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1. Introduction 

Assessment of climate change impacts on hydrometeorological variables such as rainfall and 

temperature at regional or local (catchment) scale requires projected future time series. One 

of the common sources of such future time series are Global Climate Model experiments 

(GCM runs). However, direct use of GCM runs may not be appropriate for climate change 

impacts assessment at catchment scale because the scales in GCMs are not at par with the 

scale at catchment level. For example, if the magnitude of the biases in rainfall and 

temperature is very high, there is a tendency for the impact signals in the GCM runs to be 

amplified under very wet and dry conditions (Christensen et al., 2008). Thus, the need for 

circumventing the biases in or downscaling the GCM runs. Once projected future time series 

are derived through downscaling, they can either be assessed for impacts by comparing 

them with the observed or used as inputs into a rainfall-runoff model in order to obtain 

future streamflow time series. The latter can be compared with the present day control 

streamflows; hence impacts on streamflows can be assessed. Therefore, methods are needed 

to downscale output from GCM to represent local climate variables.  

Downscaling can be dynamical through the use of an RCM  (Regional Climate Model) with 

output from GCM as the boundary condition (e.g. Christensen et al., 2007) or through 

statistical (empirical) methods conditioned on large-scale predictors (e.g. Fowler et al., 2007). 

In most cases, outputs from RCM are also biased and bias-removal (e.g. Piani et al., 2010) is 

often employed. Often, this method involves some form of transfer function derived from 

the observed and simulated cumulative distribution functions (e.g. Ines & Hansen, 2006). 

This method is given a wide range of names in literature such as statistical downscaling, 

quantile mapping, histogram equalizing and rank matching among others. In applying a 

hindcast-derived correction to simulations of projected climate, it is assumed that the 

correction still holds for the projected climate. This is a non trivial assumption (Trenberth et 

www.intechopen.com



 
Climate Models 

 

110 

al., 2003). However, the assumption is more plausible provided the transfer function 

between the raw and the corrected RCM output is robust. In many regions of the world (e.g. 

Africa) data limitation will continue to constrain the calibration of RCMs (Anyah & 

Semazzib, 2007; Christensen et al., 2007) and use of other methods is sought. Bias correction 

method is sometimes applied to GCM data (e.g. Ines & Hansen, 2006).  

In a statistical regression method, a purely statistical relation is sought between a model 

field that is well-represented on the large-scale (predictor), e.g., sea-level pressure or the 

height of the 500 hPa level, and the local quantity of interest (predictant), e.g., precipitation 

or temperature (Benestad et al., 2008). Assuming that the relation still holds in the changed 

climate, the changes of the large-scale circulation are translated into the local changes that 

are of interest. Note that the predictant needs not be a variable of the global model, but can 

be anything related to climate. The great advantage of the statistical method is that it is easy 

and computationally simple. Nevertheless, (long) time series of both the predictor and the 

predictant are needed to calibrate the regression model. While the first requirement is 

usually not a problem, the second limits the applicability of the method to a limited number 

of places and to surface variables only.  

The “delta” downscaling technique uses the concept of change factors (multiplicative or 
additive) extracted from the climate models and applied to observed time series. The former 
has been assessed by several researchers (e.g. Diaz-Nieto and Wilby, 2005; Lenderin et al., 
2007). The traditional delta technique applies the changes to a time series without 
considering the variability of the time series. The technique assumes that relative changes 
obtained from the climate models are more representative than the absolute ones. 
Furthermore, it is assumed that the biases in the control (present) simulations are similar to 
the biases in the future simulations. Moreover, the temporal structure of the derived time 
series is maintained. With significant changesin the variability of time series under climate 
change the delta method may not be suitable. The earlier attempts to improve on the 
approach included examining various scenarios (Prudhomme et al., 2002), and applying 
quantile scaling techniques (Harrold and Jones, 2003) to account for the variability in the 
time series. Olsson et al. (2009) and Willems and Vrac (2011) demonstrated that deriving 
future time series that considers changes in extremes is possible through the use of 
exceedance probabilities. This approach ensures that there is increased variability in heavy 
rainfall amounts compared to meek rainfall events. This approach is simple, robust and can 
be applied to any set of data without worrying about the length of a previous record. 
However, the omission of other changes such as the wet spells, which has very strong 
association with the extremes in precipitation downscaling, makes the approach further 
faulty. Accounting for change in wet spells can improve precipitation downscaling and 
impacts results focusing on extremes.  

Previous studies have used and compared different downscaling techniques and have 

concluded that the choice of the method is dependent on the nature of the study and that 

more research is needed to improve on available downscaling techniques (Fowler et al., 

2007). The tenet of this chapter is centered on the quantile perturbation technique because it 

is often used to assess the impact of climate change on extremes of the hydrometeorological 

variable such as precipitation. Improvement of the technique is here suggested and applied 

to data from a catchment in a tropical climate. 
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2. Case study 

The downscaling technique described in this chapter is illustrated based on a case study of 

the upper River Nile basin, Lake Victoria basin (Figure 6.1). The River Nile basin (Figure 

6.1(a)) is situated between 8°S to 33°N and 20°E to 42°E covering an area of approximately 

3,762,000 km² (Figure 6.1(b)). Lake Victoria (Figure 6.1(c)) is the largest fresh water body in 

Africa and a constituent of the most upper part of the River Nile basin. Lake Victoria is  

geopolitical in nature and characterized by Kenya, Uganda and Tanzania with Rwanda and 

Burundi as key sources of the famous River Kagera, the major contributor to the lake Figure 

6.1(a). Lake Victoria is, on average, 68,800 km2, and is politically shared as follows: Kenya 

(6%), Uganda (43%) and Tanzania (51%). 
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Fig. 6.1. Location of River Nile in Africa, the countries in which the Nile basin takes part (a), 

the major streams and major catchments of the River Nile (b), the Lake Victoria basin (c) and 

River Ruizi catchment. The plus (+) signs, superimposed over Lake Victoria basin and River 

Ruizi catchment indicate the mean grid size of the GCMs used. The dotted square grid with 

a center at  indicates the typical GCM grid used in the case study. 
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The basin area in Uganda is 59,858 km2 out of about 196,000 km2. Lake Victoria stretches 
approximately 415 km from north to south; between latitudes 0°30’ N and 3°12’ S and from 
west to east between longitudes 31°37’ and 34°53’ E. It is situated at an altitude of about 
1,130 m above sea level, and has an estimated volume of about 2,750 km2, and an average 
and maximum depth of 40 m and 80 m, respectively. The area of the River Ruizi catchment 
indicated in Figure 6.1(d) is about 6,000 km2 and the observed daily rainfall data of the 
measuring stations falling within the catchment was used to demonstrate how the GCM 
data can be downscaled to catchment scale. 

3. GCM data 

The information of the GCM data (Table 6.1) used here were obtained from the Programme 
for Climate Model Data Intercomparison (PCMDI) database1. The data were used for the 
Fourth Assessment Report of the Intergovernment Pannel on Climate Change (AR4 IPCC), 
2007. There are, however, several public domain databases from which one can obtain either 
observed climate data and/or climate model data.  

Modeling Institution, Country

Center

Model

Model 

Resolution
Availability of:

acronym Lon Lat 20C3M A2 A1B B1

Bjerknes Centre for Climate Research, Norway 

Norway
BCCR BCM2.0 2.813 2.791    

Canadian Centre for Climate Modelling & 

Analysis, Canada
CCCma

CGCM3.1(T47) 3.750 3.711    
CGCM3.1(T63) 3.750 3.711    

Centre National de Recherches Meteorologiques, 

France
CNRM CM3 2.813 2.791    

Australia's Commonwealth Scientific and Industrial 

Research Organisation, Australia
CSIRO

Mk3.0 1.875 1.865    
Mk3.5 1.875 1.865    

Max-Planck-Institute for Meteorology, Germany MPI-M
ECHAM4-OM 3.750 3.711    
ECHAM5-OM 1.875 1.865    

Research Institute of KMA, Germany/Korea MIUB ECHO-G 3.750 3.711    
Institute of Atmospheric Physics, China LASG FGOALS-g1.0* 2.500 2.022    

Geophysical Fluid Dynamics Laboratory, USA GFDL
CM2.0 2.500 2.022    

M2.1 2.500 2.022    
Goddard Institute for Space Studies, USA GISS AOM 3.750 3.711    

E-H 5.000 4.000    
E-R 5.000 4.000    

Institute for Numerical Mathematics, Russia INM CM3.0 5.000 4.000    
Institut Pierre Simon Laplace, France IPSL CM4 3.750 2.535    

National Institute for Environmental Studies, Japan MRI CGCM2.3.2a* 2.813 2.791    

Meteorological Research Institute, Japan NIES
MIROC3.2(h) 2.813 2.791    
MIROC3.2(m) 2.813 2.791    

National Center for Atmostpheric Research, USA NCAR
CCSM3.0* 1.406 1.401    

PCM1* 2.813 2.791    
Hadley Centre for Climate Prediction and Research 

Met Office, United Kingdom
UKMO

HadCM3 3.750 2.750    
HadGEM1 1.875 1.250      

Table 6.1. Information on the GCMs and scenarios for the data available at PCMDI. 20C3M 
is the simulation of the 20th century climate using historical GHG (Green House Gases) 
concentrations for the period 1871-2000. 

                                                 
1 The website for PCMDI database is “http://www2-pcmdi.llnl.gov/esg_data_portal”, last accessed 13 
June 2011.  
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For its Third Assessment Report, the IPCC commissioned a Special Report on Emissions 

Scenarios (SRES) which developed about forty different emissions scenarios (Nakicenovic et 

al., 2000). Of these forty emissions scenarios, six have been chosen as illustrative or marker 

scenarios: A1FI, A1B, A1T, A2, B1 and B2. Of these six marker scenarios most global climate 

modelling groups completed climate change simulations using A2, A1B and B1 emissions 

scenarios in the AR4 IPCC, 2007 (Table 6.2). The choice of the domain is dependent on the 

purpose for which the climate data is required, the spatial coverage of the data, the temporal 

resolution, user interest, data completeness and restrictions. The GCM data are coded 

(mainly in netcdf format, ".nc“) and some have quality problems (e.g. error in naming of 

files, some precipitation values being negatives, etc.). The data were processed and checked 

for their quality improvements using a cross-pollination of techniques, experiences and 

tools. For example, CDO (Climate Data Operator) (Schulzweida & Kornblueh, 2011) is a 

powerful tool for manipulating grid data of different formats. In addition, many other 

climate data processing tools, such as the NCDF, can be annexed to MATLAB (MathWorks 

Inc., 2008) and are very instrumental in climate model data processing.  

 
Scenario Data set Description

Simulation

Period

Data Avai-

lable for

20CM3
20th Century

simulation

Model input forcings or initial conditions (e.g., solar irradiance,

ozone, sulfates, greenhouse gases) are temporally and spatially varied
1870-2000 1961-2000

SRES B1

550 ppm CO2

maximum 

(SRES B1)

Atmospheric CO2 concentrations reached 550 ppm in the year 2100 

in a world characterized by low population growth, high GDP 

growth, low energy use, high land-use changes, low resource 

availability and medium introduction of new and efficient 

technologies. 

2001-2100
2046-2065

2081-2100

SRES 

A1B

720 ppm CO2

maximum 

(SRES A1B)

Atmospheric CO2 concentrations reach 720 ppm in the year 2100 in a 

world characterized by low population growth, very high GDP 

growth, very high energy use, low land-use changes, medium 

resource availability and rapid introduction of new and efficient 

technologies.

2001-2100
2046-2065 

2081-2100

SRES A2

850 ppm CO2

maximum 

(SRES A2)

Atmospheric CO2 concentrations reach 850 ppm in the year2100 in a 

world characterized by high population growth, medium GDP 

growth, high energy use, medium/high land-use changes, low 

resource availability and slow introduction of new and efficient 

technologies. 

2001-2100
2046-2065

2081-2100

 

Table 6.2. Definitions of the SRES scenarios (Nakicenovic et al., 2000). 

Although the IPCC (2001a) recommended a 30-year period (1961-1990) as sufficient to 

measure climate and detect climate change, challenges in climate modelling and archiving 

of global climate data have forced the global community to consider a 20-year period as 

plausible for impacts assessment. This is due to the fact that deviation from using a 20-year 

period from that of using a 30-year period is not very significant. A number of fixed time 

horizons in the future are considered in literature, especially in the recent AR4 IPCC, e.g., 

the 2020s (2010-2039), the 2050s (2040-2069), and the 2080s (2070-2099). These are future 

periods for which any assessment of climate change impacts can be made. Similar to the 

adjustment of future periods, reference periods have followed suit and quite often studies 

have adopted 1961-1980, 1971-1990 and 1981-2000. However, in the case where there are 

period 
avai- 
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sufficient data, it is strongly recommended that a 30-year period for the current (control) 

and a 30-year period for the future (scenario) climate be considered.  

The GCMs provide area averaged data and this means that for the evaluation purpose, the 

rainfall measured at a point, for example, requires scaling if areal rainfall measurement is 

not available. The scaled point rainfall intensity accounts for the expected systematic 

difference between the point rainfall and the grid averaged GCM rainfall. Point rainfall can 

be scaled to area averaged rainfall by either applying areal reduction factor (Svensson & 

Jones, 2010) or by spatial interpolation of point rainfalls using the technique such as 

Thiessen polygon to obtain areal rainfall. The points (measurement locations) under 

consideration should all fall within the GCM grid boundary. Thiessen polygon is a preferred 

method for estimating areal rainfall and was used in this study (Figure 6.1).  

Statistics of errors, biases, correlations and trends have been used to quantify statistical 

inconsistencies between the model simulation and the historical time series. (e.g. Nyeko-

Ogiramoi et al., 2010). The bias in the GCMs can not be ignored; especially regarding their 

selection and application in impact assessment. First, models that are extremely biased can 

be sieved out of impact assessment. Secondly, the bias in the GCMs means that it is 

inappropriate to use outputs from GCMs directly for impact assessment at local scale. 

Furthermore, Christensen et al. (2008) noted that significantly biased models for the current 

and past climate have potential for transferring significant bias to the future. However, 

because the pattern of the current and past climate seems to be well represented in the 

GCM, its pattern prediction (or signal) may be reliable. Conventionally, GCMs are most 

often assessed for the historical performance alone. However, for a more robust impact 

assessment, the inter-comparison of the future projections is also vital (Nyeko-Ogiramoi, 

et al., 2010). This is because models that have good ability in estimating the observed 

rainfall may not necessarily produce robust predictions (close to or in same direction as 

other models). Models which perform well for historical periods but are projecting 

disparate future changes should be further examined for performance. In intermittent 

variables such as rainfall, the complex climate system may introduce inconsistencies for 

the future climate. Disqualifying a model, however, from further analysis because it is 

inconsistent with other models is only vindicated if further examination shows a 

previously overlooked bias against the observed data (Nyeko-Ogiramoi et al., 2010). The 

inter-comparison of the projections aims to increase the confidence in the GCM 

projections while eliminating spurious projections. In addition, the differences in the 

future projections (controls and projections) if combined with the differences in the 

current simulation (controls and observation) can enhance the understanding of the 

effects of the model bias on the future projections. Evaluation studies are valuable as they 

identify the weaknesses and spot the models whose performance is questionable. The 

inconsistencies of the AR4 GCMs with the observation over the Lake Victoria basin 

suggest further tasks for the climate model scientist. That is, further improvements for the 

GCMs are necessary to increase on the confidence for the assimilation of their outputs. 

However, the performance of a climate model is regional or catchment based and should 

be treated as such; the conclusions of performance are mainly valid for the studied area. 

The models marked with “*“ (Table 6.1) are the most biased with respect to rainfall over 

the Lake Victoria basin (Nyeko-Ogiramoi et al., 2010).  
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4. Synchrony between wet extremes and wet spells 

Analysis of projected changes in climate by Meehl et al. (2007) showed that the type, 
frequency and intensity of extreme events are expected to change even with relatively small 
mean climate changes. Meehl et al. (2007) further noted that in a warmer world, 
precipitation tends to be concentrated into more intense events, with longer periods of light 
precipitation in between. Thus, intense and heavy downpours would be interspersed with 
longer relatively dry periods. Furthermore, Meehl et al. (2007) noted that wet extremes are 
projected to be more severe where mean precipitation is expected to increase and dry 
extremes are projected to become more severe in areas where mean precipitation is 
projected to decrease. In concert with the results of projected increased extremes of intense 
precipitation, even if the wind strength of storms in a future climate did not change, there 
would be an increase in rainfall intensity (Meehl et al., 2007). Kharin & Zwiers (2005) and 
Barnett et al. (2006) noted also that the increase in extreme events may be perceived most 
through the impacts of extremes. The implications are that changes in wet extremes are, 
quite often, associated with longer wet spells. The need to consider the characteristics of the 
wet spells is paramount in improving the precipitation downscaling techniques that employ 
the quantile perturbation approach. Thus, this chapter mainly explores the technique of 
employing the characteristics of wet spells in and for the improvement of the quantile 
perturbation approach for downscaling precipiation. 

5. Perturbations 

In this chapter, perturbation refers to any change that can be obtained from the GCM 
scenario run in comparison with the control or from the observed time series. That is, the 
properties (or statistics) of the GCM control run (series) are compared with those of the 
GCM future series to obtain changes (perturbations) that are projected under the different 
climate change scenarios. Note that changes that occur in quantitative hydrometeorological 
variables such as rainfall and evapotranspiration can be obtained in many forms (e.g. ratios, 
percentage, difference, etc.). Meanwhile, changes that occur in qualitative meteorological 
variables such as temperature can mainly be derived as differences. Different perturbations 
for rainfall and temperature time series can be extracted and analysed for different months 
or seasons and for different GCMs. In the context of this study, emphasis is put on analysing 
perturbations for daily rainfall because it is an essential variable of climate which is needed 
for hydrological impacts of climate change. The main principle behind perturbation is that 
several perturbations can be isolated or extracted from  GCM paired (control and scenarios) 
data at different aggregation levels and can be analysed for their respective properties. In 
the subsequent sections perturbations for rainfall are analysed for daily rainfall for each 
month. The results are presented only for the months of January and April for typical 
illustrations. This is because of the fact that January and April are considered representative 
of dry season (dry months) and wet season (wet months), respectively, of the climate of the 
case study.  

5.1 Rainfall perturbations 

5.1.1 Rainfall wet-days quantile perturbations 

Derivation and analysis of rainfall perturbation can be performed for rainfall time series at 
different time scales. However, in this case, the focus is on a daily time scale and the 
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perturbations were derived by considering daily rainfall time series for each month, 
separately. In other words, the time series for each month for all the considered years are 
pooled together before perturbations are derived. Perturbations are derived only for the 
wet-day frequency of the rainfall series. The definition of a wet day is given in the next 
section. If qs1 ≥ qs2 ≥ qs3 … qsn represent the scenario quantiles and qc1 ≥ qc2 ≥ qc3 … qqn 
represents the control quantiles then quantile perturbations are derived as qsi / qci, for i = 1, 
2, 3, …n. Alternatively, perturbations can be derived as Þp = Qs,p / qc,p, where Þp is the 
perturbation corresponding to probability p, Qs,p is the future scenario value (corresponding 
to probability p) and qc,p the control value (for the same probability p). The plot of quantile 
perturbations versus the return period (or exceedance probability) can reveal the effect of 
projected possible warming for the future. 
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Fig. 6.2. Distributions for January rainfall for control and scenario (A1B) (a), and the 

corresponding perturbations under A1B scenario (b), and 3 scenarios for periods: 2050s (c), 

and 2090s (d). The control and the scenarios are for one GCM (ECHO-G) to illustrate the 

typical perturbations for the two periods. The results are for the GCM data extracted from a 

grid over the River Ruizi catchment. 

Fig. 6.2 shows an illustration of the January daily rainfall distributions for a 20-year period 

(Fig. 6.2(a)) and the corresponding plot of perturbation versus return period (Fig. 6.2(b)). 

Perturbations for different scenarios and the corresponding plots for different future 

scenarios, projected for the periods 2050s (Fig. 6.2(c)), and 2090s (Fig. 6.2(d)), can similarly 

be obtained. Note that the daily rainfall distribution and the perturbation plots, provided in 
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Fig. 6.2, represent evolutional stages of rainfall perturbations analysis of an example of one 

GCM (ECHO)-G). Perturbations analysis for other GCMs can also be obtained and analysed 

in a similar way. 

5.1.2 Dependency of rainfall wet-days quantile perturbations 

The effects of climate change on the mild and heavy rainfall events can be exposed by 
examining the perturbation plot. Such effects can be analysed for different temporal scales 
such as daily, weekly, monthly and seasonal. For a tropical climate, where the interest of this 
study lies, the climate is characterized mainly by wet and dry seasons. However, it is 
important to note that for a given season, daily rainfall variations among the months can be 
very high. Thus, analysis of perturbations for daily rainfall series for each month is 
particularly important. 
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Fig. 6.3. Perturbations for the daily rainfall: (a) January, 2050s, (b) April, 2050s, (c) January, 

2090s and (d) April, 2090s. The perturbations are for 4 GCMs to illustrate the typical 

perturbations for a relatively dry month (January) and a relatively wet month (April). The 

results are for data extracted from a grid over the Ruizi catchment  

Fig. 6.3(a) and (b) shows plots of perturbation versus return period for the months of 
January and April, respectively, for the period 2050s. For January, the perturbations are 
generally greater than 1 for the heavy rainfall events (> 1 year). However, the perturbations 
are less than 1 for lighter rainfall events (< 0.2 years). The perturbations for the mean rainfall 
events are fairly constant (0.2-0.4 years). It is important to note that for some GCMs (models) 
the perturbations are less than 1 between 1.1-1.4 years return periods. This variation of the 
perturbations for the heavy, mean and light rainfall events has implications for the changes 
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in the rainfall intensity and frequency. First, it is expected that given a rainfall intensity of a 
return period less than 1 year, the intensity is projected to decrease from the current to the 
future. Secondly, given a rainfall above one year return period, the intensity is projected to 
increase from the current value to the future for the most heavy rainfall events. In the latter 
case, the rainfall intensity for the medium heavy rainfall events is expected to decrease as 
projected by some GCMs. Thus, for the dry months, the dry days will become moderately 
dryer and the very wet days will become much wetter. In some cases the frequency of such 
wetter events will increase.  

For the month of April (Fig. 6.3(b)) the perturbations are dramatically higher than 1 for 
return periods < 0.2 years. This is the case for 9 out of 12 selected GCM runs irrespective of 
the scenarios. For return periods > 0.2 years the perturbations are generally > 1 but increase 
with return period moderately. For three models, perturbations are less than 1 for return 
periods < 1 years. The variation of the perturbations with return period for the month of 
April has implication for the projected changes in the rainfall intensity and frequency. The 
rainfall events are expected to strongly increase compared to the current but with moderate 
increase in their frequencies. Thus, more wet days are projected for the wetter months and 
the rainfall intensity is projected to increase compared to the current. However, the 
projections by some models indicate that as the intensity and frequency of the heavy events 
strongly increase and the magnitude of the mean rainfall events remains constant, the 
rainfall intensity and frequency of the light rainfall events is projected to decrease compared 
to the current. In the latter case, it means that lesser amounts of rainfall is projected (dry 
days becoming dryer) coupled with a decrease in frequency. It is noteworthy, however, that 
perturbation become very sensitive (very high factors) as the return period decreases and 
the lighter events for the control series tend to zero. This is particularly important to note 
because further discussions are given in section 8.1.1.  

The differences in the variation of the perturbations for the low (B1), middle (A1B) and high 
(A2) scenarios, and for the two different future periods 2050s and 2090s, can only be 
discerned by examining Fig. 6.2(c) and (d) or isolating a case for a model from Fig. 6.3. For 
return period < 1.1 years, the differences in the magnitude of the perturbations among the 
scenarios are not very eminent and are consistent for both the 2050s and 2090s. However, for 
a return period > 1.1 years, the perturbations are eminently different for low, middle and 
high scenarios and inconsistent for both the 2050s and 2090s. If many models are compared 
(Fig. 6.3), the differences in the variation of the perturbations for the low, middle and high 
scenarios become trivial and the intermodal variation becomes fundamental. An important 
point to note is that perturbations are very sensitive when light rainfall events of very low 
return periods are considered. That is, the values of the perturbations can be dramatically 
low or large for meek events with intensity close to naught. In the latter case, it is 
recommended to derive perturbations while considering only the days above a certain-
carefully-selected threshold intensity value or particularly wet days which buffers the 
sensitivity of the perturbations.  

5.1.3 Wet days and wet-days frequency perturbation 

Schmidli & Frei (2005) defined wet days as the annual count of days with daily precipitation 

greater than or equal to a certain threshold precipitation value (e.g. ≥ 1 mm). In contrast, dry 

days are defined as the annual count of days with daily precipitation less than a certain 
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threshold precipitation value (e.g. < 1 mm). Thus, wet days of a given month can be defined 

as the monthly count of days with daily precipitation greater than or equal to a certain 

threshold precipitation value (e.g. ≥ 1 mm or ≥ 0.1 mm). Given the fact that the frequency 

and intensity of precipitation are projected to change, as learned from the perturbations of 

rainfall intensity, wet days are also projected to change and it is possible to obtain wet-day 

frequency perturbations and analyze its variation for the different scenarios and models. 

Thus, the monthly wet-day frequency perturbation is, hereafter, simply referred to as wet-

day perturbation. The wet-day perturbation is calculated as the ratio of the projected 

(scenario) total number of wet days to the corresponding total number of wet days in the 

control period and can be calculated as follows: 

Let (Xp)i,m be the model daily time series of a given month, m, corresponding to the control 

of the pth GCM, p ∈  {1,…,M}, M is the number of control simulations or the GCMs, and let 

(Zp,s)i,m be the model time series for the projected scenario, s, s ∈  {1, … ,W}, where W is the 

total number of projected scenarios, for i = 1, 2,…, n, and for month m = 1, 2, …, 12. Note 

that n is the total number of years of the model simulations. If, tc,m is the threshold rainfall 

intensity for a given month, m, the wet-day perturbation is given by 

 
( , ) ( , )

( )
( , )

100 *
p s m p c m

p m
p c m

d d
d

d

 −
 ∆ =
 
 

  (6.1) 

where, Δdp(m) is the projected percentage change in wet-day for a given month, m, dp(s,m) and 

dp(c,m) are the respective total number of wet days with intensity > tc,m in scenarios and 

control. Note that the control and future periods considered are 1971-1990 (Control) and 

2045-2065 (2050s) and 2081-2100 (2090s), respectively. Thus, n = 20 years.  

Fig. 6.4 shows the wet-day perturbations for 16 GCM runs for high, middle, and low 

scenarios and for two different projected future periods (e.g. A2, 2050s for Fig. 6.4 (a)). For 

the months of January-May the wet-day perturbations are generally > 1 but < 2. In contrast, 

the wet-day perturbations are also generally > 1 for the months of October-December but > 

2 for some models. Meanwhile, for the months of June-September the wet-days 

perturbations are generally < 1. It can further be seen that the perturbations, for the months 

of April-May and October-November; are relatively higher for the months where 

perturbation values > 1. Also for the months where perturbations < 1 its values for the 

months of June-August are relatively lower. Note that the wetter months are April, May, 

October and November; and the drier months are mainly June-August. Thus, the 

implications of the differences in the perturbations for the different months are that the wet 

days in the wet and dry seasons are projected to increase and decrease respectively in the 

future. The increase in the wet days will vary with the high, middle, and low scenarios. The 

high scenario (first row of charts in Fig. 6.4) reveals more increase in wet days than the 

middle scenario (second row of charts in Fig. 6.4); and middle scenario (second row of charts 

in the Fig. 6.4) reveals more increase in wet day than for the low scenario. If the charts in left 

column (for 2050s) and the ones in the right column (2090s) of Fig. 6.4 are compared, it can 

be seen that the increase and decrease in the wet days for the wet and dry seasons, 

respectively, are projected to be relatively higher for the 2090s than for the 2050s. 
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(a)  A2,2050s
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(b)  A1B, 2050s
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(c)  B1, 2050s
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Fig. 6.4. Typical monthly wet-day perturbations for GCM runs calculated for a grid over the 
Ruizi catchment. 

5.1.4 Wet spells and mean wet-spell perturbation 

A wet spell is defined as the number of consecutive wet days in a time series in which 

precipitation intensity exceeds a certain threshold precipitation value (Lall et al., 1996). The 

length of a wet spell is measured in days. 

Wet spells are considered to be one of the most important indicators of extreme 

precipitation indices. The basic indices of wet spells include, but are not limited to: (1) the 

maximum number of consecutive wet days in which the total precipitation is greater than or 

equal to a certain amount, and (2) the mean wet-spell length (mean wet spell), which is the 

average length of the wet spells in a month, season or year (Schmidli & Frei, 2005). These 

indices represent characteristics of the duration of consecutive wet-day sequences (Schmidli 

& Frei, 2005). The latter is particularly of interest to this study. Analysis of the projected 
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changes in wet spells provides insight into how the future rainy days, as projected by the 

climate models, will be like. As established in the analysis of the wet-day perturbations that 

the wet days are projected to change, it is important to assess how the increase in the wet 

days, for example, affects the mean length of wet spells. Study by Yue-Cong and Barry 

(2010) on how climate change may influence the demand for water in the future under 

different climate change scenarios, showed that changes in wet spells will have significant 

implications for water supply.  

Given a GCM run (control and scenarios) and if 1 mm/day is the threshold precipitation 
that define a wet day in the control run (tc,m), then the mean wet spell for a given month can 
be obtained. Similarly, the corresponding mean wet spell for the scenario is also calculated 
based on tc,m. This procedure can be repeated for all the months, scenarios, and for all the 
considered GCMs as well as for the periods under consideration. Fig. 6.5 shows an example 
from one GCM run under the high, middle and low scenarios for periods 2050s and 2090s to 
illustrate the typical mean wet spell in control and scenario. 
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Fig. 6.5. Typical monthly mean wet-spell length for rainfall data of a GCM 

(MIROC3.2(medres),R1) run calculated for a grid over the River Ruizi catchment for the 

periods: (a)-(c) 2050s, and (d)-(f) 2090s. 

It can be seen that, under the high scenario (2050s), the mean wet spell for the months of 
January and March is projected to decrease with respect to the present whereas for the 
months of February, April, July and September-December it is projected to increase also 
with respect to the present (control) (Fig. 6.5(a)). Fig. 6.5(d) shows that the increase in the 
mean wet-spell for the months of March-April and September-November will relatively be 
higher.   

The implications are that the increase in mean wet spell for the wet months is probably a 

manifestation of longer wet spells under the high scenario. Also the increase in the mean 

wet spell in the 2090s will be higher than that in the 2050s under the high scenario. Under 

the middle scenario (Fig. 6.5(b) and (e)), the plots for the scenario lie below that of the 

control run for both the 2050s and 2090s mainly for the very dry (June-August) and very wet 
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months (April-May). This implies that the GCM run generally projects a decrease in mean 

wet spells for both the very dry and very wet months with a relatively no change for the 

other months. The model, under low scenarios, however, projected little change (Fig. 6.5(c) 

and (f)). 
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(c)  B1, 2050s
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Fig. 6.6. Typical monthly mean wet-spell perturbations obtained from daily rainfall of 16 

qualified GCM runs extracted from a grid over the River Ruizi catchment. 

Perturbation of mean wet spell is calculated as the ratio of the mean wet spell for the 

scenarios series to that of the control and can easily be represented in terms of percentage. If 

wp(s,m) and wp(c,m) is the mean wet spell for scenario and control series, respectively, the mean 

wet-spell perturbation is given 
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where ρp(m) is the mean wet-spell perturbation and the equivalent percentage change is given 
by 
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 (6.3) 

Fig. 6.6 shows monthly mean wet-spell perturbations of 16 model runs under high, middle 

and low scenarios for the 2050s and 2090s. It can be seen that there is a “band of plots” with 

mean wet-spell perturbations that resonates around 1, with some completely below 1 and 

some, for the month of November, willowing out (Fig. 6.6(a)). A similar pattern of the 

former can be seen in Fig. 6.6(d) but with a shift in the upper “band of plots”. Fig. 6.6(d)-(f) 

further shows that for models with mean wet-spell perturbations < 1, the mean wet-spell 

perturbations are generally < 0.5 for most models, except for the months of May and 

November. Similarly, Fig. 6.6(d)-(f) also shows that for the models with mean wet-spell 

perturbations > 1 the mean wet-spell perturbations generally lie in the range 1-1.25 except 

for the months of April and November. Fig. 6.6(a)-(f) also reveals that the mean wet-spell 

perturbations for the months of February and August < 1 for most models. It can be seen 

also that the “depression” in the plots for models with mean wet-spell perturbations < 1 is 

eminent for the months of June-September. The preceding discussions have implications for 

the changes in the wet- and dry spells. First, the mean wet spell for the wet seasons is 

projected to increase and the wet spells for the wetter months will increase more than that 

for the less wet months. Secondly, for dry season where the mean wet spell is projected to 

decrease, the wet spells in the drier months will decrease more than that in the less dry ones. 

Furthermore, the change in the mean wet spell implies that the distributions of both the wet- 

and dry spells will alter.  

Fig. 6.7 shows the distributions of the wet/dry spell lengths for the months of January and 

April. The ordinates and the abscissa of the plots (Fig. 6.7) represent the relative frequency 

(pmf) and the days, respectively. It can be seen that the proportion of wet spells with length 

of one day is projected to reduce and the proportion of wet spells of length 2 days will 

dominate (Fig. 6.7(a)). Meanwhile the proportions of wet spells of length 2-3 days will 

reduce in the future. Wet spells of length greater than 4 days are projected to increase. The 

implication of the latter is that increase in the frequency of longer rainy days may be linked 

to river flooding. Fig. 6.7(c) shows that, generally, the proportion of the dry spells will 

reduce for the dry months. Fig. 6.7(c) shows that the proportions of wet spells of length 

between 3-10 days will increase and this means that the current longer wet spells are 

projected to be longer. For both the dry and wet months the wet spells of length 4-10 days 

are projected to increase. Thus, the frequency of wet days and dry days are projected to 

increase and reduce, respectively. Furthermore, the increase in the mean wet spell may be a 

manifestation of the increase in the longer wet spells. 

Note that perturbations of the mean and coefficient of variation of the intensity for the wet 

days can also be obtained by comparing the one of the scenarios to that of the control. This 

enables analysis of the possible change in the mean and also the variability of the wet day 

intensity as a result of the influence of climate. 
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Fig. 6.7. Typical distributions for: (a)-(b) wet spells, (c)-(d) dry spells for: (a) and (c) January, 

and (b) and (d) April for an example data set for a GCM run (CGCM3.1(T47),R2) under A2 

scenarios, 2090s, extracted for a grid over the River Ruizi catchment.  

6. Climate change signals 

We refer to perturbations extracted from GCM control and scenario runs, such as for rainfall 
intensity, wet-day, mean wet-spell, mean and Cv of the daily rainfall for each month as 
climate change signals (CCS). If we assume that the bias in the control runs is similar to the 
bias in the scenario runs then CCS are bias-free. Transfer of the CCS to observed time series 
(OS) at local scale would thus produce perturbed observed series (POS) which have similar 
statistical properties as the projected future time series. In the context of this study, we refer 
to the process of transferring the CCS to OS as a nonparametric statistical downscaling of 
GCM runs based on adaptive perturbation approach. The procedure for transferring the 
climate change signals is discussed in section 8.0 

7. Conclusions on perturbations and climate change signals 

The change (perturbation) between GCM scenario and control runs provides useful 

information on climate change signals in the hydrometeorological time series. Such climate 

change signals if carefully extracted can provide substantial preliminary information on 

climate change impacts assessment at local scale. A methodology that can transfer CCS to 

OS at local scale with minimum error margins would constitute an important nonparametric 

www.intechopen.com



 
Nonparametric Statistical Downscaling of Precipitation from Global Climate Models 

 

125 

statistical downscaling of GCM runs. The resulting downscaled time series can be used in 

hydrological climate change impacts at local scale. 

8. Perturbation approach for statistical downscaling 

The CCS, considered important for capturing change, can be transferred to OS using a 

perturbation approach without explicit assumption of the underlying distribution to obtain 

POS. A number of nonparametric approaches are used in stochastic hydrology to generate 

weather variables (Lall, 1995). An approach is considered nonparametric if (1) it is capable 

of approximating a large number of target functions, (2) it is “local” in that estimates of the 

target function at a point use only observations located within some small neighborhood of 

the point, and (3) no prior assumptions are made as to the overall functional form of the 

target function. In the perturbation approach, some CCS is used to perturb OS to obtain POS 

such that the other CCS are used to validate POS. Once POS is obtained and validated it can 

be employed in climate change impacts assessment at local scale. 

8.1 Application to rainfall 

In the downscaling of the daily rainfall time series, two CCS are considered: (1) wet-day 

rainfall intensity perturbations, and (2) mean wet-spell perturbations, as the most important 

signals to transfer to OS. The mean and the coefficient of variation of the wet-spell rainfall 

intensity, the mean wet-spell and the distributions of the wet-spells are the statistics used in 

the validation of POS. In the following sections we discuss how each of the selected CCS are 

transferred and validated. 

8.1.1 Wet-day climate change signals 

The wet-day intensity perturbations (perturbation factors) are calculated based on the 

procedure described in section 5. However, a methodology for choosing a threshold 

intensity value that defines a wet day in the GCM control series (CS) is revised by 

involving OS. Let to be the threshold wet-day rainfall intensity selected to define a wet 

day for OS. The corresponding wet-day rainfall intensity value for CS, tc, is the value that 

makes the number of wet days in the OS equals the number of wet days in the CS, 

provided CS is positively biased. If CS is negatively biased, the value of tc is taken to be 

the same as to. This is to ensure that all the wet days’ properties for OS, POS, CS and 

scenarios series are correctly estimated and to eschew “chaos” from wet-day intensity 

perturbations with low return periods. For example, if the GCM is positively biased and to 

= 1 mm, tc > to (e.g. tc = 8.2 mm). Thus, all the properties of the wet days in both the CS 

and the GCM scenario series (SS) are calculated by considering the value of tc. Fig. 6.8 

shows an example of the threshold wet-day intensity values for 16 different CS for all the 

months compared against to = 0.1 mm of an observed time series. It can be seen that the 

CS can be highly and positively biased with, for example, 0.1 mm in observed time series 

being simulated to be 16 mm in the CS. 

The values of the wet-day intensity for the OS are ranked and the exceedance probability of 

each data point is calculated based on its rank number. Similarly, the values of the wet-day 

intensity for SS are ranked and the exceedance probability of each data point is calculated 
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based on its rank number. The perturbation is therefore the ratio of the wet-days intensity 

for SS to that of CS with same probability. Note that if the SS has more wet days than the 

control, the exceedance probability points are also more than that of the CS and OS. Thus, 

the perturbations of the extra wet-days intensity values in the SS are obtained by 

interpolating over the wet-day intensity values for CS. The perturbations are then applied to 

the wet-day intensity for the OS to obtain POS. In the case where more wet days are 

projected by the SS the extra wet day perturbations are also applied to the wet-day intensity 

values interpolated over wet-days intensity values for OS. Note that this methodology 

ensures that the extra wet days (projected increase in wet days) are added during the 

application of perturbation factors to OS. If the GCM projects decrease in the number of wet-

day then the wet-day intensity perturbations are only applied to the OS based on 

exceedance probability “equation” and the extra wet days in the OS are converted to dry 

days. Figure 6.9. (a) and (b) shows the wet-day intensity before and after application of 

perturbations, respectively. 

The procedure described above is carried out for each month but for all the years of the time 

series record. The POS is then resorted to enable transfer of CCS for the mean wet spell. The 

properties or the statistics of the resulting POS are compared with the statistics of the OS to 

obtain climate change signal at local scale (CSL). 
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Fig. 6.8. Typical threshold for monthly wet-days daily intensity for different CS compared 

to to = 0.1 mm for an observed time series (Londiani) for a GCM grid over the River Ruizi 

catchment. 
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Fig. 6.9. Typical wet-days daily rainfall intensity for the OS before (a), and after (b), 

application of perturbations. The OS is the areal rainfall data over Ruizi catchment and the 

GCM data is extracted from a grid superimposed over the River Ruizi catchment. 

8.1.2 Wet-spell climate change signal 

The transfer of the mean wet-spell perturbation is only considered after the perturbations of 
wet-days intensity. The wet spells to be adjusted are those in POS. There are only two cases 
of change to be considered in the mean wet spell: an increase or a decrease in the mean wet 
spell. In the case of an increase in the mean wet-spell, each of the wet spells in POS greater 
than their mean value is adjusted by the mean wet-spell perturbation. That is, each of the 
wet spells in POS greater than their mean value is extended by giving it additional wet days. 
The value(s) of the wet-day intensity to be added, in order to extend a wet spell, is/are 
obtained through a non-parametric resampling technique using kernel density estimates 
(Lall et al., 1996, also see next section). For the case of a decrease in the mean wet spell, each 
of the wet spells in POS greater than their mean value is reduced by the mean wet-spell 
perturbation. The reduction of each of the wet spells with length greater than their mean 
value is carried out by extending the dry spells bounding the target wet spell. That is, extra 
wet days in the target wet spell are converted into dry days by removing the required 
number of wet days located at the ends of the wet spells and replacing them with dry days. 
The statistics of POS are calculated and compared with the statistics of OS to obtain adjusted 
climate change signal at local scale (CSLa). CSLa is validated against CCS and if the error 
margins are small enough, the modified POS (POSa) is the downscaled GCM run which 
represents the projected time series at the local scale.  

Note that the wet days to be added are considered days with missing value(s) and is/are 
added at the ends of the target spells in a proportional way. That is, the wet and dry spells 
are assumed to be independent where no transition to the same spell is possible. The 
application of wet-spell perturbation to OS, in downscaling GCM runs, is similar to the 
nonparametric approach used for generating weather variables in which the wet/dry spell 
approach is used. There are two major advantages of considering perturbation of wet spells in 
the perturbation approach for downscaling GCM runs. First, compared to the quantile 
perturbation  approach by Ntegeka (2011), the rainfall spell structure, in the OS and the 
change in the mean of the OS wet spells lengths, as projected by GCM, are both considered 
concurrently. This makes it an improvement and advancement of the quantile perturbation 
approach by Ntegeka (2011) where only the wet-day frequency and wet-day rainfall 
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intensity are considered. Secondly, the distribution of the spells can easily be validated against 
that of the GCM. That is, the distribution of the spell change signal can be checked graphically. 
However, as noted by Lall et al. (1996) the justification of the independence between the wet 
and dry spell lengths at short time scales is difficult. Nevertheless, the data are allowed to 
inform the wet spells perturbation process to ensure that very long wet spells, separated by a 
very short dry spell, are not merged. 

8.1.3 Kernel density estimation method 

Kernel density estimation is a robust nonparametric way of estimating the Probability 
Density Function (PDF) of a random variable. The technique does not assume any functional 
form of the PDF and allows its shape to be entirely determined from the data. The paper by 
Lall et al. (1995) presents a comprehensive nonparametric approach to a stochastic model for 
generating daily precipitation based on Kernel density estimation. The salient features of the 
model were the consideration of the alternating wet/dry spells of a daily rainfall structure 
within the wet spells. Kernel density estimates (k.d.e) were espoused as effective methods 
for recovering univariate, multivariate (conditional), discrete and/or continuous probability 
densities that were directly required from the histogram record. Furthermore, in Lall et al 
(1996), kernel density estimators of continuous and discrete variables were critically 
reviewed and tested with various data sets. The k.d.e methods have garnered favours for 
generating weather time series for various applications with Rajagopalan et al. (1997), and 
Rajagopalan & Lall (1999) expanding the methods to “k-nearest neighbours resampling”. 
Lall et al. (1996) stated that sampling from k.d.e., compared to sampling from the empirical 
distribution of the data itself, can lead to a reduced variance of the popular Monte Carlo 
design. The aim here is to take advantage of the flexibility and robustness of the kernel 
density estimator for generating daily precipitation from which it can be resampled to 
extend the wet spells in POS. The normal kernel (Lall et al., 1996) is a robust estimator and is 
often recommended for use when dealing with real-valued random variables that tend to 
cluster around a single mean value and was used in this study. 

8.1.4 The overall flow chart for the downscaling 

The downscaling process applied in this study involves the following seven steps. (1) 
Choose the threshold intensity that defines a wet day from OS and obtain the corresponding 
value that defines a wet day in CS and SS. Select and calculate the CCS from CS and SS 
needed for perturbation. (2) Calculate the wet-day intensity perturbations from CS and SS 
by considering rainfall quantiles with same exceedance probability. Note that the 
exceedance probability is calculated based only on the wet days. If there are more wet days 
in SS than in CS, the additional quantiles for CS are obtained by interpolation over its 
ranked series. (3) Modify each of the OS quantiles by wet-day intensity perturbation to 
obtain POS. Note that additional wet days are added through interpolating over OS for 
additional quantiles and are modified by the extra perturbation factors obtained in step (2). 
(4) Calculate CSL and validate them against CCS obtained in step (1). (5) Transfer the mean 
wet-spell perturbation through extending or reducing the length of each of the wet spells 
greater than their mean value. Use k.d.e to generate intensity values from which you can 
sample to extend the required wet spells. (6) Calculate the new CSL after application of the 
wet-spell perturbation (CSLa) and validate it against CCS. If the respective errors between 
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CSLa and CCS are small enough then the final POS is POSa (POS modified by wet-spell 
perturbation), if not, repeat step (5)–(6). (7). Examine the distribution of the wet spells 
graphically for visual satisfaction. 

8.1.5 Validation of results 

The key aspect in the wet-spell technique of the perturbation approach for downscaling GCM 
runs to local scale is the validation of the climate change signals. Four important characteristics 
of a rainfall time series for deriving climate change signals needed for the validation of the 
results are: (i) mean wet-day daily intensity, (ii) mean monthly volume of the wet-day 
intensity, (iii) mean wet spell and (iv) coefficient of variation of the wet-day intensity. This 
section presents an example of one GCM to illustrate the typical validation results. 
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Fig. 6.10. Typical validation results for the climate change signals: (a) mean wet-day daily 

rainfall intensity, (b) monthly mean volume for the wet-day rainfall intensity, (c) mean wet-

spell length, (d) coefficient of variation for the wet-days daily rainfall intensity for an 

example GCM run (CGCM3.1(T47), R2). The results are for the data extracted from a GCM 

grid over the River Ruizi catchment. 

Fig. 6.10 shows the validation results for the selected climate change signals. The perturbation 
represents the change or ratio of the time series feature between the control and the target 
series for the different months. The plots represented by continuous dot and dash lines are for 
CCS(xSS/CS), CSL(xPOS/OS) and CSLa(xPOSa/xOS), respectively, where x represents the 
time series feature or statistic under consideration. The time series features, x = i, v, w, Cv, 
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represent intensity, volume, mean wet spell and coefficient of variation, respectively. It can be 
seen that application of wet-day intensity and wet-day frequency perturbations to OS can 
perfectly transfer the CCS for intensity and volume (Fig. 6.10(a)-(b)). In addition the change in 
variability (Cv) is also well transferred simply by applying wet-day intensity and wet-days 
frequency perturbations (Fig. 6.10(d)). However, the transfer of wet-day intensity and wet-day 
frequency perturbations alone do not “honor” in any way the CCS for the wet spells except or 
perhaps by chance (Fig. 6.10(c)). Fig. 6.10(a) and (c) reveals that application of wet-day 
intensity and wet-day frequency perturbations to OS alone results in a perturbed observed 
series which has “inflated” mean wet spell above the one projected by the climate model. Fig. 
6.10 (a)-(b) indicates that adjustment of POS series to reflect change in the spells, as projected 
by the model, results in the reduction of the volume of the time series, especially in the case 
where the model projected decrease in the mean wet spell. However, the reduction in the 
mean wet-day is an indication that the mean wet-days intensity will increase (Fig. 6.10 (a)). In 
general, Fig. 6.10 shows that the mean wet spell is projected to reduce but the intensity of the 
rainfall will increase. The latter is projected to influence variability in the intensity and volume 
of rainfall for the very dry months or season (June-August).  

(a) Distribution of wet spells 

Figure 6.11 (a)-(b) shows the distribution of the wet spells for the months of January and 
April. The ordinate represents the relative frequency or the mean proportion of the wet spell 
of a given length (1-10 days) in that month in a period of 20 years. Figure 6.11. (c)-(d) shows 
the change in the distribution of the wet spells. From Figure 6.11.(c)-(d) it can be seen that 
application of the perturbation for the mean wet spell substantially improves the 
distribution of the wet spells in the POS. Furthermore, it can be seen from Figure 6.11. that 
there are more wet-spell events with length < 3 days for the month of January compared to 
that of April which has less wet-spell events of length less than 3 days. The wet spells with 
length 3-5 days dominate the wet-spell events for the month of April. Figure 6.11. shows 
that the proportions of wet spells of length 5-7 days for January, and 4-7 days for April, are 
projected to increase for both the months of January and April. Taking into account that 
intensity is projected to increase; the increase in longer wet spells has implications for the 
land areas with very high runoff coefficient and poor drainage. The longer wet spells events 
may have some influence on flooding than shorter ones. Note that, albeit the changes in the 
distribution of the wet spells of several GCM runs were analyzed, for both for the period 
2050s and 2090s and also for different observed data, the results presented here are not in 
any way exhaustive. 

(b) Distribution of rainfall series 

Fig.  6.12 shows the distribution versus retrun period for the daily rainfall for eight different 
months. Generally, it can be seen that the rainfall intensity with lower exceedance probability 
are projected to increase more than those with higher exceedance probability. Also, it can also 
be seen from Fig.  6.12 that generally the intensity of POSa, with exceedance probability 
between 0.08 and 0.1, will not change so much from that of OS. However, from Fig.  6.12(b), (f) 
and (h), it can be seen that the distributions for the POS for the mean events are above that of 
OS. This implies that application of intensity and wet-day frequency perturbations alone 
without considering perturbation for the mean wet spell results in, probably, overestimation of 
the mean rainfall events (also see Fig. 6.2). Consider Fig. 6.12(b)-(c) and given an exceedance 
probability less than 0.08; projected distributions for POS and POSa lie above the distribution 
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of OS. Similarly, the distributions for POS and POSa lie below the distribution of OS for 
exceedance probability > 0.1. These changes imply that the values of the intensity for the mild 
events are projected to decrease and that for heavy events are projected to increase for that 
month. Fig. 6.12(f)-(h) also shows similar changes. Thus, the mean of the wet-day intensity will 
increase for the wet months, which is consistent with the results of the increase in the mean of 
the wet-day intensity shown in Fig. 6.10(a). 
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Fig. 6.11. Typical validation results for the wet spell distribution: (a)-(b) January (b)-(c) April 
for an example GCM run (CGCM3.1(T47), R2). The results are for the data extracted from a 
GCM grid the River Ruizi catchment.  

However, Fig. 6.12(a) shows that the intensity for both the mild and heavy events will 
decrease. In contrast, Fig. 6.12(e) shows that the intensity of both the mild and heavy events 
will increase. Further more, Fig. 6.12(d) shows that the intensity of the medium events will 
decrease and the intensity for the heavy events will increase. Thus, for the dry months 
consistent change pattern is not eminent. Fig. 6.13(a) shows the distributions for OS, POS 
and POSa. Meanwhile, Fig. 6.13(b) shows the original perturbations derived from control 
and scenarios and that which is derived from observed and the downscaled series for the 
month of January. Fig. 6.13(a) can be compared with that of similar plot for CS and SS (e.g. 
Fig. 6.2(a)). Note that the result is for the same model and same scenarios (ECHO-G). It can 
be seen that the distributions for OS and POSa follows similar change pattern as the 
distributions for CS and SS. This may suggest that Fig. 6.10(a) gives a false impression of a 
perfect match when iPOS/mOS iSS/mCS are compared. Fig. 6.13(b) shows that the actual 
perturbations needed to be transferred to the OS is not the same as that derived from CS and 
SS if the change in wet spells is to be considered. In the latter case, the perturbations for 
intensity with heavy events are actually higher and those for mild events are lower if change 
in wet spells is taken into account. 
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Fig. 6.12. Typical distribution of daily rainfall for an example dataset for different months for 

an example GCM run (CGCM3.1(T47), R2). The results are for the data extracted from a GCM 

grid over the Ruizi catchment. The OS is the areal rainfall over the River Ruizi catchment. 

www.intechopen.com



 
Nonparametric Statistical Downscaling of Precipitation from Global Climate Models 

 

133 

0

20

40

60

80

0.01 0.1 1 10 100
Return period [years]

In
te

n
is

ty
 [

m
m

/d
ay

]

OS POSa POS

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.01 0.1 1 10 100

Return period [years]
P

er
tu

rb
a
ti

o
n
 [

-]

CCS CLSa

(a) (b)

 

Fig. 6.13. Classical distribution for January daily rainfall (a), and the perturbations (b) derived 

from SS and CS (CCS) and from OS and POSa (CLSa) for a grid over the River Ruizi 

catchment.  

9. Conclusion on downscaling 

A nonparametric statistical downscaling of daily rainfall time series from GCM runs that 
uses a perturbation approach is formulated and demonstrated. The core of the principle lies 
in the verity that climate change signals can be extracted from the GCM runs (control and 
scenarios) in an empirical way without explicit assumption of the underlying probability 
distribution and applied to the observed series. The modified observed time series are the 
downscaled GCM results, which are plausible for climate change impacts assessment at 
local scale. Among the important features of the rainfall time series are wet spells, wet-day 
intensities, wet-day frequencies and coefficients of variation and are considered in the 
perturbation approach. If only wet-day intensity and wet-day frequency perturbations are 
considered, the resulting time series can still have similar signals of coefficient of variation. 
However, it leads to an overestimate of the change in wet spells and intensity. Thus, the 
changes in the structure of both the dry/wet spells, which are very important temporal 
features of rainfall, are not captured in the perturbed series. Since hydrological models are 
very sensitive to rainfall, overestimates of the change in the wet spells and rainfall intensity 
events may significantly influence hydrological extremes. In order to eschew and buffer 
these problems, consideration of the changes in the wet spells is crucial. One other 
advantage of the wet-spell approach for statistical downscaling using quantile perturbation 
approach is that the changes in the distributions of both the wet and dry spells can be 
validated through a graphical approach. In addition, the wet-spell approach preserves the 
changes in extremes of rainfall as projected by the climate models. Thus, hydrological 
impacts of climate change on extremes can appropriately be estimated given the fact that 
rainfall time series is an important input into the hydrological model.  

Example of studies that have focused on the impacts of climate change on extremes include 
that of Taye et al. (2011), Nyeko-Ogiramoi et al. (2011), Willems and Vrac (2011), and 
Willems et al. (2011 in press). A conclusive statement in Nyeko-Ogiramoi (2011) states that 
for the Lake Victoria basin, the impact of climate change on the intensity and frequency of 
precipitation extremes and daily maximum temperature are projected to be significant in the 
2050s and 2090s. It further states that water professionals should take into account the 
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expected impact of climate change on the precipitation extremes as it will significantly affect 
the design statistics, which is very important for many engineering applications. The 
importance of the assessment of the possible impacts of climate change on precipitations 
extremes and the implications for hydraulic engineering practices can indeed not be 
underlooked. 
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