-1 yr-1

Forest floor*
5.6 t C ha-1

Litter production*
2.8 t C ha-1 yr-1

Soil respiration
8.4±1.3 t C ha-1 yr-1 ***
6.0±0.2 t C ha-1 yr-1 **
5.9 ~ 6.1 t C ha-1 yr-1 ****

NPP *,  **
4.3~5.8 t C ha-1 yr-1

NEE**
-0.84±1.56
t C ha-1 yr-1

DOC infiltration
0.44 t C ha-1

(Jul.-Sep.)

 

Fig. 8. The contribution of DOC and POC to the carbon budget in the Gwangneung 
deciduous forest catchment. * Lim et al. (2003; observation periods 1998 to 1999),  ** Kwon et 
al. (2010; observation periods 2006 to 2008), *** Chae (2008; observation periods 2001 to 
2004). The difference of soil respiration is due to difference of observation periods and 
methods. Modified from Kim et al., 2010. 

3.3 Adsorption of DOC in forest soil 

Many field studies have shown that the concentration of DOC in soil water significantly 
decreases with increasing soil depth (Fig. 9). It is generally assumed that adsorption of DOC 
to the surface of mineral soil is important than decomposition in reducing DOC 
concentrations. Various sorption mechanisms have been reported, including anion 
exchange, cation bridging, physical adsorption, etc. (Jardine et al., 1989; Gu et al., 1994; 
Edwards et al., 1996; Kaiser and Zech, 1998a; Kaiser and Zech, 1998b). These DOC sorptions 
are irreversible under natural soil conditions (Gu et al., 1994). Because Fe and Al oxides are 
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the most important sources of variable charge in soils (Jardine et al., 1989; Moore et al., 1992; 
Kaiser and Zech, 1998a), DOC adsorption can be related quantitatively to the Fe and Al 
oxide contents of soils (Moore et al., 1992). The proportion of clay in mineral soil is also an 
important factor for DOC adsorption. DOC concentrations in catchment runoff are 
negatively correlated with the clay contents of soils in the catchment. The adsorption 
process is relatively rapid, which completed within 2 to 12 hours (Kaiser and Zech, 1998b). 
The effect of pH on the adsorption of DOC in forest soil is also important. Tipping and Woof 
(1990) calculated that an increase in soil pH by 0.5 units would lead to an increase by about 
50% in the amount of mobilized organic matter. Nodvin et al. (1986) also calculated the 
reactive soil pool of DOC under various pH conditions. 

 
 

 
 

Fig. 9. Spatial variations in the concentrations of DOC of throughfall, soil water, shallow 
groundwater (0.5 m), deep groundwater (0.8-1.0 m), spring water, and baseflow, with 
respect to and stormflow (Kim et al., 2007b) 

3.4 Temporal and seasonal change of DOC export from temperate forest catchment  

Typical temporal variations in DOC concentrations during storm events are shown in Fig. 

10. With the onset of heavy precipitation, DOC concentration in streamwater increases 

significantly, and after the precipitation ceased, DOC concentrations returned to pre-storm 

levels. The results from the hydrograph separation during storm events indicated that a 

large amount of water discharged through surface and subsurface soil layers (Fig. 6). DOC 

concentration in the surface soil is higher than the deep soil and the groundwater (Fig. 9). 

The Storm event leads to the increase in the surface runoff with a high DOC concentration. 

During the baseflow period, most stream waters flow out from the groundwater with a low 

DOC concentration (Fig. 11). These results indicate that hydrological processes strongly 

affect the DOC export and thereby the carbon budget in the catchment. 
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Fig. 10. Precipitation, stream discharge and temporal variations of DOC concentration in 
streamwater during storm event (Kim et al., 2007b) 
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Fig. 11. Precipitation, stream discharge and temporal variations of DOC concentration in 
streamwater during storm event (Kim et al., 2007b) 

Forest treatments 
Throughfall 

(mm) 
Stemflow 

(mm) 
Interception 

loss (mm) 
Interception 

loss (%) 
Rainfall 

(mm) 

Pinus 
Koraiensis 

Not practice 85.8 6.5 74.0 44.6 166.0 

Practiced 100.2 7.5 58.3 35.1  

Abie 
holophylla 

Not practice 90.1 7.8 68.1 41.0  

Practiced 104.8 8.2 53.0 31.9  

 
Deciduous forest 118.6 33.9 12.0 7.3  

Mixed forest 115.3 17.6 33.1 19.9  
 

Table 6. Percentage of interception loss by forest practices and vegetation types 
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4. Effects of forest managements on water cycle and quality 

Change of the forest stand structure causes the modification of the hydrological 

characteristics because the components of water loss by interception and evapotranspiration 

change immediately, owing to the reduction of LAI. Moreover, physical and chemical 

properties of forest soil change in a long term. 

Kim et al. (1993) conducted a research on the effects of site conditions in headwater stream 

on water storage of reservoirs on small-forested watersheds. The result shows that the water 

storage of the reservoirs during the dry season is positively correlated with the tree height, 

DBH, stand ages and crown closure, but negatively with understory coverage and drainage 

density. 

The first change in hydrological components after forest practices is the interception loss 

from the tree canopy surface during rainfall. The amount of interception loss decreases after 

thinning and cutting. The rate of reduction for interception loss is correlated positively with 

the percentage of thinning and cutting of forest types. Table 6 represents the effects of forest 

practices and types on the percentage of interception loss. In the coniferous stand, the 

percentage of interception loss decreased to about 10% after forest practices. The mixed 

forest intercepted the rainfall in about half the amount of the coniferous, whereas the 

deciduous stand did in about one-sixths of that. Forest treatments increase not only 

interception loss but also discharge due to the reduction of loss components such as 

evapotranspiration. The amount of discharge after the forest practices during the dry season 

was increased by two and three-tenths of that, respectively, before the treatments. 

Generally, forest soil has a filtering property like sponge and conserves soil and water 

resources. If forests, regardless of the types, are cut clearly, catastrophic amounts of soil and 

water are produced. Fig. 12 explains the effects of clear cutting on the peak flow in a small-

forested catchment. The amount of peak flow in the clear-cut site increased to 78.3 mm 

compared to the controlled site during the rainfall of 400 mm. 
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Fig. 12. Change of peak flow after clear cutting 
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Jeong et al. (1997) analyzed the influential factors on the electrical conductivity of stream 
and soil water in a small-forested watershed. They concluded that the electrical conductivity 
was correlated with the total amount of a cation and an anion in stream and soil water. Their 
results proposed that the amounts of NO3- and Na+ in the stream have a statistical 
significance for the electrical conductivity in streams and the amounts of K+ and Ca²+ and 
pH in soil water for the electrical conductivity in soil water. 

Jeong et al.(1999a, b) further clarified the effect of forest management practices (thinning 
and pruning) on soil physical properties and water quality to obtain fundamental 
information on the facility of purifying water quality after forestry practices. They 
investigated the water quality of rainfall, throughfall, stemflow, and soil and stream water 
at the coniferous stands that consisted of Abies holophylla and Pinus koraiensis. The seasonal 
variation of water qualities of throughfall, stemflow and soil water were decreased after 
practices. Some researches supported the mesopore ratio on pore geometry of surface soil to 
be used as an index of the water retention capacity of forestlands. 

Jeong et al. (2001a) investigated 23 parameters, including site conditions and soil properties 
to analyze the influencing factors of mesopore ratio on pore geometry of surface soil in 
coniferous stands. They found that the factors influencing the mesopore ratio (pF2.7) on the 
surface soil were macropore ratio (pF 1.6), slope, crown-cover rates, and thickness of F-layer, 
organic matter contents, and the growing stock. They concluded that crown-cover rates of 
stands should be controlled to be less than 80% for enhancing the water resource retention 
capacity in coniferous stands. 

Jeong et al. (2001b) investigated fifteen factors, including site conditions and soil properties 
to analyze the influencing factors of mesopore ratio on a pore geometry of surface soil in 
deciduous stands. The factors influencing the mesopore ratio (pF2.7) on the surface soil 
were found to be the tree height, under vegetation coverage and organic matter contents of 
soil in deciduous stands. Hence, they concluded that the water resource retention capacity 
would be improved when under vegetation coverage was increased from 30 to 80%.  

5. Upscaling of observation data through hydrological modeling 

The rainfall-runoff process, which is an important component of the hydrological system, is 
very complex considering the large number of factors involved and their temporal and 
spatial distribution. Hydrological modelling is a suitable technique to represent the rainfall-
runoff process in various symbolic or mathematical forms using known or assumed 
functions expressing the various components of a rainfall-runoff response (Ndiritu and 
Daniell, 1999). In the last half-century there have been hundreds of hydrological response 
models, each with their own attributes and shortcomings, developed by many different 
researchers. Furthermore, with the current rapid developments within computer technology 
and hydrology, the application of computer based hydrologic models is only likely to 
increase in the near future (Loague and Van der Kwaak, 2004).  

The distributed hydrological models aim to better represent the spatio-temporal variability 
of hydrological characteristics governing the rainfall-runoff response at the catchment scale. 
One of the distributed hydrological models used commonly is TOPMODEL, which is a 
quasi-physically based semi-distributed hydrological model (Beven and Kirby, 1979; Beven 
et al., 1995; Beven, 1997; Beven, 2001; Beven and Freer, 2001a, b).  
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Most physically based distributed models have parameters which are effective at the scale 
of the computational elements. In order for a rainfall-runoff model to have practical utility 
or be useful for hypothesis testing, it is necessary to select appropriate values for the 
model parameters. Unfortunately, it is not normally possible to estimate the effective 
values of parameters by either prior estimation or measurement, even given intensive 
series of measurements of parameter values. Therefore, parameter values must be 
calibrated for individual applications (Refsgaard and Knudsen, 1996; Refsgaard, 1997; 
Freer, 1998; Beven, 2001).  

In general, the process of parameter calibration has involved some form of determination of 
a parameter set that gives a simulation that adequately matches the observation. However, 
many calibration studies in the past have revealed that while one optimum parameter set 
could often be found, there would usually be a multitude of quite different parameter sets 
that can produce almost equally good simulation results. Recognition of multiple acceptance 
parameter sets results in the concept of equifinality of parameter sets (Beven and Freer, 
2001b; Beven, 2002; Freer et al., 2003). In addition, in the general case for rainfall-runoff 
modelling with multiple storm sequences, it might be difficult to assess model performance 
using a single likelihood measure, because the form of the distribution of uncertain 
predictions varies markedly over the range of streamflow and the appropriate error 
structure might vary with both of type of data and the model parameter set (Freer et al., 
2003). It may often be the case that the available data are not adequate to allow identification 
of complex models and/or that a single performance measure (objective function) is not 
adequate to properly take into account the simulation of all the characteristics of a system 
used. Thus, the multi-criteria or multi-objective methods using multiple objective functions 
or other data in addition to rainfall-runoff data may allow more robust analyses of models, 
and aid hypothesis testing of competing model structures (Gupta et al., 1999; Beven, 2001; 
Madsen et al., 2002; Freer et al., 2003).  

The multi-criteria performance measures based on the concept of equifinality of behavioral 
model simulations were used for calibration of the rainfall-runoff model, TOPMODEL at 
natural deciduous forest in South Korea. Totally 100,000 parameter sets uniformly sampled 
by Monte Carlo Simulations from the ranges for each TOPMODEL parameters, and hourly 
stream flow and rainfall data observed from April to October, 2005 i n the deciduous forest 
catchment located in the Gwangnung experimental forests were used for model calibration.  

The performance of each parameter set was evaluated and identified with 6 different 
performance measures against behavioral acceptance thresholds defined for each 
performance measure, and the results were analyzed focused on the variability and 
relationship between the behavioral parameter distributions according to the definitions of 
performance measures. 

The results demonstrate that there are many acceptable parameter sets scattered throughout 
the parameter space, all of which are consistent in some sense with the calibration data, and 
the range of model behavior for each parameter varied considerably between the different 
performance measures. Sensitivity was very high in some parameters, and varied 
depending on the kind of performance measure (Fig. 13). Compatibilities of behavioral 
parameter sets between different performance measures also varied, and a very small 
minority of parameter sets could produce reliable predictions regardless of the kind of 
performance measures (at least, for the performance measures used in this paper). 
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Especially, the results indicate that using a single performance measure for the calibration of 
a hydrological model may lead to an increase in model uncertainty. Therefore, careful 
consideration should be given to the choice of performance measure appropriate to the 
characteristics of used model and data and the purpose of study. 

 

Fig. 13. Scatter plots of likelihood values for TOPMODEL parameters from Monte Carlo 

simulations of the deciduous forest catchment conditioned on the 2005 discharge period 

using six performance measures. Each dot represents one simulation with a likelihood 

weight calculated by a given performance measure, and horizontal lines mean thresholds 

identifying behavioural parameter sets for each performance measure; dots over the line (in 

cases of MEFF, MLOG, MWI and MCM), dots between both lines(in case of MBIAS) and dots below 

the line (in case of MSAE) are classified as behavioural simulations. 

Differences in the behavioral parameter distributions according to the performance 

measures may be directly caused by the definitions of performance measures. However, it 

also should be considered that the effects of model nonlinearity, covariation of parameter 

values and errors in model structure, input data or observed variables may be taken into 

account in the nonlinearity of the response of acceptable model.  
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The performance of the parameter set can be used to produce the likelihood-weighted 

marginal parameter distributions for individual parameters, and the likelihood weighted 

model simulations can be used to estimate prediction quantiles in a way that allows that 

different models may contribute to the ensemble prediction interval at different time steps and 

that the distributional form of the predictions may change from time to time step (Fig. 14). 

 

Fig. 14. Likelihood response surfaces between the major parameters of TOPMODEL, 

conditioned on the 2005 discharge period of the deciduous forest catchment (Behavioural 

parameter sets with higher model performance are in the white zone.) 

6. Conclusions 

The ecohydrological and biogeochemical studies have proposed a major scientific question: 
What is the role of hydrology in the carbon budget of complex forest catchment and how will 
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it change in the hydrologic cycle in monsoon Asia and influence the forest carbon budget? 
(Kim et al., 2006) To properly answer this question, some of the most fundamental aspects in 
catchment hydrology need to be clarified i.e., (1) How much water is stored in the catchments? 
(2) What flowpaths does water take to the stream? (3) How long does water reside in 
catchments? (4) How can we scale or transfer our observations to other catchments? Despite 
decades of dedicated scientific efforts on these fundamental questions, it is still difficult to find 
a robust interpretation even for some basic hydrological processes such as discharge and 
runoff. The up to date results showed that the geophysical and meteorological conditions 
greatly affect the hydrological processes (Hooper et al., 1990; Elsenber et al., 1995; Katsuyama 
et al., 2001; McGlynn and McDonnell, 2003; Kim et al., 2010).  

To understand carbon cycling in this catchment better, it is necessary to estimate the annual 
accumulation and movement of water and DOC in the soil. The organic carbon has been 
continuously discharged from terrestrial ecosystems of river basin. This organic carbon will 
contribute for an important sink for carbon through burial in coastal sea sediments or floor. 
These missing values have to consider for estimation of carbon budget in terrestrial 
ecosystems. Our results suggest that storm events during summer monsoon (including the 
typhoon season) are important to estimate flow paths of water and carbon budget in a 
Korean forested catchment and East Asia. The seasonally concentrated precipitation 
increases the surface runoff, when the infiltration capacity of the soil decreases during 
summer monsoon. The outbreak of surface runoff reduced the mean residence time of water 
in the catchment, and increased DOC export from the surface soil layer. The precipitation 
also plays an important role in infiltration processes of dissolved material. The precipitation 
patterns and hydrological processes strongly affect the carbon cycling in the Korean 
temperate forest during summer monsoon. The increasing occasions of heavy precipitation 
may not lead to the simultaneous increase of available water resources in the catchment due 
to the shortening of the water residence time. However, the heavy precipitation will clearly 
increase material discharge such as DOC. Therefore, the effect of monsoon climate on water 
and carbon cycling in forest catchment should be critically evaluated on the basis of 
improved understanding of catchment hydrological and biogeochemical processes. 

Our understandings in water and carbon cycling obtained from the hydro-biogeochemical 
approaches are limited due to the prescribed spatial scale of the measurements. The scaling 
issues are implicitly built into our field measurements and model representations (Kim et 
al., 2006). The information provided in this chapter should be carefully considered in 
modelling formulations at the hydrologic catchment and grid scales of 
ecohydrological/biogeoche-mical models and satellite image analyses. Such efforts should 
provide insights as to how various information is transferred across scales, and hence on 
how to simplify and aggregate measurements, models and satellite products. Future 
research must be focused on how to make measurements at scales that are appropriate for 
parameterization and model validation, and how to make the scales of modeling and 
satellite algorithm converge with those of field measurements (Kim et al., 2006). 
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