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1. Introduction 

One of the main characteristics of the eLearning systems today is the 'anytime-anywhere-
anyhow' delivery of electronic content, personalized and customized for each individual user. 
To satisfy this requirement new types of context-aware and adaptive software architectures are 
needed, which are enabled to sense aspects of the environment and use this information to 
adapt their behavior in response to changing situation. In conformity with [Dey,2000], a 
context is any information that can be used to characterize the situation of an entity. An entity 
may be a person, a place, or an object that is considered relevant to the interaction between a 
user and an application, including the user and the application themselves. 

Development of context-aware and adaptive architectures can be benefited from some ideas 
and approaches of pervasive computing. Pervasive computing is a new paradigm for next-
generation distributed systems where computers disappear in the background of the users' 
everyday activities. In such a paradigm computation is performed on a multitude of small 
devices interconnected through a wireless network. Fundamental to pervasive computing is 
that any component (including user, hardware and software) can be mobile and that 
computations are context-aware. As a result, mobility and context-awareness are important 
features of any design framework for pervasive computing applications. Context-awareness 
requires applications to be able to sense aspects of the environment and use this information 
to adapt their behaviours in response to changing situations. 

One of the main goals of the Distributed eLearning Centre (DeLC) project [Ganchev, 2005] is 
the development of such an architecture and corresponding software that could be used 
efficiently for on-line eLearning distance education. The approach adopted for the design 
and development of the system architecture is focused on the development of a service-
oriented and agent-based intelligent system architecture providing wireless and fixed access 
to electronic services and electronic content. This chapter provides a general description of 
the architecture for two types of access - mobile and fixed. 

Furthermore, we present the Calculus of Context-aware Ambients (CCA in short) for the 
modelling and verification of mobile systems that are context-aware. This process calculus is 
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built upon the calculus of mobile ambient and introduces new constructs to enable ambients 
and processes to be aware of the environment in which they are being executed. This results 
in a powerful calculus where both mobility and context-awareness are first-class citizens. 
We present the syntax and a formal semantics of the calculus. We also present a new theory 
of equivalence of processes which allows the identification of systems that have the same 
context aware behaviours. We prove that CCA encodes the Pi-calculus which is known to be 
a universal model of computation. 

We have used our CCA to specify DeLC in its entirety, hence achieving its correctness. Such 

a dynamic system must enforce complex policies to cope with security, mobility and 

context-awareness. We show how these policies can be formalised and verified using CCA. 

In particular an important liveness property of the mLearning system is proved using the 

reduction semantics of CCA. 

2. DeLC overview 

Distributed eLearning Center (DeLC) is a reference architecture, supporting a reactive, 

proactive and personalized provision of education services and electronic content. The 

DeLC architecture is modeled as a network (Fig.1.), which consists of separate nodes, called 

eLearning Nodes (eLNs). Nodes model real units (laboratories, departments, faculties, 

colleges, and universities), which offer a complete or partial educational cycle. Each 

eLearning Node is an autonomous host of a set of electronic services. The configuration of 

the network edges is such as to enable the access, incorporation, use and integration of 

electronic services located on the different eLNs. 

eLN1 

eLNk 
eLNm 

eLNp 

Cluster

 

Fig. 1. DeLC Network Model 

The eLearning Nodes can be isolated (eLNp) or integrated in more complex virtual 
structures, called clusters. Remote eService activation and integration is possible only within 
a cluster. In the network model we can easily create new clusters, reorganize or remove 

www.intechopen.com



 
Intelligent Distributed eLearning Architecture 187 

existing clusters (the reorganization is done on a virtual level, it does not affect the real 
organization). For example, the reorganization of an existing cluster can be made not by 
removing a node but by denying the access to the offered by it services. The reorganization 
does not disturb the function of other nodes (as nodes are autonomous self-sufficient 
educational units providing one or more integral educational services). 

An important feature of the eLearning Nodes is the access to supported services and 
electronic content. In relation to the access there are two kinds of nodes: 

 Mobile eLearning Node and 

 Fixed eLearning Node. 

For both nodes individual reference architectures are proposed within DeLC. 

The current version of DeLC (Fig.2), two standardized architecture supporting fixed and 

mobile access to the eLearning services and teaching contend have been implemented. The 

fixed access architecture is adapted for the following domains implemented as particular 

nodes: 

 Education portal supporting blended learning in the secondary school; 

 Specialized node for electronic testing (DeLC Test Center); 

 Specialized node for education in software engineering (eLSE); 

 Specialized nod for examination of creative thinking and handling of students (CA). 
The node adapts  the Creativity Assistant environment [Zedan,2008]; 

Intelligent agents that support the eLearning services provided by the DeLC portal (AV). 

The Agent Village will be presented in this chapter in more detail. 

3. Mobile eLearning node 

A distinguishable feature of contemporary mobile eLearning (mLearning) systems is the 

anywhere-anytime-anyhow aspect of delivery of electronic content, which is personalised 

and customised to suit a particular mobile user [Barker,2000], [Maurer,2001]. In addition, 

mobile service content is expected to be delivered to users always in the best possible way 

through the most appropriate connection type according to the always best connected and 

best served communication paradigm [O’Droma,2007], [Passas,2006]. In the light of these 

trends, the goal is to develop an intelligent mobile eLearning node which uses an 

InfoStation-based communication environment with distributed control [Frenkiel,1996], 

[Ganchev,2007]. The InfoStation paradigm is an extension of the wireless Internet, where 

mobile clients interact directly with Web service providers (i.e. InfoStations). By their mobile 

devices the users request services from the nearest InfoStation utilizing Bluetooth or WiFi 

wireless communication. 

3.1 InfoStation-based network architecture 

The continuing evolution in the capabilities and resources available within modern mobile 
devices has precipitated an evolution in the realm of eLearning. The architecture presented 
here attempts to harness the communicative potential of these devices in order to present 
learners with a more pervasive learning experience, which can be dynamically altered and  
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Creativity Assistant 

(CA)
Agent Village (AV)

eLearning in Software 

Engineering (eLSE)

DeLC Test Center 

(DeTC)

Education Portal 

for Secondary 

School

DeLC Portal

Info Stations (IS)

3rd Tier: InfoStations Centre

(with Profile Managers and Global Services’ Content 

Repository)

2nd Tier: InfoStations 

(with cached copies of recently used user/service 

profiles, and Local Services’ Content Repository)

1st Tier: Mobile Devices

(with Intelligent Agents acting as Personal 

Assistants for mobile users)

 

Fig. 2. Distributed eLearning Center 

tailored to suit them. The following network architecture enables mobile users to access 
various mLearning services, via a set of intelligent wireless access points, or InfoStations, 
deployed in key points across the University Campus. The InfoStation-based network 
consists of three tiers as shown in Figure 3. 

The first tier encompass the user mobile devices (cell phones, laptops, PDAs), equipped 
with intelligent agents acting as Personal Assistants to users. The Personal Assistant gathers 
information about the operating environment onboard the mobile device, as well as 
soliciting information about the user. Supplied with this information, the InfoStation can 
make better decisions on applicable services and content to deliver to the Personal Assistant. 
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3rd Tier: InfoStations Centre

(with Profile Managers and Global Services’ Content 

Repository)

    

    

2nd Tier: InfoStations 

(with cached copies of recently used user/service 

profiles, and Local Services’ Content Repository)

1st Tier: Mobile Devices

(with Intelligent Agents acting as Personal 

Assistants for mobile users)

 

Fig. 3. The 3-tier InfoStation-based network architecture 

The second tier consists of InfoStations, satisfying the users' requests for services through 
Bluetooth and/or WiFi wireless mobile connections. The InfoStations maintain 
connections with mobile devices, create and manage user sessions, provide interface to 
global services offered by the InfoStation Centre, and host local services. The 
implementation of these local services is an important aspect of this system. By 
implementing particular services within specific localised regions throughout the 
University campus, we can enrich the service users experience within these localities. A 
prime example of how this type of local service can enrich a learners experience, is the 
deployment of library-based services [Ganchev,2008a]. Within the library domain, library 
users experience can be greatly enhanced through the facilitation of services offering 
resource location capabilities or indeed account notifications. The division of global and 
local services allows for a reduction of the workload placed on the InfoStation Centre. In 
the original InfoStation architecture, the InfoStations operated only as mediators between 
the user mobile devices and a centre, on which a variety of electronic services are 
deployed and executed. The InfoStations within this architecture do not only occupy the 
role of mediators, they also act as the primary service providing nodes. 

The third tier is the InfoStation Centre concerned with controlling the InfoStations, and 
overall updating and synchronisation of information across the system. The InfoStation 
Centre also acts as the host for global services.  

3.2 Context-aware service provision 

In order to ensure a context-aware service provision we propose that an application is built 
as an integration of two components [Stoyanov,2008]:   

 A standardized middleware, which is able to detect the dynamic changes in the 
environment during the processing of user requests for services (contex-awareness) and 
correspondingly to ensure their efficient and non-problematic execution (adaptability);  

 A set of electronic services realizing the functionality of the application area 
(education), which could be activated and controlled by the middleware.  
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As the middleware is concerned with the context-awareness and adaptability aspects, it is 
important to clarify these concepts. Within our development approach, Dey's definition 
[Dey,2000] was adopted, according to which "context is any information that can be used to 
characterize the situation at an entity". An entity could be a person, place, or object that is 
considered relevant to the interaction between a user and an application, including the user 
and applications themselves. Context could be of different type, e.g. location, identity, 
activity, time. 

Dey's definition is utilized here as a basis for further discussions. In order to elaborate on 
this definition a working one for the creation of the desired middleware architecture, we 
first solidify the definition as presented further in the chapter. We want clearly to 
differentiate context-awareness from the adaptability. Context-awareness is the 
middleware's ability to identify the changes in the environment/context as regards:  

 Mobile device's location (device mobility) - in some cases this mobility leads to changing 
the serving InfoStation. This is especially important due to the inherent mobility within 
the system, as users move throughout the University campus. This information has a 
bearing on the local services deployed within a particular area i.e. within the University 
Library;  

 User device (user mobility) - this mobility offers different options for the delivery of the 
service request's results back to the user. What is important here is to know the 
capabilities of the new device activated by the user, so as to adapt the service content 
accordingly;  

 Communication type - depending on the current prevailing wireless network 
conditions/constraints, the user may avail of different communications possibilities 
(e.g. Bluetooth or WiFi);  

 User preferences - service personalisation may be needed as to reflect the changes made 
by users in their preferences, e.g., the way the service content is visualised to them, etc.;  

 Goal-driven sequencing of tasks engaged in by the user;  

 Environmental context issues such as classmates and/or learner/educator interactions.  

The goal of adaptability is to ensure trouble-free, transparent and adequate fulfilment of 
user requests for services by taking into account the various aspects of the context 
mentioned above. In other words, after identifying a particular change in the service 
environment, the middleware must be able to take compensating actions (counter-measures) 
such as handover of user service sessions from one InfoStation to another, re-
formatting/transcoding of service content due to a change of mobile device (varying device 
capabilities), service personalisation, etc. 

To ensure adequate support for user mobility and device mobility (the first two aspects of 
the context change), the following four main communications scenarios are identified for 
support in our middleware architecture [Ganchev,2008b]: 

 'No change' - a mLearning service is provided within the range of the same InfoStation 
and without changing the user mobile device;  

 'Change of user mobile device' - due to the inherent mobility, it is entirely possible that 
during an mLearning service session, the user may shift to another mobile device, e.g. 
with greater capabilities, in order to experience a much richer service environment and 
utilize a wider range of resources;  

www.intechopen.com



 
Intelligent Distributed eLearning Architecture 191 

 'Change of InfoStation' - within the InfoStation paradigm, the connection between the 
InfoStations themselves and the user mobile devices is by definition geographically 
intermittent. With a number of InfoStations positioned around a University campus, the 
users may pass through a number of InfoStation serving areas during the service 
session. This transition between InfoStation areas must be completely transparent to the 
user, ensuring the user has continuous access to the service;  

 'Change of InfoStation and user mobile device' - most complicated scenario whereby the 
user may change the device simultaneously with the change of the InfoStation.  

To support the third aspect of the context change (different communication type), the 

development of an intelligent component (agent) working within the communication layer 

(c.f. Figure 4) is envisaged. This component operates with the capability to define and 

choose the optimal mode of communication, depending on the current prevailing access 

network conditions (e.g. congestion level, number of active users, average data rate 

available to each active user, etc.). The user identification and corresponding service 

personalisation is subject to a middleware adaptation for use in the particular application 

area. In the case of eLearning, the architecture is extended to support the three fundamental 

eLearning models - the educational domain model, the user/learner model, and the 

pedagogical model [Stoyanov,2005],[ Ganchev,2008c]. 

3.3 Layered system architecture 

The layered system architecture (Figure 4) is a distributed architecture, meaning that its 

functional entities are deployed across the different tiers/nodes, i.e. on mobile devices, 

InfoStations, and InfoStation Centre. In this architecture the role of the InfoStations is 

expanded, enabling them to act (besides the mediation role) as hosts for the local 

mLearning services (LmS) and for preparation, adaptation, and conclusive delivery of 

global mLearning services (GmS). This way the service provision is efficiently distributed 

across the whole architecture. Each of the system network nodes have a different structure 

depending on their functioning within the system. However, each node is built upon a 

Communication Layer whose main task is to initialize, control and maintain 

communications between different nodes. This layer is also concerned with choosing the 

most appropriate mode of communication between a mobile device and an InfoStation - 

whether that be Bluetooth or WiFi, or indeed as the platform evolves perhaps WiMAX in 

the future. The software architecture of the InfoStations and InfoStation Centre includes a 

Service Layer on the top. The main task of this layer is to prepare the execution of the 

users' service requests, to activate and receive the results of the execution of different 

services (local and global). 

The InfoStations' middle layer is responsible for the execution of scenarios and control of 
user sessions. It is at this layer where the user service requests are mainly processed by 
taking into account all contex-aware aspects and applying corresponding adaptive actions. 
The middle layer of the InfoStation Centre ensures the needed synchronisation during 
particular scenarios (c.f. Section 8). In addition, different business supporting components, 
e.g. for user accounting, charging and billing, may operate here. 

The software architecture of the user mobile devices contains two other layers:   
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 Personal Assistant - its task is to help the user in specifying the service requests sent to 

the system, accomplish the communication with the InfoStations' software, receive and 

visualise the service requests' results to the user, etc. Moreover the assistant can provide 

information needed for the personalisation of services (based on information stored in 

the user profile) and/or for the synchronisation of scenario execution;  

 Graphical User Interface (GUI) - its task is to prepare and present the forms for setting 

up the service requests, and visualise the corresponding results received back from the 

system.  

 

 
 

Fig. 4. The layered system architecture 

3.4 Agent-oriented middleware architecture 

The main implementation challenges within this system are related to the support of 

distributed control, as the system should be capable of detecting all relevant changes in the 

environment (context-awareness) and according to these changes, facilitate the service 

offerings in the most flexible and efficient manner (adaptability). The system architecture 

presented in the previous section is implemented as a set of cooperating intelligent agents. 

An agent oriented approach has been adopted in the development of this architecture in 

order to: 

 Model adequately the real distributed infrastructure; 

 Allow for realisation of distributed models of control;  

 Ensure pro-active middleware behaviour which is quite beneficial in many situations;  

 Use more efficiently the information resources spread over different InfoStations.  

Moreover, the agent-oriented architecture can easily be extended with new agents (where 

required) that cooperate with the existing ones and communicate by means of a 

standardized protocol (in this case the FIPA -Agent Communication Language (ACL) 

[FIPA,2002]). Indeed the InfoStations and InfoStation Centre exist as networks of 

interoperating agents and services, with the agents fulfilling various essential roles 

necessary for system management. Within each of these platforms, agents take 

responsibility for selecting and establishing a client-server cross-platform connection, 
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conveyance of context information and the delivery of adapted and personalised service 

content. This multi-agent approach differs from the classic multi-tier architectures in which 

the relationships between the components at a particular tier are much stronger. 

Conceptually we define different layers in the system architecture in order to present the 
functionality of the middleware that is being developed in a more systematic fashion. 
Implementation-wise, the middleware architecture is considered as a set of interacting 
intelligent agents. Communication between the user mobile devices and the serving 
InfoStations could be realized in two ways:   

 An agent operating within the InfoStation discovers all new devices entering the range 
and subsequently initiates communication with them; or  

 Personal Assistant agents on the user mobile devices are the active part in 
communication, and initiate the connection with the InfoStation.  

In the current implementation of the prototype architecture, the former approach is used for 
Bluetooth communication, whereas the latter applies for WiFi communication. 

Figure 4 highlights the main components necessary to ensure continuity to the service 
provision, i.e. support for the continuous provision of services and user sessions in the case 
of scenario change or resource deficiency. The agents which handle the connection and 
session establishment perform different actions, such as: 

 Searching for and finding mobile devices within the range of an InfoStation;  

 Creating a list of services required by mobile devices;  

 Initiation of a wireless connection with mobile devices;  

 Data transfer to- and from mobile devices.  

Also illustrated within Figure 5 are the components which serve to facilitate a level of 
context sensitivity and personalisation to the presented services. A short description of the 
various agents (for Bluetooth communication) within the architecture is presented below. 

The first step in the delivery of the services involves the Scanner agent, which continuously 
searches for mobile devices/Personal Assistant agents within the service area of the 
InfoStation. In addition, this agent retrieves a list of services required by users (registered on 
their mobile devices upon installation of the client part of the application), as well as the 
profile information, detailing the context (i.e. device capability and user preference 
information. The Scanner agent receives this information in the form of an XML file, which 
itself is extracted from the content of an ACL message. The contents of this XML file are then 
passed on via the Connection Advisor agent, to the Profile Processor agent, which parses the 
received profile and extracts meaningful information. This information can in turn be 
utilized to perform the requisite alterations to services and service content. 

The information is also very important in relation to the tasks undertaken by the Scenario 
Manager agent. The role of this agent is to monitor and respond to changes in the operating 
environment, within which the services are operating (i.e. change of mobile device). In the 
event of a significant change of service environment, this agent gathers the new capability 
and preference information (CPI) via the Scanner agent. Then, in conjunction with the Query 
Manager agent and the Content Adaptation agent, facilitates the dynamic adaptation of the 
service content to meet the new service context. 
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The main duty of the Connection Adviser agent is to filter the list (received from the 

Scanner agent) of mobile devices as well as requested services. The filtration is carried out 

with respect to a given (usually heuristic) criterion. Information needed for the filtration is 

stored in a local database. The Connection Adviser agent sends the filtered list to the 

Connection Initiator agent, who takes on the task of initiating a connection with the 

Personal Assistant onboard the mobile device. This agent generates the so-called 

Connection Object, through which a communication with the mobile device is established 

via Bluetooth connection. Once this connection has been established, the Connection 

Initiator generates an agent to which it hands over the control of the connection, called a 

Connection agent. 

From this point on, all communications between the InfoStation and the Personal Assistant 

are directed by the Connection agent. The internal architecture of the Connection agent 

contains three threads: an agent thread used for communication with the Query Manager 

agent, and a Send thread and Receive thread, which look after each direction of the wireless 

communication with the mobile device. 

The Query Manager performs one of the most crucial tasks within the InfoStation 

architecture. It determines where information received from the mobile device is to be 

directed, e.g. directly to simple services, or via Interface agents to sophisticated services. It 

also transforms messages coming from the Connection agent into messages of the correct 

protocols to be understood by the relevant services, i.e. for simple services - UDDI or 

SOAP, or for increasingly sophisticated services by using more complicated, semantic-

oriented protocols (e.g. OWL-S [OWL-S,2010]). The Query Manager agent also interacts 

with the Content Adaptation agent in order to facilitate the Personal Assistant with 

increasingly contextualised service content. This Content Adaptation agent, operating 

under the remit of the Query Manager agent, essentially performs the role of an 

adaptation engine, which takes in the profile information provided by the Profile 

Processor agent, and executes the requisite adaptation operations on the service content 

(e.g. file compression, image resizing etc.) 

 

Fig. 5. The Agent-Oriented Middleware Architecture 
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The Query Manager agent receives user service requests via the Connection agent, and may 
communicate with various services. Once it has passed the request on to the services, all 
service content is passed back to the Query Manager via the Content Adaptation agent. The 
Profile Processor agent parses and validates received profiles (XML files) and creates a 
Document Object Model (DOM) tree [W3C,2010]. Using this DOM tree the XML information 
may be operated on, to discern the information most pertinent to the adaptation of service 
content. The Content Adaptation agent receives requests-responses from the services, 
queries the Profile Processor agent regarding the required context, and then either selects a 
pre-packaged service content package which closely meets the requirements of the mobile 
device, or applies a full transformation to the service content to meet the constraints of the 
operating environment of the device. 

The tasks undertaken by the Content Adaptation agent, the Scenario Manager agent and the 
Profile Processor agent, enable the system to dynamically adapt to changing service 
environments, even during a particular service session. Once the connection to a particular 
service has been initialized and the service content adapted to the requisite format, the 
Connection agent facilitates the transfer of the information to the user mobile device. 

4. Fixed eLearning node 

The fixed nodes of the DeLC are implemented as education portals, which provides 
personalized educational services and teaching material. A standardized portal architecture 
is described in this section, which is used as generic framework for implementation of 
particular education portals for university and secondary school. The architecture has been 
extended by intelligent components (agents, called assistants) in order to enhance the 
flexibility, reactivity and pro-activeness of the portals. 

4.1 Education portal architecture 

The architecture of the educational portal is service-oriented and multi-layered, consisting of 
three logical layers (Figure 6): user interface, e-services and digital libraries. 

The user interface supports the connection between the users and the portal. Through it the 
users can register in the system and create their own personalized educational environment. 
The user interface visualizes and provides access for the user to services, depending on their 
role, assigned during the registration. 

Two kinds of e-services are located in the middle layer - system services and eLearning 
services. The system services, called 'engines', are transparent for the users and their basic 
purpose is to assist in the processing of the eLearning services. Using the information, 
contained in the meta-objects, they can effectively support the activation, execution and 
finalization of the eLearning services. In the current portal architecture the next engines are 
implemented:   

 SCORM Engine;  

 Exams Engine;  

 Events and Remainders Engine;  

 Integration Engine;  

 User Profiling. 
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SCORM Engine is implemented in the portal architecture for delivering an interpreter of 

the electronic content, developed in accordance with the SCORM 2004 standard. The Test 

Engine assists in performing electronic testing using the portal. It processes basically the 

meta objects, which describe the questions and the patterns of the tests. The Event Engine 

supports a model for event management, enabling the users to see and create events and 

also be notified for them in advance. The events in the system reflect important moments 

for the users, such as a lecture, examination, test, national holiday, birthday, etc. One 

event is characterized by attributes, such as a name, start and end date and time, details, 

and information if it is a recurring one, as well as rules for its recurrence. The Event 

Engine supports yearly, monthly and weekly recurring. The User Profiling implements 

the user model of the portal. The profiles could be classified by roles, user groups, 

communities, and organizations. The standard user profile consists of three main groups 

of attributes:   

 Standard attributes - necessary for user identification through username, password, e-
mail, and others;  

 Extended attributes - addresses, phone numbers, Internet pages, IM, social networks 
contacts, and others;  

 DeLC custom attributes - other user identifications. Thus, for example, for users with 
role "student" these can be faculty number, subject, faculty, and course.  

The portal gives an opportunity for extending the user profile with some additional 

attributes. The users' profiles contain the whole information needed for personalization of 

the provided by DeLC portal services, educational content and user interface. The profile is 

created automatically during the first user's log in, through a call to the university's 

database, filling in the standard and custom attributes. The integration with the university 

database and with ?nother external components is supported by the Integration Engine. 

Extended attributes are filled by the user. During each next user's log in in the portal the 

information in their profile is synchronized, as eventual updates in the university's database 

are automatically migrated in the user's profile, for example passage in the upper course or 

changing the subject. 

Educational services serve all stages in one educational process. Supported by the portal, 

services are grouped in three categories:   

 Services for training, organizing and planning of the educational process;  

 Services for conduction and management of the education process - examples of these 

services are electronic lectures, electronic testing, online and offline consultations;  

 Services for recording and documenting the educational process - these services 

support automated generation of the documents recording the educational process 

(examination protocols, student books, teachers' personal notebooks and archives).  

The third layer contains electronic content in the form of repositories, known as digital 

libraries. In the current version are supported lecture courses digital library, questionary 

library, test templates library, course projects library and diploma theses library. The 

supported portal services work directly with the digital libraries. The digital libraries 

content can be navigated by help of a generalized catalog. 
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Fig. 6. Standarised Architecture of the portal 

4.2 Education cluster 

In order to provide more effective and personalized user support, we need to enhance the 
flexibility, reactivity and pro-activeness of the portal including intelligent components into 
the architecture. The pro-activity improves the usability and friendliness of the system to the 
users. Pro-activity means that the software can operate "on behalf'' of the user'' and "activate 
itself'' when it "estimates'' that its intervention is necessary. Two approaches are available:   

 Direct integration of intelligent components in the currently existing architecture - in 
this way we extend the existing portal architecture;  

 Building an education cluster. 

The litter approach is preferable because it match with DeLC philosophy for building of 
more complex structures. Moreover, the former approach involves difficulties in the 
integration of two environments with different characteristics - portal frame and agent-
oriented environment. 

The education cluster consists of two nodes - the existing portal and a new node, called 
Agent Village (AV), where the "assistants'' will "live in'' (Figure 7). Three basic problems 
have to be solve in order to create the cluster:   

 Architecture of the AV node;  

 Interaction between the portal and AV;  

 What kind of intelligent assistance for the portal services.  

AV node is implemented as an agent-oriented server, by help of JADE environment 
[Bellifemine,2007]. 
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The connection of the educational portal and the AV node is made through the middle layer 

of the portal architecture, where the electronic services are located. Depending on the 

direction of the asked assistance we distinguish reactive and proactive behavior of the 

architecture. In the reactive behavior the interaction between the two nodes is initiated by 

the portal. This is necessary in the cases when a user request is processed and a service 

needs an "expert'' assistance. The service addresses the corresponding agent, located in the 

AV. The problem is that, in their nature, the services are passive and static software 

modules, intended mainly for the convenient realization and integration of some business 

functionality. Therefore they must "transfer'' the responsibility for the activation and 

support of the connection to an active component of the architecture, as agents do. To do 

this, the service sends a concrete message to the agent's environment, which, on its behalf, 

identifies the change of the environment and reacts by interpreting the message. Depending 

on the identified need of assistance the agent activates the necessary actions. The reactive 

behavior of the architecture could be implemented using a:   

 Synchronous model - this model is analogous to calling subroutines in programming 
languages. In this model the service sends a message to AV and waits for the result 
from the corresponding agent before continuing its execution.  

 Asynchronous model - in the asynchronous model the interaction is accomplished 
through some kind of a mechanism for sending and receiving messages.  

 

Fig. 7. Cluster architecture 

In the proactive behavior (agents work "on behalf of the user''), an agent from the AV can 
determine that in its environment "something is happening'', that would be interesting for 
the user, who is assisted by that agent. The agent activates and it can perform certain actions 
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to satisfy the preferences (wishes) of the user. The agent can inform the user of its actions 
through the educational portal. 

The difficulties, associated with the management of the pro-activity of our architecture, 

result from the fact that the portal is designed for reaction of the user's requests. Therefore 

the pro-activity can be managed only asynchronously and for this purpose we provide 

development of a specialized service, which is to check a "mailbox'' periodically for 

incoming messages from AV. 

According our architecture, the reactivity and the pro-activity are possible if the 

environment of the agents (Agent Village) remains not more passive. In order to be 

identified, the agents need a wrapper (the environment), which "masks'' it as a web service 

for the portal. In such a way the portal send the request to this service (masked 

environment), which in its turn transform the request into an ACL message, understandable 

for the agents. In a similar manner the active environment transform ACL messages into 

SOAP responses, which can be process from the portal services. 

The next assistants are developing in the first version of the AV node:   

 Evaluator Assistant (EA);  

 FraudDetector;  

 Statistician;  

 Intelbos  

The Evaluator Assistant (EA) provides expert assistance to the teacher in assessment of the 

electronic tests. In the Exam Engine a service is built for automated assessment of "choice 

like'' questions. In the standard version of the architecture questions of the "free text'' type 

are assessed by the teacher and the ratings are entered manually in the service to prepare 

the final assessment of the test. In the cluster the Exam Engine calls the assistant (an 

intelligent agent), which makes an "external'' assessment of the "free text'' type questions. In 

the surrounding environment of the EA, the received SOAP Request messages are 

transformed into ACL messages, understandable for the agent. Some of the basic parameters 

of the messages are:   

 Text, which is an answer of a "free text'' type question.  

 Parameters for the used estimation method.  

 Maximum number of points for this answer.  

The EA plans the processing of the request. In the current version of the assistant two 

methods are available for estimation:   

 Word Matching (WM) method - counts "exact hits'' of the keywords in the answer. The 
minimum threshold of percentage match (i.e. a keyword to be considered as "guessed''), 
which is laid in the experiments, is between 70% and 80%. Intentionally, the method 
does not look for 100% match, in order to give a chance to words with some minor 
typos also to be recognized. To calculate the points, offered by this method, a coefficient 
is formed in the following way: the number of hits is divided by the number of 
keywords. The actual number of points for the answer is calculated as the maximum 
number of points is multiplied by this coefficient;  
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 Optimistic Percentage (OP) method - makes an optimistic estimation of the points for 
the answer. Its essence is to iterate over the keywords list and summarize their 
percentage matches. Thus, the calculated amount of rates for each keyword, divided by 
the maximum possible match (in %), gives the reduction coefficient. The actual number 
of points for the answer is calculated by multiplying the maximum number of points by 
the coefficient of the reduction. This method is more "tolerant'' to allowing spelling 
mistakes in the answers, because low percentage matches are not ignored (unlike the 
first method) and are included in the formation of the final amount of points.  

When the calculations finish, the EA generates an answer as an ACL message, which then is 

transformed by the environment into a SOAP Response message (a result from a web 

service call). In the answer there is a parameter, representing the calculated amount of 

points, extracted afterwards by the Exam Engine. A comparison of the scores, given by the 

two methods and by the teacher, are presented in Figure 8. 

 

Fig. 8. Comparison of WM, OP and the teacher for 18 tests 

The FraudDetector will try to recognize any attempts to cheat in the answer given by the 

student. Such attempts would be to guess the keywords or copy/paste results from Internet 

search engines. This assistant cooperates with the Evaluator agent and if its receptors detect 

a probability of a cheating attempt, it informs the Evaluator agent, which for its part informs 

the assessing teacher that this answer requires a special attention, because it is a suspicious 

one. The Statistician stores information about all processed answers with a full history of the 

details from all calculating methods used by the Evaluator agent. This assistant needs a 

feedback how many points are finally given by the teacher for each answer. Thus it 

accumulates a knowledge base for each teacher and is able to decide which of the methods 

best suits the assessment style of the current assessing teacher. Upon returning the results of 

the Evaluator assistant, information by this agent determines which results from each 
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method will be presented to the teacher as main result, and the results of the other methods 

will be presented as an alternative. Another feature of this agent will be also to provide 

actual statistics on the performance of each of the calculating methods, as the "weakest'' of 

them goes out of service until new and better performing methods are added to the 

Evaluator agent. This monitoring of the methods' behavior becomes really significant when 

the so-called genetic algorithms are added, which we are still working on - as it is known, 

they can be "trained'' and thus their effectiveness can change. In this process a knowledge 

base is developing for each specific subject, which supports the methods in their work. 

5. Calculus of context aware systems - CCA 

Context-awareness requires applications to be able to adapt themselves to the environment 
in which they are being used such as user, location, nearby people and devices, and user's 
social situations. In this section we use small examples to illustrate the ability of CCA to 
model applications that are contextaware. 

5.1 Syntax of processes and capabilities 

This section introduces the syntax of the language of CCA. Like in the π-calculus 
[Milner,1999], [Sangiorgi,2001], the simplest entities of the calculus are names. These areused 
to name for example ambients, locations, resources and sensors data. We assume a 
countably-infnite set of names, elements of which are written in lower-case letters, e.g. n, x 
and y. We let ỹ denote a list of names and |ݕ෤| the arity of such a list. We sometimes use ݕ෤ as a 
set of names where it is appropriate. We distinguish three main syntactic categories: 
processes P, capabilities M and context expressions κ. 

The syntax of processes and capabilities is given in Table 1 where P, Q and R stand for 
processes, and M for capabilities. The first five process primitives (inactivity, parallel 
composition, name restriction, ambient and replication) are inherited from MA 
[Cardelli,2000]. The process 0 does nothing and terminates immediately. The process P | Q 
denotes the process P and the process Q running in parallel. The process (υn) P states that 
the scope of the name n is limited to the process P. The replication !P denotes a process 
which can always create a new copy of P. Replication was first introduced by Milner in the 
π-calculus [Milner,1999]. The process n[P] denotes an ambient named n whose behaviours 
are described by the process P. The pair of square brackets `[' and `]' outlines the boundary 
of that ambient. This is the textual representation of an ambient. The graphical 
representation of that ambient is: 

 

The graphical representation highlights the nested structure of ambients. 

CCA departs from MA and other processes calculi such as [Zimmer,2005], [Bucur,2008], 
[Bugliesi,2004] with the notion of context-guarded capabilities, whereby a capability is guarded 
by a context-expression which specifes the condition that must be met by the environment 
of the executing process. A process prefxed with a context-guarded capability is called a 
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context-guarded prefix and it has the form ܯ?ߢ. ܲ. Such a process waits until the environment 
satisfies the context expression κ, then performs the capability M and continues like the 
process P. The process learns about its context (i.e. its environment) by evaluating the guard. 
The use of context-guarded capabilities is one of the two main mechanisms for context 
acquisition in CCA (the second mechanism for context acquisition is the call to a process 
abstraction as discussed below). The syntax and the semantics of context expressions are 
given below. We let M.P denote the process True?M.P, where True is a context expression 
satisfied by all context. 

 

 
ࡾ,ࡽ,ࡼ   ∷=  Process 
   0  inactivity 
   P | Q  parallel composition 
   ሺυnሻ P  name restriction 
   n[P]  ambient 
   ! P  repliaction 
   κ!M. P  context-guarder action 
   x ⊳ ሺy෤ሻ. P process abstraction 
 
   હ ∷=  Locations 
   ՛  any parent 
   n ՛  parent n 
   ՝  any child 
   n ՝  child n 
   ∷  any sibling 
   n ∷  sibling n 
   ϵ  locally 
 
ۻ    ∷=  Capabilities 
   del n  delete n 
   in n  move in n 
   out  move out 
   α xۃz෤ۄ  process call 
   α ሺy෤ሻ  input 
   α  output  ۄy෤ۃ
 

Table 1. Syntax of CCA processes and capabilities 

A process abstraction ݔ ⊳ ሺݕ෤ሻ. ܲ denotes the linking of the name x to the process P where ݕ෤ is 
a list of formal parameters. This linking is local to the ambient where the process abstraction is 
defined. So a name x can be linked to a process P in one ambient and to a diferent process Q 
in another ambient. A call to a process abstraction named x is done by a capability of the 
form ߙ	ۄݖ̃ۃݔ where ߙ specifies the location where the process abstraction is defined and ̃ݖ is 
the list of actual parameters. There must be as many actual parameters as there are formal 
parameters to the process abstraction being called. The location ߙ can be ′ ՛ ′ for any parent, ′݊ ՛ ′ for a specifc parent n, ′ ՝ ′ for any child, ′݊ ՝ ′ for a specific child n, ′ ∷ ′ for any sibling, ′݊ ∷ᇱfor a specific sibling n, or ߳ (empty string) for the calling ambient itself. A process call 
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is substituted for each occurrence of the corresponding formal parameter. A process call can 
only take place if the corresponding process abstraction is available at the specified location. 

In CCA, an ambient provides context by (re)defining process abstractions to account for its 
specific functionality. Ambients can interact with each other by making process calls. 
Because ambients are mobile, the same process call, e.g. ՛  may lead to different ,ۄݖ̃ۃݔ
behaviours depending on the location of the calling ambient. So process abstraction is used 
as a mechanism for context provision while process call is a mechanism for context 
acquisition. 

Ambients exchange messages using the capability ߙ	ۄݖ̃ۃ to send a list of names ̃ݖ to a location ߙ, and the capability ߙ	ሺݕ෤ሻ	to receive a list of names from a location ߙ. Similarly to a process 

call, an ambient can send message to any parent, i.e. ՛ ݊ .a specific parent ݊, i.e ;ۄݖ̃ۃ ՛  any ;ۄݖ̃ۃ

child, i.e. ՝ ݊ .a specific child ݊, i.e ;ۄݖ̃ۃ ՝ ∷ .any sibling, i.e ;ۄݖ̃ۃ ݊ .a specific sibling ݊, i.e ;ۄݖ̃ۃ ∷  .ۄݖ̃ۃ .or itself, i.e ;ۄݖ̃ۃ
An input prefix is a process of the form ߙሺݕ෤ሻ. ܲ , where ݕ෤ is a list of variable symbols and ܲ is 

a continuation process. It receives a list of names ̃ݖ from the location ߙ and continues like the 

process ܲ{ݕ෤ ՚ ෤ݕ}ܲ where ,{ݖ̃ ՚  is ݖ̃ is the process ܲ in which each name in the list {ݖ̃

substituted for each occurrence of the corresponding variable symbol in the list ݕ෤. 
The mobility capabilities in and out are defined as in MA [Cardelli,2000] with the exception 

that the capability out has no explicit parameter in CCA, the implicit parameter being the 

current parent (if any) of the ambient performing the action. An ambient that performs the 

capability in ݊ moves into the sibling ambient ݊. The capability out moves the ambient that 

performs it out of that ambient parent. Obviously, a root ambient, i.e. an ambient with no 

parents, cannot perform the capability out. The capability del ݊ deletes an ambient of the 

form ݊[Ͳ] situated at the same level as that capability, i.e. the process del ݊. ܲ|݊[Ͳ] reduces to ܲ. The capability del acts as a garbage collector that deletes ambients which have completed 

their computations. It is a constrained version of the capability open used in MA to unleash 

the content of an ambient. As mentioned in [Bugliesi,2004], the open capability brings about 

serious security concerns in distributed applications, e.g. it might open an ambient that 

contains a malicious code. Unlike the capability open, the capability del is secure because it 

only opens ambients that are empty, so no risk of opening a virus or a malicious ambient. 

5.2 Context model 

In CCA the notion of ambient, inherited from MA, is the basic structure used to model 
entities of a context-aware system such as: a user, a location, a computing device, a software 
agent or a sensor. As described in Table 1, an ambient has a name, a boundary, a collection 
of local processes and can contain other ambients. Meanwhile, an ambient can move from 
one location to another by performing the mobility capabilities in and out. So the structure 
of a CCA process, at any time, is a hierarchy of nested ambients. This hierarchical structure 
changes as the process executes. In such a structure, the context of a sub-process is obtained 
by replacing in the structure that sub-process by a placeholder ′ۨ′. For example, suppose a 
system is modelled by the process ܲ|݊[ܳ|݉[ܴ|ܵ]]. So, the context of the process ܴ in that 
system is ܲ|݊[ܳ|݉[ۨ|ܵ]], and that of ambient ݉ is	ܲ|݊[ܳ|ۨ]. Following are examples of 
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contexts in the smart phone system described in Sect. 5.3. The following context is the 
context of the smart phone carried by Bob when Bob is inside the conference room with 
Alice: ݁ଵ ≙  ,൧[ܳ]݈݁ܿ݅ܽ	|	[ۨ]ܾ݋ܾ	|	ܲൣ݂݊݋ܿ
where ܲ models the remaining part of the internal context of the conference room and ܳ the 
internal context of the ambient alice. We assume that there is only one ambient named alice 
in the conference room.  

If Bob is inside the conference room while Alice is outside that room, the context of the 
smart phone carried by Bob can be described as follows: ݁ଶ ≙  .൧[ۨ]ܾ݋ܾ	|ܲൣ	݂݊݋ܿ	|	[ܳ]݈݁ܿ݅ܽ
Bob might carry with him another device, a PDA say, while inside the conference room. In 
this case the context of the smart phone can be modelled as: ݁ଷ ≙  ,൧[ܴ]ܽ݀݌	|	[ۨ]ܾ݋ܾ	|	′ܲൣ݂݊݋ܿ
where ܲ′ models the remaining part of the internal context of the conference room, ܽ݀݌ is 
the name of the ambient modelling the PDA device and ܴ specifies the functionality of the 
PDA. 

Our context model is depicted by the grammar in Table 2, where the symbol E stands for 

context (environment), ݊ ranges over names and ܲ ranges over processes (as defined in 

Table 1). The context Ͳ is the empty context, also called the nil context. It contains no context 

information. The position of a process in that process' context is denoted by the symbol ۨ. 

This is a special context called the hole context. The context ሺ݊ߥሻ	ܧ means that the scope of the 

name n is limited to the contextܧ. The context ݊[ܧ] means that the internal environment of 

the ambient ݊ is described by the context ܧ. The context ܧ|ܲ says that the process ܲ runs in 

parallel with the context ܧ, and so ܧ is part of process ܲ's context. 

Ground context. A ground context is a context containing no holes. 

Note that a context contains zero or one hole; and that a ground context is a process. We do 
not allow multi-hole contexts because they are not suitable to our purpose. 

 

 
	ࡱ  ∷=   Context 
  0  nil 
  ۨ  hole 
 location  [ܧ]݊  
  ሺ݊ߥሻ  restriction  ܧ
 

Table 2. Syntax contexts 

Context evaluation. Let ܧଵ and ܧଶ be contexts. The evaluation of the context ܧଵ at the 
context ܧଶ, denoted byܧଵሺܧଶሻ, is the context obtained by replacing the hole in ܧଵ (if any) by ܧଶ, viz 
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, 

where ܧଵ{ۨ ՚  .ଵܧ ଶ for ۨ inܧ ଶ} is the substitution ofܧ

The hole ۨ  plays an important role in our context model. In fact a context ܧ containing a 

single hole represents the environment of a process ܲ in the process ܧሺܲሻ. A process 

modelling Bob using a smart phone in the conference room with Alice can be specified as: ݁ଵሺ݌ℎ݁݊݋[ܵ]ሻ ≙ ݂݊݋ܿ ቂܲ	ห	ܾ݌ൣܾ݋ℎ݁݊݋[ܵ]൧	ห	݈ܽ݅ܿ݁[ܳ]ቃ, 
where ݁ଵ is the context specified in Example 5.2 and ܵ is the specification of the smart phone. 

A process modelling Bob using a PDA in the conference room can be specified as: ݁ଷሺͲሻ ≙ ݂݊݋ܿ ቂܲᇱ|	ܾܽ݀݌ൣܾ݋[ܴ]൧ቃ, 
where ݁ଷ is the context specified in Example 5.2. The syntax of CEs is given in Table 3 where ߢ ranges over CEs, ݊ ranges over names and ݔ is a variable symbol which also ranges over 

names. 

 	
	ࣄ  ∷=   Context Expressions 

  True  true 

  ݊ = ݉  name match 

  �  hole 

 negation  ߢ¬  

  ݇ଵ | ݇ଶ  parallel composition 

  ݇ଵ ∧ ݇ଶ  conjunction 

 location  [ߢ]݊  

  newሺ݊, ݇ሻ relevation 

 spatial next modality  ߢ۩  

  ⟡  somewhere modality  ߢ

.ݔ∃    existential quantification  ߢ

 

Table 3. Syntax context expressions 

5.3 A simple example 

This example illustrates the use of process abstraction and process call as a mechanism for 
context provision and context acquisition, respectively. A process abstraction can be thought 
of as the declaration of a procedure in procedural programming languages and a process 
call as the invocation of a procedure. 

A process abstraction links a name ݔ to a process ܲ using the following syntax: ݔ ⊳ ሺݕ෤ሻ. ܲ 
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where ݕ෤ is the list of formal parameters. A process call to this process abstraction has the 
following syntax: ۄݖ̃ۃݔ 
where ̃ݖ is the list of the actual parameters. This process call behaves exactly like the process ܲ where each actual parameter in ̃ݖ is substituted for each occurrence of the corresponding 

formal parameter in ݕ෤. In the smart phone example presented above, switchto is a process 

abstraction. 

Suppose a software agent ܽ݃ݐ (here modelled as an ambient) is willing to edit a text file foo. 

This is done by calling a process abstraction named edit say, as follows: 

 

where the symbol ՛ indicates that the edit process called here is the one that is defined in the 

parent ambient of the calling ambient agt. Now suppose agent agt has migrated to a 

computing device win running Microsoft Windows operating system: 

 

On this machine, the process abstraction edit is defined to launch the text editor notepad as 

follows: 

edit ⊳(y).notepadۄݕۃ. Ͳ. 

So the request of the agent agt to edit the fille foo on this machine will open that file in 

notepad according to the following reduction: 

 

Note that the command notepad has replaced the command edit in the calling ambient 
agt. 

Now assume the agent agt first moved to a computer lin running linux operating system: 
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On this computer, the command edit is configured to launch emacs. So in this context, the 
file foo will be opened in emacs as illustrated by the following reduction: 

 

Our agent agt might have even moved to a site where the command edit is not available 
because no process abstraction of that name is defined. In this case the agent agt will not 
be able to edit the file foo at this site and might consider moving to a nearby computer to 
do so. 

6. InfoStation-based mLearning system 

As we have mentioned earlier that eLearning is becoming an authentic possible alternative 

educational approach as the technologies regarding that area are developing so fast, and 

there is a recognisable growth of a great variety of wide-band telecommunication delivery 

technologies. The infostation paradigm first proposed by Frenkiel et al. [Frenkiel,1996] and 

used in [Ganchev,2007] to devise an infostation-based mlearning system which allows 

mobile devices such as cellular phones, laptops and personal digital assistants (PDAs) to 

communicate to each other and to a number of services within a university campus. This 

mLearning system provides a number of services among which are: mLecture, mTutorial, 

mTest and communication services (private chat, intelligent message notification and phone 

calls). This section presents the architecture of the infostation-based mLearning system and 

describes the policies of the mLecture service. 

6.1 mServices 

This section introduces at glance each of the mServices provided by the infostation-based 
mLearning system. 

 AAA: in order for any user to use any mService in the system, the user device should be 
registered. The AAA service (Authentication, Authorisation and Accounting) allows the 
users to register their devices with the system to gain the ability of using the mLearning 
services offered by the system. 
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 mLecture: this service allows the users to gain access to the lecture material through their 
mobile devices. The users can request a specific lecture, which is adapted according to 
the capabilities of the user devices and then delivered to their mobile devices. 

 mTest: this service is crucial to the learning process. The mTest service allows the users 
to gain access to test materials that provide means of an evaluating process. A user can 
request, like the mLecture service, a specific test, which is also adapted to the 
capabilities of the user device then delivered to the user mobile device. The mTest 
service may only runs individually on a user device and unaccompanied with any other 
service whatsoever. 

 mTutorial : this service allows the users to gain access to a self-assessment test. It is a 
combination between the mLecture and the mTest services. A user can request a self-
assessment test in a similar way as requesting a mLecture. After the user submits their 
answers, he receives a feedback on his performance and the correct answers to the 
questions he got wrong. 

 Intelligent Message Notification (IMN in short): this service allows the users to 
communicate with each other by exchanging messages via their mobile devices.  

 VoIP: this service allows the users to communicate with each other via phone calls 
throughout the infostation-based mLearning system. 

6.2 Policies 

The InforStationCentre (ISC) provides the User Authentication, Authorisation and 

Accounting (AAA) service which identifies each mobile user and provides him with a list 

of services the user is authorised to access. This service is regulated by the following 

policies: 

 When a user is within the range of an IS, the intelligent agent (PA) of the user's device 

and the IS mutually discover each other. The PA sends a request to the IS for user 

Authorisation, Authentication and Accounting (AAA). This request also includes a 

description of the mobile device currently being used and any updates of user pro_le 

and user service profile. 

 The IS forwards this AAA request to the ISC along with the profile updates. If the user 

is successfully authenticated and authorised to utilise the services by the AAA module 

within the ISC, a new account record is created for the user and a positive 

acknowledgement is sent back to the IS. Then the IS compiles a list of applicable 

services and sends this to the PA along with the acknowledgement. The PA displays the 

information regarding these services to the user who then makes a request for the 

service he wishes to use. 

If the user chooses the mLecture service, then the following policies of the mLecture service 

apply: 

 The PA forwards the mLecture service request to the InfoStation, which instantiates the 

service. If the IS is unable to satisfy fully the user service request it is forwarded to the 

ISC, which is better equipped to deal with it. In either case, the lecture is adapted and 

customised to suit the capabilities of the user devices and the user own preferences, and 

then delivered to their mobile devices. 
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 During the execution of the service, the user is free to move into a different infostation, 

to switch between devices or to do both. 

 A user cannot use the mLecture and mTest services simultaneously. The mTest service 

should operate unaccompanied at all occasions. 

This section presents the formalisation of the policies of the infostation-based context-aware 

mLearning system using . We first introduce some naming conventions (sect. 6.2.1) which 

are used in the specification of the system. Then we give the specification of two mServices 

which are AAA and the mLecture services (sect. 6.3). 

6.2.1 Notations 

The following naming conventions are used to differentiate between variables' names and 

constants. A variable name begins with a lowercase letter while a constant begins with a 

number or a uppercase letter. The list of the constant names that are used in the 

formalisation process is given in Table 4. And the list of variable names is given in  

Table 5. 

 

Table 4. Constants 

6.3 A Model of the InfoStation-based mLearning system 

The system consists mainly of one central ISC, multiple ISs and multiple user devices. Each 

component of the system is modelled as an ambient. That is, the ISC, each IS and each user 

device is modelled as an ambient. In particular, a device, PC say, being used by a user, 303 

say, is modelled by an ambient named PC303. The ISC ambient runs in parallel with the IS 

ambients, and all the user devices within the range of an IS are child ambients of that IS 

ambient. 
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Table 5. Variabbles 

This is textually represented by the following process: 

  

(1)

 

where each ௫ܲ is a process modelling the behaviour of the corresponding ambient ݔ.  

Now we give the formal specification of the ISC and the ISs below. 

InfoStation An abstract model of an infostation ܫ ௜ܵ (for some integer ݅) has the following 

main components are the AAA request ambient ݍ݁ݎܣܣܣ௜, the lecture ambient ݍ݁ݎݐܿ݁ܮ௜ and 

the cache ambient ܿܽܥℎ݁௜. 
The InfoStation is a parent to the inside ambients which are siblings to each other. The 

specification of each of these ambients is as follows: ࢏ࢗࢋ࢘࡭࡭࡭ This ambient is responsible for handling AAA requests sent by user devices 

willing to register with the InfoStation ܫ ௜ܵ. The ݍ݁ݎܣܣܣ௜ ambient receives a request from a 

device and, immediately, forwards it to the InfoStation, then receives a reply from the 

InfoStation and again, forwards it to the user's device. This behaviour is modelled by the 

following process: 
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஺ܲ೔ ≙ ! ∷ ሺ݀݅ݑ, ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ܫ ௜ܵ ՛ ,݀݅ݑۃ ,݁݌ݕݐ݀ .ۄ݁݉ܽ݊ܽ ܫ ௜ܵ ՛ ሺܽܿ݇, ܽ݊ܽ݉݁, .ሻݐݏ݈݅ݏ ܽ݊ܽ݉݁∷ ,݁݉ܽ݊ܽۃ .ۄݐݏ݈݅ݏ Ͳ 

where uid is the user ID, dtype is the device type and aname is the name of the ambient 

sending the request. 

The InfoStation accordingly receives a request from the ݍ݁ݎܣܣܣ௜ ambient, forwards it to the 

InfoStation Centre, and after receiving the reply from the InfoStation Centre it forwards it to 

the ݍ݁ݎܣܣܣ௜ ambient. This behaviour is modelled as: 

 

  

(2) 

 This ambient handles all the mLecture service requests sent by the user devices. It ࢏ࢗࢋ࢚࢘ࢉࢋࡸ 

receives a lecture request from a user device and forwards it to the infostation ܫ ௜ܵ, i.e. 

 ! ∷ ሺ݈݁ܿ݀݅ݐ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ܫ ௜ܵ ՛ ,݀݅ݐ݈ܿ݁ۃ ,݀݅ݑ ,݁݌ݕݐ݀ .ۄ݁݉ܽ݊ܽ Ͳ (3) 

Then it gets the reply from that infostation and forwards it to the user device which initiated 

the request, i.e. 

 ! ∷ ሺ݈݁ܿ݀݅ݐ, ,ݕ݈݌݁ݎ ܽ݊ܽ݉݁ሻ. ܽ݊ܽ݉݁ ∷ ,݀݅ݐ݈ܿ݁ۃ .ۄݕ݈݌݁ݎ Ͳ (4) 

So the whole behaviour of the ݍ݁ݎݐܿ݁ܮ௜ ambient is 

 ௅ܲ೔ ≙ .ݍܧ ሺ͵ሻ|	ݍܧ. ሺͶሻ (5) 

We show how the InfoStation handles a request from the ݍ݁ݎݐܿ݁ܮ௜ ambient after we have 

specified the ܿܽܥℎ݁௜	ambient. ࢏ࢋࢎࢉࢇ࡯	 This is the ambient where the InfoStation stores copies of requested lectures for 

future rapid access. It models a cache memory. A lecture is stored as an ambient (named 

after that lecture's id) which contains three persistent memory, each containing a version 

of the lecture suitable to a specific type of device (phone, PDA or PC). When an 

InfoStation receives a mLecture service request from a device, it checks for the requested 

material in its cache first rather than getting it from the InfoStation Centre directly. The 

process of checking the availability of a lecture inside the cache is done by sending a 

request to the ܿܽܥℎ݁௜	 ambient which then checks whether it has the ambient of the 

requested lecture or not. If the requested lecture is available the cache ambient retrieves it 

and sends it back to the InfoStation, otherwise, it replies immediately to the InfoStation 

that this lecture does not exist. The behaviour of the ܿܽܥℎ݁௜	 ambient is modelled by the 

following process: 
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(6)

 

The behaviour of each lecture ambient (named after the lecture's id lectid) in the cache is 
modelled by the following process: 

  (7)

 

The InfoStation will act as follows. First, it receives a request from ݍ݁ݎݐܿ݁ܮ௜, then it checks 

the availability of the lecture in its cache by sending a request to the ܿܽܥℎ݁௜	 ambient, i.e. 

 ! ௜ݍ݁ݎݐܿ݁ܮ ՝ ሺ݈݁ܿ݀݅ݐ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ℎ݁௜ܿܽܥ ՝ ,݀݅ݐ݈ܿ݁ۃ ,݀݅ݑ ,݁݌ݕݐ݀ .ۄ݁݉ܽ݊ܽ Ͳ (8) 

If the cache replies with the content of the lecture, it will send a request to the InfoStation 

Centre with a flag set to 1 (meaning that the requested lecture exists in its cache) asking 

whether the user is currently taking a mTest. If the user is taking a mTest, then the mLecture 

service request must be denied. If the cache did reply with NULL as lecture's content, then 

the infostation will send a request to the InfoStation Centre with the flag set to 0 (meaning 

that the lecture does not exist in its cache) asking for both the requested lecture and to check 

whether the user is taking a mTest. This behaviour of the IS is modelled as: 

  

(9)

 

where C and N are de_ned as follows: 
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and 

 

Thus, the whole behaviour of an infostation ܫ ௜ܵ is modelled as 

 ூܲௌ೔ ≙ .ݍܧ ሺʹሻ	|	ݍܧ. ሺͺሻ	|	ݍܧ. ሺͻሻ (10) 

6.3.1 InfoStation centre 

A model of the ISC encompasses ambients modelling users' accounts and named after the 
users' IDs; an ambient named Lectures that contains all the lecture ambients, each named 
after the corresponding lecture ID Each lecture ambient contains three persistent memory 
cells named Phone, PDA and PC; each storing the lecture's version suitable for the 
corresponding type of device. The mTest service is not represented as we are only dealing 
with the mLecture service in this paper. These components of the ISC are formalised 
below. 

Users' accounts An ambient modelling a user's account contains two ambients named Loc 
and Utest. Each of these two ambients models a persistent memory cell which stores, at any 
time, the current location of that user (for the former) or a Boolean indicating whether that 
user is taking a mTest or not (for the latter). We understand by location of a user the IS the 
user is registered with. The behaviour of the Loc ambient and the Utest ambient are specified 
exactly with appropriate initial values. The ISC requests the value of any of these cells by 
sending the name Loc or Utest to the user's account ambient (see Eq. (14)) which then can get 
(i.e. read) the value of the corresponding child ambient as follows, where the parameter ݔ is 
the corresponding child ambient name: 

 ! ܥܵܫ ՛ ሺݔሻ. ݔ ՝ .ۧۦ ݔ ՝ ሺݕሻ. ܥܵܫ ՛ .ۄݕۃ Ͳ (11) 

The user's account ambient can also put (i.e. write) a value in any of its child ambients as 
follows, where the parameter ݔ is the corresponding child ambient name and the parameter ݊ is that value: 

 ! ܥܵܫ ՛ ሺݔ, ݊ሻ. ݔ ՝ .ۧ݊ۦ ݔ ՝ ሺ	ሻ. ܥܵܫ ՛ ,ݔۃ .ۄܭܥܣ Ͳ (12) 

So the whole behaviour of a user's account ambient named uid is specified as: 

௨ܲ௜ௗ ≙ .ݍܧ ሺͳͳሻ	|	ݍܧ. ሺͳʹሻ 
Lectures As mentioned above, this ambient contains all the lectures that are available in the 
mLecture service. Each lecture has a unique ID and the corresponding ambient is named 
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after that ID. The behaviour of a lecture ambient is specified in Eq. (7). The Lectures ambient 
behaves exactly as the cache ambient specified in Eq. (6). 

Infostation centre We now formalise the behaviour of the ISC when it receives a request 

from an IS. We are interested in two types of request in this paper: an AAA request and a 

lecture request. 

When the ISC receives an AAA request from an IS, it updates the user's account with its new 

location and then replies to that IS with an acknowledge along with a list of available 

services. For the sake of simplicity, the service list is represented by the name ‘SLIST’. This is 

modelled by the following process: 

 ! ܫ ௜ܵ ∷ ሺܽܽܽݍ݁ݎ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁ሻ. ݀݅ݑ ՝ ܫۃ ௜ܵۄ. ݀݅ݑ ՝ ሺܽܿ݇ሻ. (13) ܫ ௜ܵ ∷ ,݇ܿܽۃ ܽ݊ܽ݉݁, .ۄܶܵܫܮܵ Ͳ 

After receiving a lecture request, the ISC checks whether the user requesting the service is 

currently taking a mTest. This is done by it sending a message to the corresponding user's 

account ambient. That user's account ambient reply with 0 for ‘No’ and 1 for ‘Yes’. If the 

reply is ‘Yes’ then the ISC fetches the current location of the user and forward a ‘DENIED’ 

message to that location. If the reply is ‘No’ and the flag is set to 1, a ‘OK’ message is 

forwarded to the current user location; otherwise (i.e. reply is ‘No’ and the flag is set to 0), 

the ISC fetches the appropriate lecture version for the user device and sends it to the current 

user location. This behaviour is represented by the following process: 

 ! ܫ ௜ܵ ∷ ሺ݈݁ܿ݀݅ݐ, ,݀݅ݑ ,݁݌ݕݐ݀ ܽ݊ܽ݉݁, ݂݈ܽ݃ሻ. ݀݅ݑ ՝ .ۄݐݏ݁ݐܷۃ ݀݅ݑ ՝ ሺݕሻ. ൫ ூܲௌ஼భ 	ห	 ூܲௌ஼మሻ (14) 

where 

ூܲௌ஼భ ≙ ሺݕ = ͳሻ? ݀݅ݑ ՝ .ۄܿ݋ܮۃ ݀݅ݑ ՝ ሺݖሻ. ݖ ∷ ,݀݅ݐ݈ܿ݁ۃ ,ܦܧܫܰܧܦ .ۄ݁݉ܽ݊ܽ Ͳ 

and 

 

So the whole behaviour of the ISC is modelled by the following process: 

ூܲௌ஼ ≙ .ݍܧ ሺͳ͵ሻ	|	ݍܧ. ሺͳͶሻ 
7. Validation 

Now that a formal model of the infostation-based mLearning system has been presented, we 
show how this model can be used to validate the properties of the mLearning system. 
Lamport proposed two main classes of system's properties: safety properties, which state that 
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‘nothing bad will happen’; and liveness properties, which assert that ‘something good will 
happen, eventually’. In the light of this classification, we wish to establish the liveness 
property that every lecture request from a user is eventually replied to by the system, 
provided that the user does not become infinitely unavailable after that request has been 
made. 

Theorem 7.1 Every user's lecture request will eventually get a reply, provided that the user stays 
long enough in the system. 

The proof of this theorem is based on the reduction semantics of given by a congruence 
relation ‘≡’ defined in Table 9 and a reduction relation ‘՜’ defined in Table 10. 

In this proof we will assume, without loss of generality, that the user is using a laptop (PC) 
to access the system from an infostation ܫ ௜ܵ. Given that the user is mobile, the following 
cases must be considered: 

1. the user sends the request and waits for the reply in the same infostation ܫ ௜ܵ (i.e. the 
user may move around within the range of the infostation) 

2. the user sends the request and move into a different infostation ܫ ௝ܵ , ݆ ≠ ݅. 
In Case 1, the user behaviours can be modelled by the following ambient: 

௜ݍ݁ݎݐܿ݁ܮ]͵Ͳ͵ܥܲ  ∷ ,ͲͲͳݐܿ݁ܮۃ ͵Ͳ͵, ,ܥܲ .ۄ͵Ͳ͵ܥܲ ௜ݍ݁ݎݐܿ݁ܮ ∷ ሺ݈݁ܿ݀݅ݐ, .ሻݕ݈݌݁ݎ Ͳ] (15) 

This ambient sends a lecture request to the ݍ݁ݎݐܿ݁ܮ௜ ambient and waits for a reply from that 
ambient, and then terminates. The lecture request contains the following information: (i) the 
lecture ID, Lect001 ; (ii) the user ID, 303; (iii) the device type, PC; and (iv) the name of the 
ambient to reply to, PC303. 

The behaviours of the ݍ݁ݎݐܿ݁ܮ௜ ambient is modelled by the process ௅ܲ೔ in Eq. (5), which 

basically receives a lecture request from a sibling ambient (e.g. a user device), forward the 

request to the infostationܫ ௜ܵ, get the reply from that infostation and forwards it to the very 

ambient which initiated the request. How the infostation ܫ ௜ܵ interacts with the ݍ݁ݎݐܿ݁ܮ௜ 
ambient is specified in Eq. (8). These interactions between a user device, the ݍ݁ݎݐܿ݁ܮ௜ 
ambient and the infostation ܫ ௜ܵ can be expressed as a sequence of derivations using the 

reduction relation ՜. Because of the space limit, we cannot give the full sequence of 

derivations in this paper. For illustration, the following sequence of derivations describes 

how a lecture request sent by the user gets to the infostation to be processed: 
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At this stage, the infostation ܫ ௜ܵ has received a lecture request from the ݍ݁ݎݐܿ݁ܮ௜ ambient and is 
willing to check with the ܿܽܥℎ݁௜ ambient whether it has the requested lecture for the specified 
type of device. The behaviour of the ܿܽܥℎ݁௜ ambient is specified by the process ஼ܲ೔  in Eq. (6). If 

the requested lecture Lect001 exists in the cache for the specified type of device, then the ܿܽܥℎ݁௜ ambient gets a copy of the lecture for the specified type of device by interacting with 
the child ambient named Lect001 whose behaviour is specified by the process ௅ܲ௘௖௧଴଴ଵ as in Eq. 
(7). It can also be seen from Eq. (6) and Eq. (7) that if the requested lecture Lect001 does not 
exist in the cache for the specified type of device, then a reply message ‘NULL’ is forwarded to 
the infostation ܫ ௜ܵ. So in either situation, the infostation ܫ ௜ܵ receives a reply from the cache. 

Once a reply is received from the ܿܽܥℎ݁௜ ambient, the infostation ܫ ௜ܵ contacts the infostation 
centre ISC as specified by the process in Eq. (9). How the ISC reacts is modelled by Eq. (14); it 
replies with a ‘DENIED’ message if the user requesting the lecture is currently using a mTest 
service, otherwise it replies with a ‘OK’ message and possibly a copy of the requested lecture if 
it is not available locally in ܫ ௜ܵ 's cache. How each of these types of reply is handled by the ܫ ௜ܵ is 
modelled by the component C and N in Eq. (9). One can see that for every case where the user 
is still in the range of the infostation ܫ ௜ܵ (i.e. the context expression ‘has(aname)’ holds), the 
infostation ܫ ௜ܵ sends a reply to the ݍ݁ݎݐܿ݁ܮ௜ ambient which subsequently forwards the reply to 
the user device as specified in Eq. (4). This completes the proof of Case 1. 

The proof of Case 2 can be done in a similar manner as in Case 1, with the user behaviours 
specified as in Eq. (16), where ݅ ≠ ݆, i.e. the request is sent from one infostation and the reply 
to that request is received after the user has moved to a different infostation. 

  

(7)

 

This ambient sends a lecture request from the infostation ܫ ௜ܵ, moves to a different infostation ܫ ௝ܵ , registers with this infostation by sending an AAA request then waits for the 

acknowledgement of its registration. Once its registration has been confirmed, it then 
prompts to receive the reply to the lecture request and then terminates. 
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