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1. Introduction 

Earthquake forecasts are very important in human life in terms of estimating hazard and 

managing emergency systems. Defining of earthquake characteristics plays an important 

role in these forecasts. Of these characteristics, one is the frequency distribution of 

earthquakes and and the other is the magnitude distribution of the earthquakes. Each 

statistical distribution has many parameters describing the actual distribution.  

There are various statistical distributions used to model the earthquake numbers. As is well 

known, these are binomial, Poisson, geometric and negative binomial distributions. It is 

generally assumed that earthquake occurrences are well described by the Poisson 

distribution because of its certain characteristics (for some details, see Kagan, 2010; Leonard 

& Papasouliotis, 2001). In their study, Rydelek & Sacks (1989) used the Poisson distribution 

of earthquakes at any magnitude level. The Poisson distribution is generally used for 

earthquakes of a large magnitude, and the earthquake occurrences with time/space can be 

modeled with the Poisson process in which, as is known, the Poisson distribution is one that 

counts the events that have occurred over a certain period of time. 

There is a significant amount of research on the change point as applied to earthquake data. 

Amorese (2007) used a nonparametric method for the detection of change points in 

frequency magnitude distributions. Yigiter & İnal (2010) used earthquake data for their 

method developed for the estimator of the change point in Poisson process. Aktaş et al. 

(2009) investigated a change point in Turkish earthquake data. Rotondi & Garavaglia (2002) 

applied the hierarchical Bayesian method for the change point in data, taken from the Italian 

NT4.1.1 catalogue. 

Recently, much research in the literature has focused on whether there is an increase in the 

frequency of earthquake occurrences. It is further suggested that any increase in the 

frequency of earthquakes, in some aspects, is due to climate change in the world. There is 

considerable debate on whether climate change really does increase the frequency of natural 

disasters such as earthquakes and volcano eruptions. In many studies, it is emphasized that 

there is serious concern about impact of climate change on the frequencies of hazardous 

events (Peduzzi, 2005; Lindsey, 2007; Mandewille, 2007 etc.). In Peduzzi’s study (2005), there 

are some indicators about increasing number of the earthquakes especially affecting human 

settlements, and it is also reported that there is an increase in the percentage of earthquakes 

affecting human settlements from 1980 onwards. The change point analysis can be used to 

study the increase or decrease in the frequency of the earthquake occurrences. 
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The change point analysis is a very useful statistical tool to detect an abrupt or a structural 
change in the characteristic of the data observed sequentially or chronologically. Many 
different statistical methods are available to detect the change point in the distribution of a 
sequence of random variables (Smith, 1975; Hinkley, 1970; Boudjellaba et al., 2001 in many 
others). Multiple change points have also been investigated for many years (Hendersen & 
Matthews, 1993; Yao, 1993; Chen & Gupta, 1997, among others.).  
In this study, we aimed to find an evidence of increased or decreased in world seismic 
activities after 1901. Earthquake frequencies are modeled by the Poisson distribution as the 
most commonly used discrete distribution. We modeled the earthquakes in the world with 
the Poisson process since the number of earthquakes is counted with Poisson distribution. 
We investigated any abrupt change point(s) in parameters of the model using the frequentist 
(maximum likelihood) and Bayesian method. When the magnitude of the earthquakes is 
taken into account in the process, it is then called the compound Poisson process. We also 
investigated a change in the magnitudes of the world earthquakes. For this purpose, Poisson 
process and compound Poisson process are introduces in Section 2. The frequentist and 
Bayesian methods used for change point estimates are explained in Section 3. Worldwide 
earthquake data and change point analysis of this data are given Section 4.  

2. Poisson process 

The Poisson process has an important place in stochastic processes. It is a Markov chain 
with a continuous parameter.  

A stochastic process t{N ,t 0}  is said to be a homogeneous Poisson process if  

i. t{N ,t 0}  has stationary independent increments 
ii. for any times s and t such that s<t the number of events occurred in time interval (s, t) 

has Poisson distribution with parameter (t-s). 
In the homogeneous Poisson Process, events occur independently throughout time. The 
number of events occurred time interval (0, t] has Poisson distribution with parameter t,  

 
-
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t
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 (1) 

where  is called the occurrence rate of the event in unit time. The occurrence rate is 
assumed to be a constant throughout the process. 

Let 0 1 2S ,S ,S ,  be occurrence times of the events where 0S 0  and 1 1 0T S S  , 

2 2 1T S S ,    be time intervals between the events.  1 2T ,T , are independent identically 

exponential random variables with parameter . The distribution of the random variables 

1 2T ,T ,  is: 

 
- tf(t) e , t 0

0, t 0

  
 

 (2) 

2.1 Compound poisson process 

A stochastic process t{X ,t 0}  is said to be a compound Poisson process if it can be 

presented, for t  0, by 

www.intechopen.com



 
Change Point Analysis in Earthquake Data 

 

27 

 



tN

t i
i 1

X Y  (3) 

in which t{N ,t 0}  is a Poisson process, and  i{Y ,i 1,2, }  are independent identically 

distributed (i.i.d.) random variables. The compound Poisson distribution has stationary 

independent increments, and the mean and variance of the Xt, 

 
   
 




t t

2
t t

E(X ) E N E Y

V(X ) E N E(Y ).
 (4) 

See Parzen (1962) for some details about Poisson processes. 

3. Methods for Estimating Change Point 

The Maximum likelihood method and the Bayesian method are basic methods in statistical 
change point analyses for point estimation and hypothesis testing.  

3.1 Change point estimation with the maximum likelihood method (frequentist 
method) 

Let 1 2 nX ,X , ,X  be a sequence of the random variables such that iX  (i 1, , )  has 

probability density function 1f(x, ) and iX     (i 1, ,n)  has probability density function 

2f(x, )  where the change point  is unknown discrete parameter and the parameters 1 , 

2  can be assumed to be either known or unknown. The single change point model in the 

sequence of the random variables is written: 

 

 







1 2 1

1 2 n 2

X ,X , ,X ~ f(x, )

X ,X , ,X ~ f(x, ).
 (5) 

Under model Eq.(5), for the observed values of the sequence of the random variables, the 
likelihood function is 

 
  

          
v n

1 2 1 n 1 2 i 1 i 2
i 1 i v 1

L( , , x , ,x ) L( , , ) f(x , ) f(x , )  (6) 

and the logarithm of  the likelihood function is: 
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nL( , , ) nf(x , ) nf(x , )  (7) 

After adding the expression 


 
v

i 2
i 1

nf(x , )  in Eq.(7) then Eq.(7) can be re-written as follows: 

  -

v

1 2 i 1 i 2
i 1

nL( , , ) nf(x , ) nf(x , )


         (8) 

When the parameters, 1 , 2  are unknown, for any fixed values of change point , the 

maximum likelihood estimator of the parameters 1 , 2  are found to be the derivative of 

Eq.(8) 1  and 2  respectively: 
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After solving the equations system given in Eq.(9) and (10), the maximum likelihood 

estimator of the parameters 1 , 2 , 1
ˆ , 2

ˆ  are obtained. The maximum likelihood estimate 

of the change point  is: 

 
-

-
 

     


 
k

i 1 i 2
k 1, n 1

i 1

ˆ ˆˆ arg max nf(x , ) nf(x , )  (11) 

3.2 Change point estimation with the Bayesian method 

The Bayesian method differs from the frequentist method in that each parameter is assumed 
to be a random variable and each one has a probability function called prior distribution. 
The estimate of the unknown parameter is obtained by deriving a posterior distribution 
on the basis of the prior distributions and the likelihood function. The posterior 
distribution is obtained: 

Posterior  likelihood  prior. 

Under change point model given in Eq.(5), let   0 1 2p ( , )  be the joint prior distribution of 

parameters 1 , 2   and let 0p ( )  be the prior distribution of change point . The likelihood 

function is given by Eq.(6) and so the joint posterior distribution is written as follows: 

 1 1 2 1 2 0 1 2 0p ( , , ) L( , , )p ( , )p ( )           . (12) 

Integrate Eq.(12) with respect to the parameters, the marginal posterior distribution of 

change point is proportional to  

 

2 1

1 1 2 0 1 2 0 1 2p ( ) L( , , )p ( , )p ( )d d
 

             (13) 

and the Bayesian estimate ̂  of the change point  is found by maximizing the marginal 

posterior distribution given by Eq.(13). Assuming uniform priors, the joint posterior mode, 

which gives the maximum likelihood estimates, is at ̂ , 1
ˆ , 2

ˆ  (Smith, 1975). 

4. Detecting change point in worldwide earthquake data and findings 

This study investigates whether there is a change point in worldwide earthquake activities 

such as the number of earthquake occurrences and their magnitude. At first, assuming that 

the occurrences of the earthquakes follow the homogeneous Poisson process, a change point 

is investigated in the occurrence rate of the earthquake in unit time; secondly, the 

magnitudes of the earthquake are assumed to be normally distributed random variables; a 

change point is investigated in the mean of the normally distributed random variables 

describing the earthquake magnitudes. 
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To detect a change point in earthquakes, the relevant data is taken from the website of the 

U.S. Geological Survey (2011), consisting of 819 earthquakes worldwide of magnitude 4.0 or 

above covering the period from 3-March-1901 until 11-March-2011. It is assumed that the 

earthquake occurrences follow the homogeneous Poisson process. The earthquakes are 

observed at times 1 2 818S ,S , ,S in the continuous time interval (0,T] . For the earthquakes 

data, the starting point S0 is in 3-March-1901 and the end point S818=T is in 11-March-2011. 

1 2 818T ,T , ,T  are exponentially distributed random variables as given in Eq.(2). Under the 

assumption that  is equal to the occurrence time of an event, the likelihood function can be 

written under the change point model in the sequence of exponentially distributed random 

variables: 

 
-       1N

1 2 1L( , , ) e - - -   2

2

n N (T )e . (14) 

Where  shows change point and is a continuous parameter defined time interval (0,T] , 2  

is the occurrence rate in the time interval ( , T]  and N  is the number of events that 

occurred in the time interval (0, ]  and T is the sum of the time interval between the 

earthquake occurrences, that is 



818

i
i 1

T t  (Raftery & Akman, 1986; Akman & Raftery, 1986). 

The logarithm of the likelihood function is  

 
2

- - -             1 2 1 2 1 2 2nL( , , ) N n( ) ( ) n n T  (15) 

After the derivation of the log likelihood function given by Eq.(15) for 1  and 2 , the 

maximum likelihood estimations of 1  and 2 are obtained respectively: 

 1 2

-λ λ
-

  
 

N n Nˆ ˆ,
T

 (16) 

For the possible values of , 1 2 ns ,s , ,s , and the variable N  takes the values 1,2, ,n , 

and so the estimations      11 21 12 22 1n 2n
ˆ ˆ ˆ ˆ ˆ ˆ( , ),( , ), ,( , )  are calculated from Eq.(16) and then 

these estimations are substituted into Eq.(15). One of  1i 2i i
ˆ ˆ( , ,s ) ,  i 1,2 , ,n , gives the 

maximum of this function, say   1 2
ˆ ˆ ˆ, , . Hence  1 2

ˆ ˆ, and ̂  are the maximum likelihood 

estimation for 1, 2 and . 
The scatter plot of the time intervals between the earthquakes is shown in Figure 1. From 

Figure 1, it is clearly seen that there is a change (or at least one change) in the occurrence 

rate of the earthquakes.  

When we assume a single change point in the data and the method explained above is 
applied this data and the results are given in Table 1.  
As is shown in Table 1, the occurrence rate of the earthquake in unit time (in day or in year) 

increased considerably after February 3, 2002, approximately ten times of the occurrence 

rate of the earthquakes in unit time before February 3, 2002. 

From the log likelihood function of the change point in Figure 2, it can be seen that there are 

at least two change points in the data. There many methods are used to detect multiple 

change points in the data. One of the basic methods used for this purpose is binary 
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segmentation procedure (Chen & Gupta, 1997; Yang & Kuo, 2001). In the binary 

segmentation procedure, the data is divided into two homogeneous groups according to the 

estimated change point, and a change point is searched in each subdivided data until there 

is no change in the subdivided data. The results are given in Figure 3. 

 

 

Fig. 1. The time intervals (days) between the earthquakes according to the earthquake 
occurrences. 

 
 

n = 818, T= 40185 days 

Before the change point 

1
ˆ  

Estimated change point 

̂  

̂N =429 

After the change point 

2
ˆ  

0.0116380  (in days) 
4.1896804  (in years) 

03-Feb-2002 
0.1170628  (in days) 

42.1426080  (in years) 

 

Table 1. Estimated parameters for the earthquake data. 
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Fig. 2. The maximum point of log likelihood function given in Eq.(16) is shown as a red star 
and the corresponding change point estimate is shown with a red circle. 

 

 
 

Change points and the occurrence rates of the earthquake throughout time axis 

 
1ˆ  2ˆ  3ˆ  4ˆ  5ˆ  6ˆ  

03-Nov-1928 

̂N =74 

09-Mar-1957

̂N =185 

10-May-1997

̂N =385 

03-Feb-2002

̂N =429 

16-Jul-2007 

̂N =660 

12-Jan-2010 

̂N =806 

 

1
ˆ  2

ˆ  3
ˆ  4

ˆ  5
ˆ  6

ˆ  7
ˆ  

0.0073* 0.0107* 0.0136* 0.0254* 0.1161* 0.1603* 0.0284* 

 
 

Fig. 3. The maximum likelihood estimations of parameters for multiple change points in the 
earthquake data (*in days). 

0 
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Fig. 4. Multiple change points in the earthquake data. 

Estimated change points are shown on the scatter plot of the time intervals between the 
earthquakes.  
 

 

Fig. 5. The estimated occurrence rate of earthquakes in order of change points.  

As can be seen in Figure 4 and Figure 5, the occurrence rate of the earthquakes increases 
slowly up until 03-February-2002, goes up sharply between 03- February-2002 and 12-
January-2010, and tends to fall thereafter.  

When using Bayesian method, the prior distributions of the parameters 1 , 2  and , are 

taken to be respectively, 

 
      

 

    

0 1 2 1 2
1 2

0

1
p ( , ) ,        , 0

1
p ( ) , 0  T

T

 (17) 
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where the prior distributions are called uninformative priors. The joint posterior 
distribution of the parameters is can be written as: 

 
- - -1 2

1 1 2 1 2 0 1 2 0

N n N (T )
1 2

1 2

p ( , , ) L( , , )p ( , )p ( )

1
e e

T
    

          

  
 

 (18) 

With integrate Eq. (18) with respect to the parameters 1 , 2 , the marginal posterior 

distribution of change point is proportional to  

 
 

 


           
1 N n N

(N ) (n N ) 1
p ( )

T(T )
 (19) 

where (.) is gamma function. The marginal posterior distributions of 1 and 2  are not 

obtained analytically because of discontinuity in  and the close form of the marginal 

posterior distributions of 1 and 2  are respectively proportional to  





  


 
   

  1

T
N

1 1 1 n N
0

(n N )1
p ( ) e d

T (T )
, 





   
   

 2

T
n N (T )

1 2 2 N
0

(N )1
p ( ) e d

T
 

where, for the possible values of , 1 2 ns ,s , ,s , and the variable N  takes the values 

1,2, ,n . 

Form Eq.(19), the Bayesian estimate ̂ of the change point in the earthquake data is found to 

be the date 03-February-2002 2002 which corresponds to the posterior mode. The posterior 

distribution of the change point is given in Figure 6. 
 

 

Fig. 6. The posterior distribution of change point and the posterior mode. 
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The Bayesian estimates of the parameters 1 and 2  would be the same as the maximum 

likelihood estimates because of uninformative prior distributions. 
For multiple change points, the binary Bayesian segmentation procedure can be easily used. 

The procedure is employed as the mode of the posterior distribution of change point 

decreases considerably until the one before the posterior mode is found. The results are 

given in Figure 7. 

 
 
 

 

Change points and the occurrence rates of the earthquake throughout time axis 

 
1ˆ  2ˆ  3ˆ  4ˆ  5ˆ  6ˆ  

21-Dec-1954

̂N =183 

09-Mar-1957

̂N =185 

10-May-1997

̂N =385 

03-Feb-2002

̂N =429 

09-Aug-2009

̂N =771 

12-Jan-2010 

̂N =806 

 

1
ˆ  2

ˆ  3
ˆ  4

ˆ  5
ˆ  6

ˆ  7
ˆ  

0.0093* 0.0025* 0.0136* 0.0254* 0.1246* 0.2244* 0.0284* 

 
 
 

Fig. 7. The Bayesian estimations of parameters for multiple change points in the earthquake 

data (*in days). 

When comparing the maximum likelihood estimates and the Bayesian estimates of the 

change points, we can see that the change points corresponding to dates such as 9-March-

1957, 10-May-1997, 03-February-2002 and 12-January-2010 overlap. These dates are 

investigated in depth from many aspects, including overall world temperature, other 

disasters, and astronomical events. 

When we look at the magnitudes of the earthquakes in the data, those of magnitude 6 to 6.9 

number 291 (35.57%) and those of magnitude 7 to 7.9 number 258 (31.54%) (Table 2). The 

histogram of the magnitudes is given in Figure 6. Furthermore, using the Kolmogorov-

Smirnov test, the distribution of the magnitudes is found to be almost normal (p=0.000).  

 

 
 

Magnitude 4-4.9 5-5.9 6-6.9 7-7.9 8-8.9 9 

The number of 
earthquakes 

54 93 291 258 40 82 

% 0.0660 0.1137 0.3557 0.3154 0.0489 0.1002 

 
 

Table 2. The number of earthquakes with respect to magnitudes. 

0 
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Fig. 8. Histogram of the earthquake magnitudes. 

The sequence of the earthquake magnitudes 1 2 nY ,Y , ,Y  can be assumed to be normally 

distributed random variables. The change point model in the mean of the normally 

distributed random sequences is written, 

 

 

 

 





2
1 2 1

2
1 2 n 2

Y ,Y , ,Y ~ N( , )

Y ,Y , ,Y ~ N( , )
 (20) 

where  is an unknown change point in the mean of the sequence of the normally 
distributed random variables. To investigate whether there is a change point in the 
earthquake magnitudes, under the change point model, the likelihood function of the 

observed values, 1 2 ny ,y , ,y , 

 

v n
2 2

1 2 i 1 i 2
i 1 i v 1

n
2 2

i 1 i 222 n
i 1 i 1

L( , , ) f(y , , ) f(y , , )

1 1
exp (y ) (y )

2( 2 )

  



 

       

           
    

 

 
. (21) 

and the logarithm of  the likelihood function in Eq. (21) is: 

 
 

 

 
        

  
  2 2

1 2 i 1 i 22
i 1 i 1

1
nL( , , ) (y ) (y )

2
 (22) 
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For any given value of , the maximum estimates of unknown parameters 1, 2, are 





 i
i 1

1

y

y and 
 


n

i
i 1

2

y

y
n

 respectively. The estimates are substituted into Eq.(22), and 

with the maximized the log likelihood function given by Eq.(22), we can obtain the 
maximum likelihood estimate of the change point, 

  
-

        

2 2

1 22k 1, n 1

1
ˆ arg max y (n )y

2
 (23) 

From Eq. (23), the change point is estimated to be the date 28-February-2011 corresponding 

to =817. The estimated change point is close to end of the sequence such that it refers to no 

change point in the sequence. We can model both the number of the earthquake occurrences 

and the magnitudes of the earthquakes with compound Poisson process. Let t{X ,t 0}  be a 

compound Poisson process as defined in Subsection 2.1 




iN

t i
i 1

X Y  

where tN  is the number of earthquakes in time interval (0, t] , which is a Poisson 

distributed random variable with parameter t, and  i{Y ,i 1,2, }  are the magnitudes of 

the earthquakes, which are normally distributed random variables with parameters i and 2. 

The mean and variance of the magnitudes of the earthquakes according to the estimated 

change points dates, (9-March-1957, 10-May-1997, 03-February-2002 and 12-January-2010) 

are given in Table 3. 
 

Estimated Change 
points 

Up to 9-
Mar-1957

Between
9-Mar-
1957 
and 

10-May-
1997

Between
10-May-

1997 
and 

03-Feb-
2002

Between
03-Feb-

2002 
and 

12-Jan-
2010

After 12-
Jan-2010 

Occurrence rate of the 
earthquakes 

0.0090* 0.0136* 0.0254* 0.1300* 0.0284* 

Mean of the 
magnitudes

6.9622 6.7250 7.0795 6.4562 7.1167 

Variance of the 
magnitudes

0.9305 0.8821 0.5579 0.9845 1.2706 

Table 3. Means and variances of the magnitudes with respect to estimated change point 
(*in days). 

Using Table 3, we compute the recurrence periods for certain earthquakes of magnitude y, 
corresponding to the change point, 12-January-2010. The recurrence period of an earthquake 
with magnitude y is computed by 

Reccurence period=1/(Expected number of earthquakes). 
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The expected number of earthquakes of magnitude y is computed by the multiplying the 
probability of occurrence class of magnitude with the expected number of earthquakes over 
a certain period of time.  
 

Class 
Magnitude 

(y) 
YF (L)  

Expected 
YF (U)  

Expected 

P(  L y U ) 

Expected 

Expected 
number of 

earthquakes 
(year) 

Average 
recurrence 

period 
(year) 

4-4.9 0.0028 0.0246 0.0218 0.2257 4.4306 

5-5.9 0.0302 0.1402 0.1100 1.1404 0.8769 

6-6.9 0.1609 0.4238 0.2629 2.7248 0.3670 

7-7.9 0.4588 0.7565 0.2977 3.0856 0.3241 

8-8.9 0.7834 0.9432 0.1598 1.6566 0.6037 

9 0.9526 1.0000 0.0474 0.4912 2.0360 

Table 4. The estimation of recurrence periods for certain earthquakes after the change point 
12-January-2010. 

 

Time 
Expected 

number of earthquakes 
Expected total magnitudes of 

earthquakes 

30 days 0.8520 6.0634 

3 months 2.5560 18.1902 

6 months 5.1120 36.3805 

1 years 10.3660 73.7717 

2 years 20.7320 147.5434 

3 years 31.0980 221.3151 

4 years 41.4640 295.0868 

5 years 51.8300 368.8585 

10 years 103.6600 737.7171 

20 years 207.3200 1475.4342 

Table 5. Expected number of earthquakes and the expected total magnitudes of earthquakes 
with respect to the change point 12-January-2010. 
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Table 6. Probability of earthquake occurrences after the change point 12-January-2010. 
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5. Conclusion 

Predicting earthquakes is of crucial importance these days. Many researchers have studied 
earlier attempts at earthquake detection. The change point analysis is used in both backward 
(off-line) and forward (on-line) statistical research. In this study, it is used with the 
backward approach in the worldwide earthquake data. The change points found in the 
worldwide earthquake data are useful in making reliable inferences and interpreting the 
results for further research. Each date found as the change point in the earthquake data 
should be carefully investigated with respect to other geographical, ecological, and 
geological events or structures in the world. 
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