
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

9

Intelligent Distributed
eLearning Architecture

S. Stoyanov1, H. Zedan2, E. Doychev1, V. Valkanov1,
I. Popchev1, G. Cholakov1 and M. Sandalski1

1University of Plovdiv,
2de Montfort University - Leicester Country

1Bulgaria
2UK

1. Introduction

One of the main characteristics of the eLearning systems today is the 'anytime-anywhere-
anyhow' delivery of electronic content, personalized and customized for each individual user.
To satisfy this requirement new types of context-aware and adaptive software architectures are
needed, which are enabled to sense aspects of the environment and use this information to
adapt their behavior in response to changing situation. In conformity with [Dey,2000], a
context is any information that can be used to characterize the situation of an entity. An entity
may be a person, a place, or an object that is considered relevant to the interaction between a
user and an application, including the user and the application themselves.

Development of context-aware and adaptive architectures can be benefited from some ideas
and approaches of pervasive computing. Pervasive computing is a new paradigm for next-
generation distributed systems where computers disappear in the background of the users'
everyday activities. In such a paradigm computation is performed on a multitude of small
devices interconnected through a wireless network. Fundamental to pervasive computing is
that any component (including user, hardware and software) can be mobile and that
computations are context-aware. As a result, mobility and context-awareness are important
features of any design framework for pervasive computing applications. Context-awareness
requires applications to be able to sense aspects of the environment and use this information
to adapt their behaviours in response to changing situations.

One of the main goals of the Distributed eLearning Centre (DeLC) project [Ganchev, 2005] is
the development of such an architecture and corresponding software that could be used
efficiently for on-line eLearning distance education. The approach adopted for the design
and development of the system architecture is focused on the development of a service-
oriented and agent-based intelligent system architecture providing wireless and fixed access
to electronic services and electronic content. This chapter provides a general description of
the architecture for two types of access - mobile and fixed.

Furthermore, we present the Calculus of Context-aware Ambients (CCA in short) for the
modelling and verification of mobile systems that are context-aware. This process calculus is

www.intechopen.com

Intelligent Systems 186

built upon the calculus of mobile ambient and introduces new constructs to enable ambients
and processes to be aware of the environment in which they are being executed. This results
in a powerful calculus where both mobility and context-awareness are first-class citizens.
We present the syntax and a formal semantics of the calculus. We also present a new theory
of equivalence of processes which allows the identification of systems that have the same
context aware behaviours. We prove that CCA encodes the Pi-calculus which is known to be
a universal model of computation.

We have used our CCA to specify DeLC in its entirety, hence achieving its correctness. Such

a dynamic system must enforce complex policies to cope with security, mobility and

context-awareness. We show how these policies can be formalised and verified using CCA.

In particular an important liveness property of the mLearning system is proved using the

reduction semantics of CCA.

2. DeLC overview

Distributed eLearning Center (DeLC) is a reference architecture, supporting a reactive,

proactive and personalized provision of education services and electronic content. The

DeLC architecture is modeled as a network (Fig.1.), which consists of separate nodes, called

eLearning Nodes (eLNs). Nodes model real units (laboratories, departments, faculties,

colleges, and universities), which offer a complete or partial educational cycle. Each

eLearning Node is an autonomous host of a set of electronic services. The configuration of

the network edges is such as to enable the access, incorporation, use and integration of

electronic services located on the different eLNs.

eLN1

eLNk
eLNm

eLNp

Cluster

Fig. 1. DeLC Network Model

The eLearning Nodes can be isolated (eLNp) or integrated in more complex virtual
structures, called clusters. Remote eService activation and integration is possible only within
a cluster. In the network model we can easily create new clusters, reorganize or remove

www.intechopen.com

Intelligent Distributed eLearning Architecture 187

existing clusters (the reorganization is done on a virtual level, it does not affect the real
organization). For example, the reorganization of an existing cluster can be made not by
removing a node but by denying the access to the offered by it services. The reorganization
does not disturb the function of other nodes (as nodes are autonomous self-sufficient
educational units providing one or more integral educational services).

An important feature of the eLearning Nodes is the access to supported services and
electronic content. In relation to the access there are two kinds of nodes:

 Mobile eLearning Node and

 Fixed eLearning Node.

For both nodes individual reference architectures are proposed within DeLC.

The current version of DeLC (Fig.2), two standardized architecture supporting fixed and

mobile access to the eLearning services and teaching contend have been implemented. The

fixed access architecture is adapted for the following domains implemented as particular

nodes:

 Education portal supporting blended learning in the secondary school;

 Specialized node for electronic testing (DeLC Test Center);

 Specialized node for education in software engineering (eLSE);

 Specialized nod for examination of creative thinking and handling of students (CA).
The node adapts the Creativity Assistant environment [Zedan,2008];

Intelligent agents that support the eLearning services provided by the DeLC portal (AV).

The Agent Village will be presented in this chapter in more detail.

3. Mobile eLearning node

A distinguishable feature of contemporary mobile eLearning (mLearning) systems is the

anywhere-anytime-anyhow aspect of delivery of electronic content, which is personalised

and customised to suit a particular mobile user [Barker,2000], [Maurer,2001]. In addition,

mobile service content is expected to be delivered to users always in the best possible way

through the most appropriate connection type according to the always best connected and

best served communication paradigm [O’Droma,2007], [Passas,2006]. In the light of these

trends, the goal is to develop an intelligent mobile eLearning node which uses an

InfoStation-based communication environment with distributed control [Frenkiel,1996],

[Ganchev,2007]. The InfoStation paradigm is an extension of the wireless Internet, where

mobile clients interact directly with Web service providers (i.e. InfoStations). By their mobile

devices the users request services from the nearest InfoStation utilizing Bluetooth or WiFi

wireless communication.

3.1 InfoStation-based network architecture

The continuing evolution in the capabilities and resources available within modern mobile
devices has precipitated an evolution in the realm of eLearning. The architecture presented
here attempts to harness the communicative potential of these devices in order to present
learners with a more pervasive learning experience, which can be dynamically altered and

www.intechopen.com

Intelligent Systems 188

Creativity Assistant

(CA)
Agent Village (AV)

eLearning in Software

Engineering (eLSE)

DeLC Test Center

(DeTC)

Education Portal

for Secondary

School

DeLC Portal

Info Stations (IS)

3rd Tier: InfoStations Centre

(with Profile Managers and Global Services’ Content

Repository)

2nd Tier: InfoStations

(with cached copies of recently used user/service

profiles, and Local Services’ Content Repository)

1st Tier: Mobile Devices

(with Intelligent Agents acting as Personal

Assistants for mobile users)

Fig. 2. Distributed eLearning Center

tailored to suit them. The following network architecture enables mobile users to access
various mLearning services, via a set of intelligent wireless access points, or InfoStations,
deployed in key points across the University Campus. The InfoStation-based network
consists of three tiers as shown in Figure 3.

The first tier encompass the user mobile devices (cell phones, laptops, PDAs), equipped
with intelligent agents acting as Personal Assistants to users. The Personal Assistant gathers
information about the operating environment onboard the mobile device, as well as
soliciting information about the user. Supplied with this information, the InfoStation can
make better decisions on applicable services and content to deliver to the Personal Assistant.

www.intechopen.com

Intelligent Distributed eLearning Architecture 189

3rd Tier: InfoStations Centre

(with Profile Managers and Global Services’ Content

Repository)

2nd Tier: InfoStations

(with cached copies of recently used user/service

profiles, and Local Services’ Content Repository)

1st Tier: Mobile Devices

(with Intelligent Agents acting as Personal

Assistants for mobile users)

Fig. 3. The 3-tier InfoStation-based network architecture

The second tier consists of InfoStations, satisfying the users' requests for services through
Bluetooth and/or WiFi wireless mobile connections. The InfoStations maintain
connections with mobile devices, create and manage user sessions, provide interface to
global services offered by the InfoStation Centre, and host local services. The
implementation of these local services is an important aspect of this system. By
implementing particular services within specific localised regions throughout the
University campus, we can enrich the service users experience within these localities. A
prime example of how this type of local service can enrich a learners experience, is the
deployment of library-based services [Ganchev,2008a]. Within the library domain, library
users experience can be greatly enhanced through the facilitation of services offering
resource location capabilities or indeed account notifications. The division of global and
local services allows for a reduction of the workload placed on the InfoStation Centre. In
the original InfoStation architecture, the InfoStations operated only as mediators between
the user mobile devices and a centre, on which a variety of electronic services are
deployed and executed. The InfoStations within this architecture do not only occupy the
role of mediators, they also act as the primary service providing nodes.

The third tier is the InfoStation Centre concerned with controlling the InfoStations, and
overall updating and synchronisation of information across the system. The InfoStation
Centre also acts as the host for global services.

3.2 Context-aware service provision

In order to ensure a context-aware service provision we propose that an application is built
as an integration of two components [Stoyanov,2008]:

 A standardized middleware, which is able to detect the dynamic changes in the
environment during the processing of user requests for services (contex-awareness) and
correspondingly to ensure their efficient and non-problematic execution (adaptability);

 A set of electronic services realizing the functionality of the application area
(education), which could be activated and controlled by the middleware.

www.intechopen.com

Intelligent Systems 190

As the middleware is concerned with the context-awareness and adaptability aspects, it is
important to clarify these concepts. Within our development approach, Dey's definition
[Dey,2000] was adopted, according to which "context is any information that can be used to
characterize the situation at an entity". An entity could be a person, place, or object that is
considered relevant to the interaction between a user and an application, including the user
and applications themselves. Context could be of different type, e.g. location, identity,
activity, time.

Dey's definition is utilized here as a basis for further discussions. In order to elaborate on
this definition a working one for the creation of the desired middleware architecture, we
first solidify the definition as presented further in the chapter. We want clearly to
differentiate context-awareness from the adaptability. Context-awareness is the
middleware's ability to identify the changes in the environment/context as regards:

 Mobile device's location (device mobility) - in some cases this mobility leads to changing
the serving InfoStation. This is especially important due to the inherent mobility within
the system, as users move throughout the University campus. This information has a
bearing on the local services deployed within a particular area i.e. within the University
Library;

 User device (user mobility) - this mobility offers different options for the delivery of the
service request's results back to the user. What is important here is to know the
capabilities of the new device activated by the user, so as to adapt the service content
accordingly;

 Communication type - depending on the current prevailing wireless network
conditions/constraints, the user may avail of different communications possibilities
(e.g. Bluetooth or WiFi);

 User preferences - service personalisation may be needed as to reflect the changes made
by users in their preferences, e.g., the way the service content is visualised to them, etc.;

 Goal-driven sequencing of tasks engaged in by the user;

 Environmental context issues such as classmates and/or learner/educator interactions.

The goal of adaptability is to ensure trouble-free, transparent and adequate fulfilment of
user requests for services by taking into account the various aspects of the context
mentioned above. In other words, after identifying a particular change in the service
environment, the middleware must be able to take compensating actions (counter-measures)
such as handover of user service sessions from one InfoStation to another, re-
formatting/transcoding of service content due to a change of mobile device (varying device
capabilities), service personalisation, etc.

To ensure adequate support for user mobility and device mobility (the first two aspects of
the context change), the following four main communications scenarios are identified for
support in our middleware architecture [Ganchev,2008b]:

 'No change' - a mLearning service is provided within the range of the same InfoStation
and without changing the user mobile device;

 'Change of user mobile device' - due to the inherent mobility, it is entirely possible that
during an mLearning service session, the user may shift to another mobile device, e.g.
with greater capabilities, in order to experience a much richer service environment and
utilize a wider range of resources;

www.intechopen.com

Intelligent Distributed eLearning Architecture 191

 'Change of InfoStation' - within the InfoStation paradigm, the connection between the
InfoStations themselves and the user mobile devices is by definition geographically
intermittent. With a number of InfoStations positioned around a University campus, the
users may pass through a number of InfoStation serving areas during the service
session. This transition between InfoStation areas must be completely transparent to the
user, ensuring the user has continuous access to the service;

 'Change of InfoStation and user mobile device' - most complicated scenario whereby the
user may change the device simultaneously with the change of the InfoStation.

To support the third aspect of the context change (different communication type), the

development of an intelligent component (agent) working within the communication layer

(c.f. Figure 4) is envisaged. This component operates with the capability to define and

choose the optimal mode of communication, depending on the current prevailing access

network conditions (e.g. congestion level, number of active users, average data rate

available to each active user, etc.). The user identification and corresponding service

personalisation is subject to a middleware adaptation for use in the particular application

area. In the case of eLearning, the architecture is extended to support the three fundamental

eLearning models - the educational domain model, the user/learner model, and the

pedagogical model [Stoyanov,2005],[Ganchev,2008c].

3.3 Layered system architecture

The layered system architecture (Figure 4) is a distributed architecture, meaning that its

functional entities are deployed across the different tiers/nodes, i.e. on mobile devices,

InfoStations, and InfoStation Centre. In this architecture the role of the InfoStations is

expanded, enabling them to act (besides the mediation role) as hosts for the local

mLearning services (LmS) and for preparation, adaptation, and conclusive delivery of

global mLearning services (GmS). This way the service provision is efficiently distributed

across the whole architecture. Each of the system network nodes have a different structure

depending on their functioning within the system. However, each node is built upon a

Communication Layer whose main task is to initialize, control and maintain

communications between different nodes. This layer is also concerned with choosing the

most appropriate mode of communication between a mobile device and an InfoStation -

whether that be Bluetooth or WiFi, or indeed as the platform evolves perhaps WiMAX in

the future. The software architecture of the InfoStations and InfoStation Centre includes a

Service Layer on the top. The main task of this layer is to prepare the execution of the

users' service requests, to activate and receive the results of the execution of different

services (local and global).

The InfoStations' middle layer is responsible for the execution of scenarios and control of
user sessions. It is at this layer where the user service requests are mainly processed by
taking into account all contex-aware aspects and applying corresponding adaptive actions.
The middle layer of the InfoStation Centre ensures the needed synchronisation during
particular scenarios (c.f. Section 8). In addition, different business supporting components,
e.g. for user accounting, charging and billing, may operate here.

The software architecture of the user mobile devices contains two other layers:

www.intechopen.com

Intelligent Systems 192

 Personal Assistant - its task is to help the user in specifying the service requests sent to

the system, accomplish the communication with the InfoStations' software, receive and

visualise the service requests' results to the user, etc. Moreover the assistant can provide

information needed for the personalisation of services (based on information stored in

the user profile) and/or for the synchronisation of scenario execution;

 Graphical User Interface (GUI) - its task is to prepare and present the forms for setting

up the service requests, and visualise the corresponding results received back from the

system.

Fig. 4. The layered system architecture

3.4 Agent-oriented middleware architecture

The main implementation challenges within this system are related to the support of

distributed control, as the system should be capable of detecting all relevant changes in the

environment (context-awareness) and according to these changes, facilitate the service

offerings in the most flexible and efficient manner (adaptability). The system architecture

presented in the previous section is implemented as a set of cooperating intelligent agents.

An agent oriented approach has been adopted in the development of this architecture in

order to:

 Model adequately the real distributed infrastructure;

 Allow for realisation of distributed models of control;

 Ensure pro-active middleware behaviour which is quite beneficial in many situations;

 Use more efficiently the information resources spread over different InfoStations.

Moreover, the agent-oriented architecture can easily be extended with new agents (where

required) that cooperate with the existing ones and communicate by means of a

standardized protocol (in this case the FIPA -Agent Communication Language (ACL)

[FIPA,2002]). Indeed the InfoStations and InfoStation Centre exist as networks of

interoperating agents and services, with the agents fulfilling various essential roles

necessary for system management. Within each of these platforms, agents take

responsibility for selecting and establishing a client-server cross-platform connection,

www.intechopen.com

Intelligent Distributed eLearning Architecture 193

conveyance of context information and the delivery of adapted and personalised service

content. This multi-agent approach differs from the classic multi-tier architectures in which

the relationships between the components at a particular tier are much stronger.

Conceptually we define different layers in the system architecture in order to present the
functionality of the middleware that is being developed in a more systematic fashion.
Implementation-wise, the middleware architecture is considered as a set of interacting
intelligent agents. Communication between the user mobile devices and the serving
InfoStations could be realized in two ways:

 An agent operating within the InfoStation discovers all new devices entering the range
and subsequently initiates communication with them; or

 Personal Assistant agents on the user mobile devices are the active part in
communication, and initiate the connection with the InfoStation.

In the current implementation of the prototype architecture, the former approach is used for
Bluetooth communication, whereas the latter applies for WiFi communication.

Figure 4 highlights the main components necessary to ensure continuity to the service
provision, i.e. support for the continuous provision of services and user sessions in the case
of scenario change or resource deficiency. The agents which handle the connection and
session establishment perform different actions, such as:

 Searching for and finding mobile devices within the range of an InfoStation;

 Creating a list of services required by mobile devices;

 Initiation of a wireless connection with mobile devices;

 Data transfer to- and from mobile devices.

Also illustrated within Figure 5 are the components which serve to facilitate a level of
context sensitivity and personalisation to the presented services. A short description of the
various agents (for Bluetooth communication) within the architecture is presented below.

The first step in the delivery of the services involves the Scanner agent, which continuously
searches for mobile devices/Personal Assistant agents within the service area of the
InfoStation. In addition, this agent retrieves a list of services required by users (registered on
their mobile devices upon installation of the client part of the application), as well as the
profile information, detailing the context (i.e. device capability and user preference
information. The Scanner agent receives this information in the form of an XML file, which
itself is extracted from the content of an ACL message. The contents of this XML file are then
passed on via the Connection Advisor agent, to the Profile Processor agent, which parses the
received profile and extracts meaningful information. This information can in turn be
utilized to perform the requisite alterations to services and service content.

The information is also very important in relation to the tasks undertaken by the Scenario
Manager agent. The role of this agent is to monitor and respond to changes in the operating
environment, within which the services are operating (i.e. change of mobile device). In the
event of a significant change of service environment, this agent gathers the new capability
and preference information (CPI) via the Scanner agent. Then, in conjunction with the Query
Manager agent and the Content Adaptation agent, facilitates the dynamic adaptation of the
service content to meet the new service context.

www.intechopen.com

Intelligent Systems 194

The main duty of the Connection Adviser agent is to filter the list (received from the

Scanner agent) of mobile devices as well as requested services. The filtration is carried out

with respect to a given (usually heuristic) criterion. Information needed for the filtration is

stored in a local database. The Connection Adviser agent sends the filtered list to the

Connection Initiator agent, who takes on the task of initiating a connection with the

Personal Assistant onboard the mobile device. This agent generates the so-called

Connection Object, through which a communication with the mobile device is established

via Bluetooth connection. Once this connection has been established, the Connection

Initiator generates an agent to which it hands over the control of the connection, called a

Connection agent.

From this point on, all communications between the InfoStation and the Personal Assistant

are directed by the Connection agent. The internal architecture of the Connection agent

contains three threads: an agent thread used for communication with the Query Manager

agent, and a Send thread and Receive thread, which look after each direction of the wireless

communication with the mobile device.

The Query Manager performs one of the most crucial tasks within the InfoStation

architecture. It determines where information received from the mobile device is to be

directed, e.g. directly to simple services, or via Interface agents to sophisticated services. It

also transforms messages coming from the Connection agent into messages of the correct

protocols to be understood by the relevant services, i.e. for simple services - UDDI or

SOAP, or for increasingly sophisticated services by using more complicated, semantic-

oriented protocols (e.g. OWL-S [OWL-S,2010]). The Query Manager agent also interacts

with the Content Adaptation agent in order to facilitate the Personal Assistant with

increasingly contextualised service content. This Content Adaptation agent, operating

under the remit of the Query Manager agent, essentially performs the role of an

adaptation engine, which takes in the profile information provided by the Profile

Processor agent, and executes the requisite adaptation operations on the service content

(e.g. file compression, image resizing etc.)

Fig. 5. The Agent-Oriented Middleware Architecture

www.intechopen.com

Intelligent Distributed eLearning Architecture 195

The Query Manager agent receives user service requests via the Connection agent, and may
communicate with various services. Once it has passed the request on to the services, all
service content is passed back to the Query Manager via the Content Adaptation agent. The
Profile Processor agent parses and validates received profiles (XML files) and creates a
Document Object Model (DOM) tree [W3C,2010]. Using this DOM tree the XML information
may be operated on, to discern the information most pertinent to the adaptation of service
content. The Content Adaptation agent receives requests-responses from the services,
queries the Profile Processor agent regarding the required context, and then either selects a
pre-packaged service content package which closely meets the requirements of the mobile
device, or applies a full transformation to the service content to meet the constraints of the
operating environment of the device.

The tasks undertaken by the Content Adaptation agent, the Scenario Manager agent and the
Profile Processor agent, enable the system to dynamically adapt to changing service
environments, even during a particular service session. Once the connection to a particular
service has been initialized and the service content adapted to the requisite format, the
Connection agent facilitates the transfer of the information to the user mobile device.

4. Fixed eLearning node

The fixed nodes of the DeLC are implemented as education portals, which provides
personalized educational services and teaching material. A standardized portal architecture
is described in this section, which is used as generic framework for implementation of
particular education portals for university and secondary school. The architecture has been
extended by intelligent components (agents, called assistants) in order to enhance the
flexibility, reactivity and pro-activeness of the portals.

4.1 Education portal architecture

The architecture of the educational portal is service-oriented and multi-layered, consisting of
three logical layers (Figure 6): user interface, e-services and digital libraries.

The user interface supports the connection between the users and the portal. Through it the
users can register in the system and create their own personalized educational environment.
The user interface visualizes and provides access for the user to services, depending on their
role, assigned during the registration.

Two kinds of e-services are located in the middle layer - system services and eLearning
services. The system services, called 'engines', are transparent for the users and their basic
purpose is to assist in the processing of the eLearning services. Using the information,
contained in the meta-objects, they can effectively support the activation, execution and
finalization of the eLearning services. In the current portal architecture the next engines are
implemented:

 SCORM Engine;

 Exams Engine;

 Events and Remainders Engine;

 Integration Engine;

 User Profiling.

www.intechopen.com

Intelligent Systems 196

SCORM Engine is implemented in the portal architecture for delivering an interpreter of

the electronic content, developed in accordance with the SCORM 2004 standard. The Test

Engine assists in performing electronic testing using the portal. It processes basically the

meta objects, which describe the questions and the patterns of the tests. The Event Engine

supports a model for event management, enabling the users to see and create events and

also be notified for them in advance. The events in the system reflect important moments

for the users, such as a lecture, examination, test, national holiday, birthday, etc. One

event is characterized by attributes, such as a name, start and end date and time, details,

and information if it is a recurring one, as well as rules for its recurrence. The Event

Engine supports yearly, monthly and weekly recurring. The User Profiling implements

the user model of the portal. The profiles could be classified by roles, user groups,

communities, and organizations. The standard user profile consists of three main groups

of attributes:

 Standard attributes - necessary for user identification through username, password, e-
mail, and others;

 Extended attributes - addresses, phone numbers, Internet pages, IM, social networks
contacts, and others;

 DeLC custom attributes - other user identifications. Thus, for example, for users with
role "student" these can be faculty number, subject, faculty, and course.

The portal gives an opportunity for extending the user profile with some additional

attributes. The users' profiles contain the whole information needed for personalization of

the provided by DeLC portal services, educational content and user interface. The profile is

created automatically during the first user's log in, through a call to the university's

database, filling in the standard and custom attributes. The integration with the university

database and with ?nother external components is supported by the Integration Engine.

Extended attributes are filled by the user. During each next user's log in in the portal the

information in their profile is synchronized, as eventual updates in the university's database

are automatically migrated in the user's profile, for example passage in the upper course or

changing the subject.

Educational services serve all stages in one educational process. Supported by the portal,

services are grouped in three categories:

 Services for training, organizing and planning of the educational process;

 Services for conduction and management of the education process - examples of these

services are electronic lectures, electronic testing, online and offline consultations;

 Services for recording and documenting the educational process - these services

support automated generation of the documents recording the educational process

(examination protocols, student books, teachers' personal notebooks and archives).

The third layer contains electronic content in the form of repositories, known as digital

libraries. In the current version are supported lecture courses digital library, questionary

library, test templates library, course projects library and diploma theses library. The

supported portal services work directly with the digital libraries. The digital libraries

content can be navigated by help of a generalized catalog.

www.intechopen.com

Intelligent Distributed eLearning Architecture 197

Fig. 6. Standarised Architecture of the portal

4.2 Education cluster

In order to provide more effective and personalized user support, we need to enhance the
flexibility, reactivity and pro-activeness of the portal including intelligent components into
the architecture. The pro-activity improves the usability and friendliness of the system to the
users. Pro-activity means that the software can operate "on behalf'' of the user'' and "activate
itself'' when it "estimates'' that its intervention is necessary. Two approaches are available:

 Direct integration of intelligent components in the currently existing architecture - in
this way we extend the existing portal architecture;

 Building an education cluster.

The litter approach is preferable because it match with DeLC philosophy for building of
more complex structures. Moreover, the former approach involves difficulties in the
integration of two environments with different characteristics - portal frame and agent-
oriented environment.

The education cluster consists of two nodes - the existing portal and a new node, called
Agent Village (AV), where the "assistants'' will "live in'' (Figure 7). Three basic problems
have to be solve in order to create the cluster:

 Architecture of the AV node;

 Interaction between the portal and AV;

 What kind of intelligent assistance for the portal services.

AV node is implemented as an agent-oriented server, by help of JADE environment
[Bellifemine,2007].

SCORM Engine

Event

Engine

Test Engine

AVCall

Processor

eLearning Service

Sevices

User Interface

Digital Libraries

DLibM DLibQ DLibT DLibP DLibD

Catalogue

Integration

& User

Profiling

www.intechopen.com

Intelligent Systems 198

The connection of the educational portal and the AV node is made through the middle layer

of the portal architecture, where the electronic services are located. Depending on the

direction of the asked assistance we distinguish reactive and proactive behavior of the

architecture. In the reactive behavior the interaction between the two nodes is initiated by

the portal. This is necessary in the cases when a user request is processed and a service

needs an "expert'' assistance. The service addresses the corresponding agent, located in the

AV. The problem is that, in their nature, the services are passive and static software

modules, intended mainly for the convenient realization and integration of some business

functionality. Therefore they must "transfer'' the responsibility for the activation and

support of the connection to an active component of the architecture, as agents do. To do

this, the service sends a concrete message to the agent's environment, which, on its behalf,

identifies the change of the environment and reacts by interpreting the message. Depending

on the identified need of assistance the agent activates the necessary actions. The reactive

behavior of the architecture could be implemented using a:

 Synchronous model - this model is analogous to calling subroutines in programming
languages. In this model the service sends a message to AV and waits for the result
from the corresponding agent before continuing its execution.

 Asynchronous model - in the asynchronous model the interaction is accomplished
through some kind of a mechanism for sending and receiving messages.

Fig. 7. Cluster architecture

In the proactive behavior (agents work "on behalf of the user''), an agent from the AV can
determine that in its environment "something is happening'', that would be interesting for
the user, who is assisted by that agent. The agent activates and it can perform certain actions

www.intechopen.com

Intelligent Distributed eLearning Architecture 199

to satisfy the preferences (wishes) of the user. The agent can inform the user of its actions
through the educational portal.

The difficulties, associated with the management of the pro-activity of our architecture,

result from the fact that the portal is designed for reaction of the user's requests. Therefore

the pro-activity can be managed only asynchronously and for this purpose we provide

development of a specialized service, which is to check a "mailbox'' periodically for

incoming messages from AV.

According our architecture, the reactivity and the pro-activity are possible if the

environment of the agents (Agent Village) remains not more passive. In order to be

identified, the agents need a wrapper (the environment), which "masks'' it as a web service

for the portal. In such a way the portal send the request to this service (masked

environment), which in its turn transform the request into an ACL message, understandable

for the agents. In a similar manner the active environment transform ACL messages into

SOAP responses, which can be process from the portal services.

The next assistants are developing in the first version of the AV node:

 Evaluator Assistant (EA);

 FraudDetector;

 Statistician;

 Intelbos

The Evaluator Assistant (EA) provides expert assistance to the teacher in assessment of the

electronic tests. In the Exam Engine a service is built for automated assessment of "choice

like'' questions. In the standard version of the architecture questions of the "free text'' type

are assessed by the teacher and the ratings are entered manually in the service to prepare

the final assessment of the test. In the cluster the Exam Engine calls the assistant (an

intelligent agent), which makes an "external'' assessment of the "free text'' type questions. In

the surrounding environment of the EA, the received SOAP Request messages are

transformed into ACL messages, understandable for the agent. Some of the basic parameters

of the messages are:

 Text, which is an answer of a "free text'' type question.

 Parameters for the used estimation method.

 Maximum number of points for this answer.

The EA plans the processing of the request. In the current version of the assistant two

methods are available for estimation:

 Word Matching (WM) method - counts "exact hits'' of the keywords in the answer. The
minimum threshold of percentage match (i.e. a keyword to be considered as "guessed''),
which is laid in the experiments, is between 70% and 80%. Intentionally, the method
does not look for 100% match, in order to give a chance to words with some minor
typos also to be recognized. To calculate the points, offered by this method, a coefficient
is formed in the following way: the number of hits is divided by the number of
keywords. The actual number of points for the answer is calculated as the maximum
number of points is multiplied by this coefficient;

www.intechopen.com

Intelligent Systems 200

 Optimistic Percentage (OP) method - makes an optimistic estimation of the points for
the answer. Its essence is to iterate over the keywords list and summarize their
percentage matches. Thus, the calculated amount of rates for each keyword, divided by
the maximum possible match (in %), gives the reduction coefficient. The actual number
of points for the answer is calculated by multiplying the maximum number of points by
the coefficient of the reduction. This method is more "tolerant'' to allowing spelling
mistakes in the answers, because low percentage matches are not ignored (unlike the
first method) and are included in the formation of the final amount of points.

When the calculations finish, the EA generates an answer as an ACL message, which then is

transformed by the environment into a SOAP Response message (a result from a web

service call). In the answer there is a parameter, representing the calculated amount of

points, extracted afterwards by the Exam Engine. A comparison of the scores, given by the

two methods and by the teacher, are presented in Figure 8.

Fig. 8. Comparison of WM, OP and the teacher for 18 tests

The FraudDetector will try to recognize any attempts to cheat in the answer given by the

student. Such attempts would be to guess the keywords or copy/paste results from Internet

search engines. This assistant cooperates with the Evaluator agent and if its receptors detect

a probability of a cheating attempt, it informs the Evaluator agent, which for its part informs

the assessing teacher that this answer requires a special attention, because it is a suspicious

one. The Statistician stores information about all processed answers with a full history of the

details from all calculating methods used by the Evaluator agent. This assistant needs a

feedback how many points are finally given by the teacher for each answer. Thus it

accumulates a knowledge base for each teacher and is able to decide which of the methods

best suits the assessment style of the current assessing teacher. Upon returning the results of

the Evaluator assistant, information by this agent determines which results from each

www.intechopen.com

Intelligent Distributed eLearning Architecture 201

method will be presented to the teacher as main result, and the results of the other methods

will be presented as an alternative. Another feature of this agent will be also to provide

actual statistics on the performance of each of the calculating methods, as the "weakest'' of

them goes out of service until new and better performing methods are added to the

Evaluator agent. This monitoring of the methods' behavior becomes really significant when

the so-called genetic algorithms are added, which we are still working on - as it is known,

they can be "trained'' and thus their effectiveness can change. In this process a knowledge

base is developing for each specific subject, which supports the methods in their work.

5. Calculus of context aware systems - CCA

Context-awareness requires applications to be able to adapt themselves to the environment
in which they are being used such as user, location, nearby people and devices, and user's
social situations. In this section we use small examples to illustrate the ability of CCA to
model applications that are contextaware.

5.1 Syntax of processes and capabilities

This section introduces the syntax of the language of CCA. Like in the π-calculus
[Milner,1999], [Sangiorgi,2001], the simplest entities of the calculus are names. These areused
to name for example ambients, locations, resources and sensors data. We assume a
countably-infnite set of names, elements of which are written in lower-case letters, e.g. n, x
and y. We let ỹ denote a list of names and |ݕ෤| the arity of such a list. We sometimes use ݕ෤ as a
set of names where it is appropriate. We distinguish three main syntactic categories:
processes P, capabilities M and context expressions κ.

The syntax of processes and capabilities is given in Table 1 where P, Q and R stand for
processes, and M for capabilities. The first five process primitives (inactivity, parallel
composition, name restriction, ambient and replication) are inherited from MA
[Cardelli,2000]. The process 0 does nothing and terminates immediately. The process P | Q
denotes the process P and the process Q running in parallel. The process (υn) P states that
the scope of the name n is limited to the process P. The replication !P denotes a process
which can always create a new copy of P. Replication was first introduced by Milner in the
π-calculus [Milner,1999]. The process n[P] denotes an ambient named n whose behaviours
are described by the process P. The pair of square brackets `[' and `]' outlines the boundary
of that ambient. This is the textual representation of an ambient. The graphical
representation of that ambient is:

The graphical representation highlights the nested structure of ambients.

CCA departs from MA and other processes calculi such as [Zimmer,2005], [Bucur,2008],
[Bugliesi,2004] with the notion of context-guarded capabilities, whereby a capability is guarded
by a context-expression which specifes the condition that must be met by the environment
of the executing process. A process prefxed with a context-guarded capability is called a

www.intechopen.com

Intelligent Systems 202

context-guarded prefix and it has the form ܯ?ߢ. ܲ. Such a process waits until the environment
satisfies the context expression κ, then performs the capability M and continues like the
process P. The process learns about its context (i.e. its environment) by evaluating the guard.
The use of context-guarded capabilities is one of the two main mechanisms for context
acquisition in CCA (the second mechanism for context acquisition is the call to a process
abstraction as discussed below). The syntax and the semantics of context expressions are
given below. We let M.P denote the process True?M.P, where True is a context expression
satisfied by all context.

ࡾ,ࡽ,ࡼ ∷= Process
 0 inactivity
 P | Q parallel composition
 ሺυnሻ P name restriction
 n[P] ambient
 ! P repliaction
 κ!M. P context-guarder action
 x ⊳ ሺy෤ሻ. P process abstraction

 હ ∷= Locations
 ՛ any parent
 n ՛ parent n
 ՝ any child
 n ՝ child n
 ∷ any sibling
 n ∷ sibling n
 ϵ locally

ۻ ∷= Capabilities
 del n delete n
 in n move in n
 out move out
 α xۃz෤ۄ process call
 α ሺy෤ሻ input
 α output ۄy෤ۃ

Table 1. Syntax of CCA processes and capabilities

A process abstraction ݔ ⊳ ሺݕ෤ሻ. ܲ denotes the linking of the name x to the process P where ݕ෤ is
a list of formal parameters. This linking is local to the ambient where the process abstraction is
defined. So a name x can be linked to a process P in one ambient and to a diferent process Q
in another ambient. A call to a process abstraction named x is done by a capability of the
form ߙ	ۄݖ̃ۃݔ where ߙ specifies the location where the process abstraction is defined and ̃ݖ is
the list of actual parameters. There must be as many actual parameters as there are formal
parameters to the process abstraction being called. The location ߙ can be ′ ՛ ′ for any parent, ′݊ ՛ ′ for a specifc parent n, ′ ՝ ′ for any child, ′݊ ՝ ′ for a specific child n, ′ ∷ ′ for any sibling, ′݊ ∷ᇱfor a specific sibling n, or ߳ (empty string) for the calling ambient itself. A process call

www.intechopen.com

Intelligent Distributed eLearning Architecture 203 ߙ	ۄݖ̃ۃݔ behaves like the process linked to x at location ߙ, in which each actual parameter in ̃ݖ
is substituted for each occurrence of the corresponding formal parameter. A process call can
only take place if the corresponding process abstraction is available at the specified location.

In CCA, an ambient provides context by (re)defining process abstractions to account for its
specific functionality. Ambients can interact with each other by making process calls.
Because ambients are mobile, the same process call, e.g. ՛ may lead to different ,ۄݖ̃ۃݔ
behaviours depending on the location of the calling ambient. So process abstraction is used
as a mechanism for context provision while process call is a mechanism for context
acquisition.

Ambients exchange messages using the capability ߙ	ۄݖ̃ۃ to send a list of names ̃ݖ to a location ߙ, and the capability ߙ	ሺݕ෤ሻ	to receive a list of names from a location ߙ. Similarly to a process

call, an ambient can send message to any parent, i.e. ՛ ݊ .a specific parent ݊, i.e ;ۄݖ̃ۃ ՛ any ;ۄݖ̃ۃ

child, i.e. ՝ ݊ .a specific child ݊, i.e ;ۄݖ̃ۃ ՝ ∷ .any sibling, i.e ;ۄݖ̃ۃ ݊ .a specific sibling ݊, i.e ;ۄݖ̃ۃ ∷ .ۄݖ̃ۃ .or itself, i.e ;ۄݖ̃ۃ
An input prefix is a process of the form ߙሺݕ෤ሻ. ܲ , where ݕ෤ is a list of variable symbols and ܲ is

a continuation process. It receives a list of names ̃ݖ from the location ߙ and continues like the

process ܲ{ݕ෤ ՚ ෤ݕ}ܲ where ,{ݖ̃ ՚ is ݖ̃ is the process ܲ in which each name in the list {ݖ̃

substituted for each occurrence of the corresponding variable symbol in the list ݕ෤.
The mobility capabilities in and out are defined as in MA [Cardelli,2000] with the exception

that the capability out has no explicit parameter in CCA, the implicit parameter being the

current parent (if any) of the ambient performing the action. An ambient that performs the

capability in ݊ moves into the sibling ambient ݊. The capability out moves the ambient that

performs it out of that ambient parent. Obviously, a root ambient, i.e. an ambient with no

parents, cannot perform the capability out. The capability del ݊ deletes an ambient of the

form ݊[Ͳ] situated at the same level as that capability, i.e. the process del ݊. ܲ|݊[Ͳ] reduces to ܲ. The capability del acts as a garbage collector that deletes ambients which have completed

their computations. It is a constrained version of the capability open used in MA to unleash

the content of an ambient. As mentioned in [Bugliesi,2004], the open capability brings about

serious security concerns in distributed applications, e.g. it might open an ambient that

contains a malicious code. Unlike the capability open, the capability del is secure because it

only opens ambients that are empty, so no risk of opening a virus or a malicious ambient.

5.2 Context model

In CCA the notion of ambient, inherited from MA, is the basic structure used to model
entities of a context-aware system such as: a user, a location, a computing device, a software
agent or a sensor. As described in Table 1, an ambient has a name, a boundary, a collection
of local processes and can contain other ambients. Meanwhile, an ambient can move from
one location to another by performing the mobility capabilities in and out. So the structure
of a CCA process, at any time, is a hierarchy of nested ambients. This hierarchical structure
changes as the process executes. In such a structure, the context of a sub-process is obtained
by replacing in the structure that sub-process by a placeholder ′ۨ′. For example, suppose a
system is modelled by the process ܲ|݊[ܳ|݉[ܴ|ܵ]]. So, the context of the process ܴ in that
system is ܲ|݊[ܳ|݉[ۨ|ܵ]], and that of ambient ݉ is	ܲ|݊[ܳ|ۨ]. Following are examples of

www.intechopen.com

Intelligent Systems 204

contexts in the smart phone system described in Sect. 5.3. The following context is the
context of the smart phone carried by Bob when Bob is inside the conference room with
Alice: ݁ଵ ≙ ,൧[ܳ]݈݁ܿ݅ܽ	|	[ۨ]ܾ݋ܾ	|	ܲൣ݂݊݋ܿ
where ܲ models the remaining part of the internal context of the conference room and ܳ the
internal context of the ambient alice. We assume that there is only one ambient named alice
in the conference room.

If Bob is inside the conference room while Alice is outside that room, the context of the
smart phone carried by Bob can be described as follows: ݁ଶ ≙ .൧[ۨ]ܾ݋ܾ	|ܲൣ	݂݊݋ܿ	|	[ܳ]݈݁ܿ݅ܽ
Bob might carry with him another device, a PDA say, while inside the conference room. In
this case the context of the smart phone can be modelled as: ݁ଷ ≙ ,൧[ܴ]ܽ݀݌	|	[ۨ]ܾ݋ܾ	|	′ܲൣ݂݊݋ܿ
where ܲ′ models the remaining part of the internal context of the conference room, ܽ݀݌ is
the name of the ambient modelling the PDA device and ܴ specifies the functionality of the
PDA.

Our context model is depicted by the grammar in Table 2, where the symbol E stands for

context (environment), ݊ ranges over names and ܲ ranges over processes (as defined in

Table 1). The context Ͳ is the empty context, also called the nil context. It contains no context

information. The position of a process in that process' context is denoted by the symbol ۨ.

This is a special context called the hole context. The context ሺ݊ߥሻ	ܧ means that the scope of the

name n is limited to the contextܧ. The context ݊[ܧ] means that the internal environment of

the ambient ݊ is described by the context ܧ. The context ܧ|ܲ says that the process ܲ runs in

parallel with the context ܧ, and so ܧ is part of process ܲ's context.

Ground context. A ground context is a context containing no holes.

Note that a context contains zero or one hole; and that a ground context is a process. We do
not allow multi-hole contexts because they are not suitable to our purpose.

	ࡱ ∷= Context
 0 nil
 ۨ hole
 location [ܧ]݊
 ሺ݊ߥሻ restriction ܧ

Table 2. Syntax contexts

Context evaluation. Let ܧଵ and ܧଶ be contexts. The evaluation of the context ܧଵ at the
context ܧଶ, denoted byܧଵሺܧଶሻ, is the context obtained by replacing the hole in ܧଵ (if any) by ܧଶ, viz

www.intechopen.com

Intelligent Distributed eLearning Architecture 205

,

where ܧଵ{ۨ ՚ .ଵܧ ଶ for ۨ inܧ ଶ} is the substitution ofܧ

The hole ۨ plays an important role in our context model. In fact a context ܧ containing a

single hole represents the environment of a process ܲ in the process ܧሺܲሻ. A process

modelling Bob using a smart phone in the conference room with Alice can be specified as: ݁ଵሺ݌ℎ݁݊݋[ܵ]ሻ ≙ ݂݊݋ܿ ቂܲ	ห	ܾ݌ൣܾ݋ℎ݁݊݋[ܵ]൧	ห	݈ܽ݅ܿ݁[ܳ]ቃ,
where ݁ଵ is the context specified in Example 5.2 and ܵ is the specification of the smart phone.

A process modelling Bob using a PDA in the conference room can be specified as: ݁ଷሺͲሻ ≙ ݂݊݋ܿ ቂܲᇱ|	ܾܽ݀݌ൣܾ݋[ܴ]൧ቃ,
where ݁ଷ is the context specified in Example 5.2. The syntax of CEs is given in Table 3 where ߢ ranges over CEs, ݊ ranges over names and ݔ is a variable symbol which also ranges over

names.

 	
	ࣄ ∷= Context Expressions

 True true

 ݊ = ݉ name match

 � hole

 negation ߢ¬

 ݇ଵ | ݇ଶ parallel composition

 ݇ଵ ∧ ݇ଶ conjunction

 location [ߢ]݊

 newሺ݊, ݇ሻ relevation

 spatial next modality ߢ۩

 ⟡ somewhere modality ߢ

.ݔ∃ existential quantification ߢ

Table 3. Syntax context expressions

5.3 A simple example

This example illustrates the use of process abstraction and process call as a mechanism for
context provision and context acquisition, respectively. A process abstraction can be thought
of as the declaration of a procedure in procedural programming languages and a process
call as the invocation of a procedure.

A process abstraction links a name ݔ to a process ܲ using the following syntax: ݔ ⊳ ሺݕ෤ሻ. ܲ

www.intechopen.com

Intelligent Systems 206

where ݕ෤ is the list of formal parameters. A process call to this process abstraction has the
following syntax: ۄݖ̃ۃݔ
where ̃ݖ is the list of the actual parameters. This process call behaves exactly like the process ܲ where each actual parameter in ̃ݖ is substituted for each occurrence of the corresponding

formal parameter in ݕ෤. In the smart phone example presented above, switchto is a process

abstraction.

Suppose a software agent ܽ݃ݐ (here modelled as an ambient) is willing to edit a text file foo.

This is done by calling a process abstraction named edit say, as follows:

where the symbol ՛ indicates that the edit process called here is the one that is defined in the

parent ambient of the calling ambient agt. Now suppose agent agt has migrated to a

computing device win running Microsoft Windows operating system:

On this machine, the process abstraction edit is defined to launch the text editor notepad as

follows:

edit ⊳(y).notepadۄݕۃ. Ͳ.

So the request of the agent agt to edit the fille foo on this machine will open that file in

notepad according to the following reduction:

Note that the command notepad has replaced the command edit in the calling ambient
agt.

Now assume the agent agt first moved to a computer lin running linux operating system:

www.intechopen.com

Intelligent Distributed eLearning Architecture 207

On this computer, the command edit is configured to launch emacs. So in this context, the
file foo will be opened in emacs as illustrated by the following reduction:

Our agent agt might have even moved to a site where the command edit is not available
because no process abstraction of that name is defined. In this case the agent agt will not
be able to edit the file foo at this site and might consider moving to a nearby computer to
do so.

6. InfoStation-based mLearning system

As we have mentioned earlier that eLearning is becoming an authentic possible alternative

educational approach as the technologies regarding that area are developing so fast, and

there is a recognisable growth of a great variety of wide-band telecommunication delivery

technologies. The infostation paradigm first proposed by Frenkiel et al. [Frenkiel,1996] and

used in [Ganchev,2007] to devise an infostation-based mlearning system which allows

mobile devices such as cellular phones, laptops and personal digital assistants (PDAs) to

communicate to each other and to a number of services within a university campus. This

mLearning system provides a number of services among which are: mLecture, mTutorial,

mTest and communication services (private chat, intelligent message notification and phone

calls). This section presents the architecture of the infostation-based mLearning system and

describes the policies of the mLecture service.

6.1 mServices

This section introduces at glance each of the mServices provided by the infostation-based
mLearning system.

 AAA: in order for any user to use any mService in the system, the user device should be
registered. The AAA service (Authentication, Authorisation and Accounting) allows the
users to register their devices with the system to gain the ability of using the mLearning
services offered by the system.

www.intechopen.com

Intelligent Systems 208

 mLecture: this service allows the users to gain access to the lecture material through their
mobile devices. The users can request a specific lecture, which is adapted according to
the capabilities of the user devices and then delivered to their mobile devices.

 mTest: this service is crucial to the learning process. The mTest service allows the users
to gain access to test materials that provide means of an evaluating process. A user can
request, like the mLecture service, a specific test, which is also adapted to the
capabilities of the user device then delivered to the user mobile device. The mTest
service may only runs individually on a user device and unaccompanied with any other
service whatsoever.

 mTutorial : this service allows the users to gain access to a self-assessment test. It is a
combination between the mLecture and the mTest services. A user can request a self-
assessment test in a similar way as requesting a mLecture. After the user submits their
answers, he receives a feedback on his performance and the correct answers to the
questions he got wrong.

 Intelligent Message Notification (IMN in short): this service allows the users to
communicate with each other by exchanging messages via their mobile devices.

 VoIP: this service allows the users to communicate with each other via phone calls
throughout the infostation-based mLearning system.

6.2 Policies

The InforStationCentre (ISC) provides the User Authentication, Authorisation and

Accounting (AAA) service which identifies each mobile user and provides him with a list

of services the user is authorised to access. This service is regulated by the following

policies:

 When a user is within the range of an IS, the intelligent agent (PA) of the user's device

and the IS mutually discover each other. The PA sends a request to the IS for user

Authorisation, Authentication and Accounting (AAA). This request also includes a

description of the mobile device currently being used and any updates of user pro_le

and user service profile.

 The IS forwards this AAA request to the ISC along with the profile updates. If the user

is successfully authenticated and authorised to utilise the services by the AAA module

within the ISC, a new account record is created for the user and a positive

acknowledgement is sent back to the IS. Then the IS compiles a list of applicable

services and sends this to the PA along with the acknowledgement. The PA displays the

information regarding these services to the user who then makes a request for the

service he wishes to use.

If the user chooses the mLecture service, then the following policies of the mLecture service

apply:

 The PA forwards the mLecture service request to the InfoStation, which instantiates the

service. If the IS is unable to satisfy fully the user service request it is forwarded to the

ISC, which is better equipped to deal with it. In either case, the lecture is adapted and

customised to suit the capabilities of the user devices and the user own preferences, and

then delivered to their mobile devices.

www.intechopen.com

Intelligent Distributed eLearning Architecture 209

 During the execution of the service, the user is free to move into a different infostation,

to switch between devices or to do both.

 A user cannot use the mLecture and mTest services simultaneously. The mTest service

should operate unaccompanied at all occasions.

This section presents the formalisation of the policies of the infostation-based context-aware

mLearning system using . We first introduce some naming conventions (sect. 6.2.1) which

are used in the specification of the system. Then we give the specification of two mServices

which are AAA and the mLecture services (sect. 6.3).

6.2.1 Notations

The following naming conventions are used to differentiate between variables' names and

constants. A variable name begins with a lowercase letter while a constant begins with a

number or a uppercase letter. The list of the constant names that are used in the

formalisation process is given in Table 4. And the list of variable names is given in

Table 5.

Table 4. Constants

6.3 A Model of the InfoStation-based mLearning system

The system consists mainly of one central ISC, multiple ISs and multiple user devices. Each

component of the system is modelled as an ambient. That is, the ISC, each IS and each user

device is modelled as an ambient. In particular, a device, PC say, being used by a user, 303

say, is modelled by an ambient named PC303. The ISC ambient runs in parallel with the IS

ambients, and all the user devices within the range of an IS are child ambients of that IS

ambient.

www.intechopen.com

Intelligent Systems 210

Table 5. Variabbles

This is textually represented by the following process:

(1)

where each ௫ܲ is a process modelling the behaviour of the corresponding ambient ݔ.

Now we give the formal specification of the ISC and the ISs below.

InfoStation An abstract model of an infostation ܫ ௜ܵ (for some integer ݅) has the following

main components are the AAA request ambient ݍ݁ݎܣܣܣ௜, the lecture ambient ݍ݁ݎݐܿ݁ܮ௜ and

the cache ambient ܿܽܥℎ݁௜.
The InfoStation is a parent to the inside ambients which are siblings to each other. The

specification of each of these ambients is as follows: ࢏ࢗࢋ࢘࡭࡭࡭ This ambient is responsible for handling AAA requests sent by user devices

willing to register with the InfoStation ܫ ௜ܵ. The ݍ݁ݎܣܣܣ௜ ambient receives a request from a

device and, immediately, forwards it to the InfoStation, then receives a reply from the

InfoStation and again, forwards it to the user's device. This behaviour is modelled by the

following process:

www.intechopen.com

Intelligent Distributed eLearning Architecture 211

஺ܲ೔ ≙ ! ∷ ሺ݀݅ݑ, ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ܫ ௜ܵ ՛ ,݀݅ݑۃ ,݁݌ݕݐ݀ .ۄ݁݉ܽ݊ܽ ܫ ௜ܵ ՛ ሺܽܿ݇, ܽ݊ܽ݉݁, .ሻݐݏ݈݅ݏ ܽ݊ܽ݉݁∷ ,݁݉ܽ݊ܽۃ .ۄݐݏ݈݅ݏ Ͳ

where uid is the user ID, dtype is the device type and aname is the name of the ambient

sending the request.

The InfoStation accordingly receives a request from the ݍ݁ݎܣܣܣ௜ ambient, forwards it to the

InfoStation Centre, and after receiving the reply from the InfoStation Centre it forwards it to

the ݍ݁ݎܣܣܣ௜ ambient. This behaviour is modelled as:

(2)

 This ambient handles all the mLecture service requests sent by the user devices. It ࢏ࢗࢋ࢚࢘ࢉࢋࡸ

receives a lecture request from a user device and forwards it to the infostation ܫ ௜ܵ, i.e.

 ! ∷ ሺ݈݁ܿ݀݅ݐ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ܫ ௜ܵ ՛ ,݀݅ݐ݈ܿ݁ۃ ,݀݅ݑ ,݁݌ݕݐ݀ .ۄ݁݉ܽ݊ܽ Ͳ (3)

Then it gets the reply from that infostation and forwards it to the user device which initiated

the request, i.e.

 ! ∷ ሺ݈݁ܿ݀݅ݐ, ,ݕ݈݌݁ݎ ܽ݊ܽ݉݁ሻ. ܽ݊ܽ݉݁ ∷ ,݀݅ݐ݈ܿ݁ۃ .ۄݕ݈݌݁ݎ Ͳ (4)

So the whole behaviour of the ݍ݁ݎݐܿ݁ܮ௜ ambient is

 ௅ܲ೔ ≙ .ݍܧ ሺ͵ሻ|	ݍܧ. ሺͶሻ (5)

We show how the InfoStation handles a request from the ݍ݁ݎݐܿ݁ܮ௜ ambient after we have

specified the ܿܽܥℎ݁௜	ambient. ࢏ࢋࢎࢉࢇ࡯	 This is the ambient where the InfoStation stores copies of requested lectures for

future rapid access. It models a cache memory. A lecture is stored as an ambient (named

after that lecture's id) which contains three persistent memory, each containing a version

of the lecture suitable to a specific type of device (phone, PDA or PC). When an

InfoStation receives a mLecture service request from a device, it checks for the requested

material in its cache first rather than getting it from the InfoStation Centre directly. The

process of checking the availability of a lecture inside the cache is done by sending a

request to the ܿܽܥℎ݁௜	 ambient which then checks whether it has the ambient of the

requested lecture or not. If the requested lecture is available the cache ambient retrieves it

and sends it back to the InfoStation, otherwise, it replies immediately to the InfoStation

that this lecture does not exist. The behaviour of the ܿܽܥℎ݁௜	 ambient is modelled by the

following process:

www.intechopen.com

Intelligent Systems 212

(6)

The behaviour of each lecture ambient (named after the lecture's id lectid) in the cache is
modelled by the following process:

 (7)

The InfoStation will act as follows. First, it receives a request from ݍ݁ݎݐܿ݁ܮ௜, then it checks

the availability of the lecture in its cache by sending a request to the ܿܽܥℎ݁௜	 ambient, i.e.

 ! ௜ݍ݁ݎݐܿ݁ܮ ՝ ሺ݈݁ܿ݀݅ݐ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ℎ݁௜ܿܽܥ ՝ ,݀݅ݐ݈ܿ݁ۃ ,݀݅ݑ ,݁݌ݕݐ݀ .ۄ݁݉ܽ݊ܽ Ͳ (8)

If the cache replies with the content of the lecture, it will send a request to the InfoStation

Centre with a flag set to 1 (meaning that the requested lecture exists in its cache) asking

whether the user is currently taking a mTest. If the user is taking a mTest, then the mLecture

service request must be denied. If the cache did reply with NULL as lecture's content, then

the infostation will send a request to the InfoStation Centre with the flag set to 0 (meaning

that the lecture does not exist in its cache) asking for both the requested lecture and to check

whether the user is taking a mTest. This behaviour of the IS is modelled as:

(9)

where C and N are de_ned as follows:

www.intechopen.com

Intelligent Distributed eLearning Architecture 213

and

Thus, the whole behaviour of an infostation ܫ ௜ܵ is modelled as

 ூܲௌ೔ ≙ .ݍܧ ሺʹሻ	|	ݍܧ. ሺͺሻ	|	ݍܧ. ሺͻሻ (10)

6.3.1 InfoStation centre

A model of the ISC encompasses ambients modelling users' accounts and named after the
users' IDs; an ambient named Lectures that contains all the lecture ambients, each named
after the corresponding lecture ID Each lecture ambient contains three persistent memory
cells named Phone, PDA and PC; each storing the lecture's version suitable for the
corresponding type of device. The mTest service is not represented as we are only dealing
with the mLecture service in this paper. These components of the ISC are formalised
below.

Users' accounts An ambient modelling a user's account contains two ambients named Loc
and Utest. Each of these two ambients models a persistent memory cell which stores, at any
time, the current location of that user (for the former) or a Boolean indicating whether that
user is taking a mTest or not (for the latter). We understand by location of a user the IS the
user is registered with. The behaviour of the Loc ambient and the Utest ambient are specified
exactly with appropriate initial values. The ISC requests the value of any of these cells by
sending the name Loc or Utest to the user's account ambient (see Eq. (14)) which then can get
(i.e. read) the value of the corresponding child ambient as follows, where the parameter ݔ is
the corresponding child ambient name:

 ! ܥܵܫ ՛ ሺݔሻ. ݔ ՝ .ۧۦ ݔ ՝ ሺݕሻ. ܥܵܫ ՛ .ۄݕۃ Ͳ (11)

The user's account ambient can also put (i.e. write) a value in any of its child ambients as
follows, where the parameter ݔ is the corresponding child ambient name and the parameter ݊ is that value:

 ! ܥܵܫ ՛ ሺݔ, ݊ሻ. ݔ ՝ .ۧ݊ۦ ݔ ՝ ሺ	ሻ. ܥܵܫ ՛ ,ݔۃ .ۄܭܥܣ Ͳ (12)

So the whole behaviour of a user's account ambient named uid is specified as:

௨ܲ௜ௗ ≙ .ݍܧ ሺͳͳሻ	|	ݍܧ. ሺͳʹሻ
Lectures As mentioned above, this ambient contains all the lectures that are available in the
mLecture service. Each lecture has a unique ID and the corresponding ambient is named

www.intechopen.com

Intelligent Systems 214

after that ID. The behaviour of a lecture ambient is specified in Eq. (7). The Lectures ambient
behaves exactly as the cache ambient specified in Eq. (6).

Infostation centre We now formalise the behaviour of the ISC when it receives a request

from an IS. We are interested in two types of request in this paper: an AAA request and a

lecture request.

When the ISC receives an AAA request from an IS, it updates the user's account with its new

location and then replies to that IS with an acknowledge along with a list of available

services. For the sake of simplicity, the service list is represented by the name ‘SLIST’. This is

modelled by the following process:

 ! ܫ ௜ܵ ∷ ሺܽܽܽݍ݁ݎ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ݀݅ݑ ՝ ܫۃ ௜ܵۄ. ݀݅ݑ ՝ ሺܽܿ݇ሻ. (13) ܫ ௜ܵ ∷ ,݇ܿܽۃ ܽ݊ܽ݉݁, .ۄܶܵܫܮܵ Ͳ

After receiving a lecture request, the ISC checks whether the user requesting the service is

currently taking a mTest. This is done by it sending a message to the corresponding user's

account ambient. That user's account ambient reply with 0 for ‘No’ and 1 for ‘Yes’. If the

reply is ‘Yes’ then the ISC fetches the current location of the user and forward a ‘DENIED’

message to that location. If the reply is ‘No’ and the flag is set to 1, a ‘OK’ message is

forwarded to the current user location; otherwise (i.e. reply is ‘No’ and the flag is set to 0),

the ISC fetches the appropriate lecture version for the user device and sends it to the current

user location. This behaviour is represented by the following process:

 ! ܫ ௜ܵ ∷ ሺ݈݁ܿ݀݅ݐ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁, ݂݈ܽ݃ሻ. ݀݅ݑ ՝ .ۄݐݏ݁ݐܷۃ ݀݅ݑ ՝ ሺݕሻ. ൫ ூܲௌ஼భ 	ห	 ூܲௌ஼మሻ (14)

where

ூܲௌ஼భ ≙ ሺݕ = ͳሻ? ݀݅ݑ ՝ .ۄܿ݋ܮۃ ݀݅ݑ ՝ ሺݖሻ. ݖ ∷ ,݀݅ݐ݈ܿ݁ۃ ,ܦܧܫܰܧܦ .ۄ݁݉ܽ݊ܽ Ͳ

and

So the whole behaviour of the ISC is modelled by the following process:

ூܲௌ஼ ≙ .ݍܧ ሺͳ͵ሻ	|	ݍܧ. ሺͳͶሻ
7. Validation

Now that a formal model of the infostation-based mLearning system has been presented, we
show how this model can be used to validate the properties of the mLearning system.
Lamport proposed two main classes of system's properties: safety properties, which state that

www.intechopen.com

Intelligent Distributed eLearning Architecture 215

‘nothing bad will happen’; and liveness properties, which assert that ‘something good will
happen, eventually’. In the light of this classification, we wish to establish the liveness
property that every lecture request from a user is eventually replied to by the system,
provided that the user does not become infinitely unavailable after that request has been
made.

Theorem 7.1 Every user's lecture request will eventually get a reply, provided that the user stays
long enough in the system.

The proof of this theorem is based on the reduction semantics of given by a congruence
relation ‘≡’ defined in Table 9 and a reduction relation ‘՜’ defined in Table 10.

In this proof we will assume, without loss of generality, that the user is using a laptop (PC)
to access the system from an infostation ܫ ௜ܵ. Given that the user is mobile, the following
cases must be considered:

1. the user sends the request and waits for the reply in the same infostation ܫ ௜ܵ (i.e. the
user may move around within the range of the infostation)

2. the user sends the request and move into a different infostation ܫ ௝ܵ , ݆ ≠ ݅.
In Case 1, the user behaviours can be modelled by the following ambient:

௜ݍ݁ݎݐܿ݁ܮ]͵Ͳ͵ܥܲ ∷ ,ͲͲͳݐܿ݁ܮۃ ͵Ͳ͵, ,ܥܲ .ۄ͵Ͳ͵ܥܲ ௜ݍ݁ݎݐܿ݁ܮ ∷ ሺ݈݁ܿ݀݅ݐ, .ሻݕ݈݌݁ݎ Ͳ] (15)

This ambient sends a lecture request to the ݍ݁ݎݐܿ݁ܮ௜ ambient and waits for a reply from that
ambient, and then terminates. The lecture request contains the following information: (i) the
lecture ID, Lect001 ; (ii) the user ID, 303; (iii) the device type, PC; and (iv) the name of the
ambient to reply to, PC303.

The behaviours of the ݍ݁ݎݐܿ݁ܮ௜ ambient is modelled by the process ௅ܲ೔ in Eq. (5), which

basically receives a lecture request from a sibling ambient (e.g. a user device), forward the

request to the infostationܫ ௜ܵ, get the reply from that infostation and forwards it to the very

ambient which initiated the request. How the infostation ܫ ௜ܵ interacts with the ݍ݁ݎݐܿ݁ܮ௜
ambient is specified in Eq. (8). These interactions between a user device, the ݍ݁ݎݐܿ݁ܮ௜
ambient and the infostation ܫ ௜ܵ can be expressed as a sequence of derivations using the

reduction relation ՜. Because of the space limit, we cannot give the full sequence of

derivations in this paper. For illustration, the following sequence of derivations describes

how a lecture request sent by the user gets to the infostation to be processed:

www.intechopen.com

Intelligent Systems 216

At this stage, the infostation ܫ ௜ܵ has received a lecture request from the ݍ݁ݎݐܿ݁ܮ௜ ambient and is
willing to check with the ܿܽܥℎ݁௜ ambient whether it has the requested lecture for the specified
type of device. The behaviour of the ܿܽܥℎ݁௜ ambient is specified by the process ஼ܲ೔ in Eq. (6). If

the requested lecture Lect001 exists in the cache for the specified type of device, then the ܿܽܥℎ݁௜ ambient gets a copy of the lecture for the specified type of device by interacting with
the child ambient named Lect001 whose behaviour is specified by the process ௅ܲ௘௖௧଴଴ଵ as in Eq.
(7). It can also be seen from Eq. (6) and Eq. (7) that if the requested lecture Lect001 does not
exist in the cache for the specified type of device, then a reply message ‘NULL’ is forwarded to
the infostation ܫ ௜ܵ. So in either situation, the infostation ܫ ௜ܵ receives a reply from the cache.

Once a reply is received from the ܿܽܥℎ݁௜ ambient, the infostation ܫ ௜ܵ contacts the infostation
centre ISC as specified by the process in Eq. (9). How the ISC reacts is modelled by Eq. (14); it
replies with a ‘DENIED’ message if the user requesting the lecture is currently using a mTest
service, otherwise it replies with a ‘OK’ message and possibly a copy of the requested lecture if
it is not available locally in ܫ ௜ܵ 's cache. How each of these types of reply is handled by the ܫ ௜ܵ is
modelled by the component C and N in Eq. (9). One can see that for every case where the user
is still in the range of the infostation ܫ ௜ܵ (i.e. the context expression ‘has(aname)’ holds), the
infostation ܫ ௜ܵ sends a reply to the ݍ݁ݎݐܿ݁ܮ௜ ambient which subsequently forwards the reply to
the user device as specified in Eq. (4). This completes the proof of Case 1.

The proof of Case 2 can be done in a similar manner as in Case 1, with the user behaviours
specified as in Eq. (16), where ݅ ≠ ݆, i.e. the request is sent from one infostation and the reply
to that request is received after the user has moved to a different infostation.

(7)

This ambient sends a lecture request from the infostation ܫ ௜ܵ, moves to a different infostation ܫ ௝ܵ , registers with this infostation by sending an AAA request then waits for the

acknowledgement of its registration. Once its registration has been confirmed, it then
prompts to receive the reply to the lecture request and then terminates.

8. Acknowledgment

The authors wish to acknowledge the support of the National Science Fund (Research
Project Ref. No. DO02-149/2008) and the Science Fund of the University of Plovdiv "Paisij
Hilendarski" (Research Project Ref. No. NI11-FMI-004).

www.intechopen.com

Intelligent Distributed eLearning Architecture 217

9. References

[Barker,2000] P. Barker, Designing Teaching Webs: Advantages, Problems and Pitfalls, in
Proc. of ED-MEDIA 2001 World Conference on Educational Multimedia,
Hypermedia Telecommunication, Association for the Advancement of Computing
in Education, Charlottesville, VA, 2000, pp. 54-59.

[Bellifemine,2007] F. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent Systems
with JADE, John Wiley & Sons Ltd., 2007.

[Bucur,2008] D. Bucur, M. Nielsen, Secure Data Flow in a Calculus for Context Awareness,
in: Concurrency, Graphs and Models, Vol. 5065 of Lecture Notes in Computer
Science, Springer, 2008, pp. 439-456.

[Bugliesi,2004] M. Bugliesi, G. Castagna, S. Crafa, Access Control for Mobile Agents: The
Calculus of Boxed Ambients, ACM Trans. on Programming Languages and
Systems, 26 (1), 2004, 57-124.

[Cardelli,2000] L. Cardelli, A. Gordon, Mobile Ambients, Theoretical Computer Science 240,
2000, 177-213.

[Dey,2000] Dey, A.K., Abowd, G.D.Towards a better understanding of context and context-
awareness. Proceedings of the Workshop on the What, Who, Where, When and
How of Context-Awareness, New York, ACM Press, 2000.

[FIPA,2002] FIPA, ACL Message Structure Specification, Foundation for Intelligent Physical
Agents, Geneva, Switzerland SC00061G, 3rd December 2002.

[Frenkiel,1996] R. Frenkiel and T. Imielinski, Infostations: The joy of `many-time, many-
where' communications, WINLAB Technical Report,1996.

[Ganchev, 2005] Ganchev, I., S. Stojanov, M. O'Droma. Mobile Distributed e-Learning
Center. In Proc. of the 5th IEEE International Conference on Advanced Learning
Technologies (IEEE ICALT'05), pp. 593-594, Kaohsiung, Taiwan. DOI
10.1109/ICALT.2005.199. ISBN 0-7695-2338-2. 5-8 July 2005.

[Ganchev,2007] I. Ganchev, et al., An InfoStation-Based Multi-Agent System Supporting
Intelligent Mobile Services Across a University Campus, Journal of Computers, vol.
2, pp. 21-33, May 2007.

[Ganchev,2008a] I. Ganchev, et al., On InfoStation-Based Mobile Services Support for
Library Information Systems, in 8th IEEE International Conference on Advanced
Learning Technologies (IEEE ICALT-08), Santander, Cantabria, Spain, 2008, pp. 679
- 668.

[Ganchev,2008b] I. Ganchev, et al., InfoStation-Based Adaptable Provision of m-Learning
Services: Main Scenarios, International Journal Information Technologies and
Knowledge (IJ ITK), vol. 2, pp. 475-482, 2008.

[Ganchev,2008c] I. Ganchev, et al., InfoStation-based mLearning System Architectures: Some
Development Aspects, in 8th IEEE International Conference on Advanced Learning
Technologies, (ICALT'08), Santander, Spain, 2008, pp. 504-505.

[Maurer,2001] H. Maurer and M. Sapper, E-Learning Has to be Seen as Part of General
Knowledge Management, in Proc. of ED-MEDIA 2001 World Conference on
Educational Multimedia, Hypermedia Telecommunications, Tampere, AACE,
Chalottesville, VA, 2001, pp. 1249-1253.

[Milner,1999] R. Milner. Communication and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

www.intechopen.com

Intelligent Systems 218

[O’Droma,2007] M. O'Droma and I. Ganchev, Toward a Ubiquitous Consumer Wireless
World, IEEE Wireless Communications, vol. 14, pp. 52-63, February 2007.

[OWL-S,2010] OWL-S: Semantic Markup for Web Services. [Online]. Available -
http://www.w3.org/Submission/OWL-S/ [Accessed: Mar 3, 2010].

[Passas,2006] N. Passas, et al., Enabling technologies for the 'always best connected' concept:
Research Articles, Wirel. Commun. Mob. Comput., vol. 6, pp. 523-540, 2006.

[Sangiorgi,2001] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

[Stoyanov,2005] S. Stoyanov, et al., From CBT to e-Learning, Journal Information
Technologies and Control, vol. 4, pp. 2-10, 2005.

[Stoyanov,2008] S. Stoyanov, et al., An Approach for the Development of InfoStation-Based
eLearning Architectures Compt. Rend. Acad. Bulg. Sci., vol.61, pp. 1189-1198, 2008.

[W3C,2010] W3C, Document Object Model (DOM) [online]. Available -
http://www.w3.org/DOM/. [Accessed Mar 03, 2010].

[Zedan,2008] H. Zedan, A. Cau, K. Buss, S. Westendorf, A. Hugill, S. Thomas, Mapping
Human Creativity, STRL Internal Monograph, STRL-2008-09, De Montfort
University, Leicester, 2008,UK.

[Zimmer,2005] P. Zimmer, A Calculus for Context-awareness, Tech. rep., BRICS, 2005.

www.intechopen.com

Intelligent Systems

Edited by Prof. Vladimir M. Koleshko

ISBN 978-953-51-0054-6

Hard cover, 366 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social

biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In

addition to that, effective acquiring information, knowledge management and improved knowledge transfer in

any media, as well as modeling its information content using meta-and hyper heuristics and semantic

reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in

education and generating the intelligent distributed eLearning architecture, as well as in a large number of

technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture,

cartography, electric power distribution systems, intelligent building management systems, drilling operations

etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension

uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic

and human support in the healthcare environment have also been made easier.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

S. Stoyanov, H. Zedan, E. Doychev, V. Valkanov, I. Popchev, G. Cholakov and M. Sandalski (2012). Intelligent

Distributed eLearning Architecture, Intelligent Systems, Prof. Vladimir M. Koleshko (Ed.), ISBN: 978-953-51-

0054-6, InTech, Available from: http://www.intechopen.com/books/intelligent-systems/provably-correct-

intelligent-elearning-environment

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

