
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322409053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


7 

Remote Sensing of Photosynthetic Parameters 

Natascha Oppelt 
Kiel University 

Germany 

1. Introduction  

Remote sensing cannot measure photosynthesis directly. However, remote sensing can 
provide information about parameters directly or indirectly connected to the photosynthetic 
activity of a plant or a vegetation canopy.  
Since the launch of the first earth resource satellite in 1972 researchers focused on the 

relationship between vegetation and its radiometric response. Comparisons of ground 

measurements and data of the first generations of the Landsat series proved very soon the 

suitability of the red and near infrared bands of the sensors for vegetation analysis. In the 

following years, various mathematical combinations of the green, red and near infrared 

bands, the so called vegetation indices (Bannani et al., 1995) were developed to quantify 

properties of plant canopies such as biomass, productivity or vigour (Pearson & Miller, 

1972; Kauth & Thomas, 1976; Misra et al., 1977; Huete, 1988). However, the low spectral 

resolution of those sensors was inadequate to derive biochemical properties of vegetation. 

The development of hyperspectral instruments with a high number of narrow bands first 

enabled the quantification of pigment concentration and indices related to the 

photosynthetic capacity of vegetation. While field spectrometers were used to derive 

pigment concentration of single leaves or small plots of vegetation, the advent of airborne 

imaging spectrometers such as the compact airborne spectral imager casi, the Airborne 

Visible/Infrared Imaging Spectrometer AVIRIS or the HyMAPTM Hyperspectral Scanner 

enabled the monitoring of vegetated canopies and small landscape sections from the 1980s. 

Since then a new generation of indices was developed considering limitations known from 

the first generation (Baret et al., 1989; Qi et al., 1994). However, due to the restriction to 

airborne instruments the acquisition of hyperspectral images was a cost-intensive task. 

Studies dealing with this kind of sensors assessing biochemical or biophysical plant 

properties were limited to a relatively small group of scientists and stakeholders.  

With the advent of space-borne hyperspectral instruments (e.g. the Compact High 
Resolution Imaging Spectrometer CHRIS (since 2001), the Moderate Resolution Imaging 
Spectroradiometer MODIS (since 2002) and the Environmental Mapper EnMAP (launch in 
2015)) monitoring of biophysical parameters related to photosynthesis becomes increasingly 
operational. The growing availability as well as the reduced costs for hyperspectral data had 
a great impact on the numbers of studies and literature dealing with pigment assessment of 
native and cultivated vegetation canopies on various spatial scales.  
Vegetation type and species composition strongly affect the derivation of biochemical plant 
properties and components. Biochemical components (e.g. chlorophyll content) and related 
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biophysical properties (e.g. light use efficiency (LUE)) are more species-specific than biome-
specific (Ahl et al., 2004). Thus, biome-related parameter retrieval and canopy-related 
studies require different ambitions for parameter retrieval. Large scale and global 
approaches require the development of simple, generalized representations of the most 
important plant processes and can be used in different biomes with a minimum of 
modifications (Running & Hunt, 1993; Running et al., 2004). Contrary local studies focus on 
single crop canopies with specific approaches to estimate parameters affecting 
photosynthesis such as crop chlorophyll, nitrogen content or uptake, or stress factors for 
different species and phenological stages (e.g. Daughtry et al. 1992; Gamon et al., 1992; 
Gilabert et al., 1996; Rascher & Pieruschka, 2007; Yoder & Pettrigrew-Crosby, 1995). 
Photosynthetic parameter retrieval usually serves for applications related to precision 
farming, e.g. crop growth modelling, application of fertilizers, herbi- and fungicides and 
yield forecasting (e.g. Haboudane et al., 2002, 2004; Hank et al., 2007; Malenowski et al., 
2009; Oppelt et al., 2007; Strachan et al., 2008).  
This study focuses on the assessment of the chlorophyll content of wheat (Triticum aestivum 

L.) canopies using airborne hyperspectral data. Several types of indices were applied and 

resulting results are discussed. Then the estimation of crop growth, gross and net primary 

production using the indices is described exemplarily for two applications: the use of 

indices for operational remote sensing products as well as the integration of indices with 

physically based crop growth modelling  

2. Vegetation radiometric properties 

Plant leaves show typical characteristics in their reflectance in the visible (VIS), near-infrared 

(NIR) and shortwave infrared (SWIR) parts of the electromagnetic spectrum (Figure 1). In 

general, VIS is dominated by the absorption features of leaf pigments, mainly by the 

chlorophylls. In the near-infrared region, high reflectance is due to the internal structure of 

plant mesophyll. The internal structure of leaves with numerous refractive discontinuities 

and intercellular air spaces scatters incident radiation and results in a large proportion to be 

passed back as reflected radiation. Plant water absorption features affect the reflectance 

behaviour in the SWIR leading to a strongly decreased reflectance at high plant water 

contents. 

Light reaction is commonly measured using the chlorophyll absorption features in the VIS, 

which are known to correspond well with the fraction of absorbed photosynthetically active 

radiation (fAPAR) (Schurr et al., 2006). At the canopy level, the efficiency of carbon fixation 

is denoted. LUE refers to the projected ground surface and describes the net canopy CO2 

fixation. The spatial variability of LUE results in enormous variations of net photosynthetic 

productivity (NPP), which ranges from 30 to 1000 g C m-2 in different ecosystems (Schurr et 

al., 2006). Thus knowledge of the spatial distribution of LUE, fAPAR or chlorophyll is 

essential for a realistic estimation of photosynthetic processes. 

To extract pigment information, a range of other factors that influence vegetation reflectance 
must be taken into account. The leaf reflectance may vary independently of pigment 
concentrations due to differences in internal structure, surface characteristics and moisture 
content. Furthermore, the reflectance spectrum of a whole canopy is influenced by factors 
such as the effects of leaf area, the orientation of leaves, ground coverage, and presence of 
non-leaf elements, areas of shadow and soil surface reflectance. These factors obscure the 
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relationship between spectral reflectance and chlorophyll concentration (Blackburn, 2006) 
and thus have to be considered. 
 

 

Fig. 1. Typical spectral reflectance characteristics of green leaves (Keyworth et al., 2009, 
modified) 

3. Material and methods 

To gather field and hyperspectral remote sensing data, intensive field campaigns were 
conducted during the growing seasons in 2004 and 2005 in a test site located in the Bavarian 
Alpine foothills. The study area, hyperspectral data assessment and processing, field 
measurements, data processing and analysis will be described in the following section.  

3.1 Study sites 
The study area is located in the county Gilching, 25 km south-west of Munich, Germany, 
(upper left corner 48°8’N, 11°17’E). The study area is characterized by an ever-moist and 
temperate climate with a mean temperature of 8.3° C (1961-1990), ranging from -5 °C and 2 
°C in January to 12° C and 23° C in July. The mean annual sum of precipitation is 900 mm 
with 540 mm during the growing season of wheat (April to August). Two climatological 
stations of the Bavarian network of agro-meteorological stations enable access to local 
weather monitoring. The stations provide meteorological data such as precipitation, soil and 
air temperature, total irradiance and humidity (www.lfl.bayern.de/agm /start.php). 
For each 2004 and 2005, one field of winter wheat grown with the unawned cultivar Achat 
was chosen as a test field. The plots were characterized by similar soil conditions (cambisols 
according to the FAO classifications scheme) and have been managed by the same farmer, 
who enabled information on management data such as fertilizer and herbicide application 
as well as the date of sowing, soil treatment and harvest. A detailed description of the test 
site and the field plots is provided by Oppelt (2010). 
During 2004 and 2005, the growing conditions are similar regarding temperature and radia-
tion which are within the standard deviation of the average values, but precipitation varied 
strongly. The area received 164 mm more precipitation in 2005 than in 2004. Frequent and 
heavy rainfalls during July and August of 2005 were exceptional and caused many crops to 
mould upon the field. 
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3.2 The Airborne Visible/Infrared Imaging Spectrometer AVIS 
The Airborne Imaging/Infrared imaging Spectrometer AVIS was built at the Department for 
Geography of the Ludwig-Maximilians-University in Munich (Germany) (Oppelt & Mauser 
2001, 2004, 2006, 2007). The second generation of the sensor, AVIS-2, was operated for this 
study. AVIS-2 is a CCD-based system operating in the VIS and NIR (400 nm to 900 nm) 
spectral range with a spectral resolution of 9 nm. The system is based on a spectrograph 
(SPECIM Imspector V9NIR), mounted to a black and white 2/3” CCD-video camera 
(Vosskühler 1300) and a filter-lens system. Table 1 summarizes the specifications of AVIS-2; 
the sensor, its specification and calibration are described in detail by Oppelt & Mauser 
(2007). 
 

Nominal spectral range [nm] 400-900 

Analyzable spectral range [nm] 420–880 

Spectral resolution [nm] 9 

Radiometric sampling [bits] 16 

Number of bands 64 

Signal to Noise Ratio (SNR) [dB] 65 

Spatial resolution [pixels per line] 300 

Spatial sampling [pixels per line] 640 

Field of view (FOV) [rad] 1.0 

Navigation systems INS, GPS 

Period of operation  since 2001 

Table 1. AVIS-2 specifications 

3.3 AVIS data 
AVIS was designed to be operated on different platforms, such as Dornier DO-27 or DO-228 
and microlight aircrafts, where the sensor is mounted on vibration dampening mounts. For 
this study AVIS-2 was operated on a Dornier DO-27 aircraft flown by pilots of the Bavarian 
armed forces.  
Four AVIS-2 acquisitions are available for the growing periods in 2004 and 2005. In 2004, the 
sensor was flown on March 31, May 25 and June 8. One overflight was conducted in 2005, 
i.e. on July 6. To ensure comparable illumination and viewing geometries, the overflights 
were conducted in the principal plane with a flight azimuth of about 0°. The data were 
gathered in a time period between 10 and 14 hrs UTC resulting in sun azimuth angles 
between 31.5° and 37°. The ground sampling distance (GSD) for the overflights was 4 m. 
The radiometrical pre-processing of the data included correction of sensor dark current, 
CCD homogeneity and smile effect (Oppelt & Mauser, 2007). Then the data were corrected 
atmospherically and reflectance calibrated using an approach based on MODTRAN-4 (Berk 
et al., 2000). The data for the parameterization of the atmosphere were estimated using 
climatological data of the Bavarian agro-meteorological network. The geometric processing 
of the AVIS data was carried out using data of a differential Global Positioning System 
(dGPS) and an Inertia Navigation System (INS), which were mounted on the sensor. INS 
and dGPS data were stored in the header of each image line and provide data of the aircraft 
location (latitude, longitude and altitude) and pointing information (roll, pitch and yaw). 
Combined with a digital elevation model, these data are used to compensate for the motion 
of the aircraft and rectify the data to a respective coordinate system. The geometric 
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correction was carried out by means of the header information, aerial orthophotography and 
ground control points applying a second-order polynomial function in ESRI ARCGIS 9.1. 
Figure 2 presents an image stripe with exemplary reflectance spectra.  
 

 

Fig. 2. AVIS real colour image acquired on May 25, 2004 (left hand side); the data were the 
processed geometrically and radiometrically as well as reflectance calibrated; the numbers 
in the AVIS image indicate the location of the reflectance spectra presented on the right 
hand side. 

The reflectance spectra of the different wheat pixels unveil the potential of hyperspectral 
remote sensing for vegetation monitoring. In the VIS, the pixels reflect the solar radiation 
nearly identical. Thus, for the human eye, which is represented by the real colour composite, 
these wheat patches look nearly identical. The differences become obvious when looking at 
the NIR part of the reflectance spectra. The higher reflectance of wheat (4) indicates that the 
vegetation is more densely developed than the wheat (3) patch.  

3.4 Field measurements  
For every field, five sampling points were selected diagonally in the field and fixed via 
handheld GPS (GARMIN VISTA). The locations of the sampling points were selected in 
close cooperation with the farmers in order to gather ground truth data from areas in the 
field that exhibited differences in plant development and yield over recent years.  
At the sampling points weekly measurements were conducted between April and harvest 
(beginning of August) including phenological stage, plant height and DM (separated into 
stem, leave and fruit fraction). Measurements of leaf area were conducted using a LI-COR 
LAI 2000 plant canopy analyzer. Leaf chlorophyll was measured from April to the 
beginning of ripening. After sampling the leaves were frozen immediately in liquid nitrogen 
and taken to the laboratory, where the chlorophyll analysis was conducted according to the 
procedure described by Porra et al. (1989). The resulting chlorophyll concentration per 
weighted portion was multiplied with the leaf dry matter resulting in the total chlorophyll 
which is stored in the leaves within a square metre on ground [mg m-2]. Field spectrometer 
measurements (Ocean Optics SD-2000 combined with SD-2000 NIR) were conducted 
concurrent to the AVIS overpasses to validate AVIS processing results (Oppelt, 2010).  
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Fig. 3. Results of total chlorophyll measurements during the growing seasons 2004 and 2005; 
the rhombuses correspond to the mean field values during the phenological stages  
(T = tillering; SE = stem elongation; H = heading; F = flowering; DF = development of fruit; 
R= ripening); the error bars mark the minimum and maximum values measured at the 
sampling points indicating the scattering of the chlorophyll measurements 

Figure 3 presents the results of the in situ chlorophyll measurements. Despite the nearly 
parallel phenological development, the chlorophyll content varies considerably in both 
amount and chronology. In 2004, canopy leaf chlorophyll develops with a general increase 
during the vegetative growth to 1100 mg m-² chlorophyll and a decrease during the 
generative growing phase. This pattern is obviously superimposed by the development of 
leaf biomass, which increases during spring and decreases after flowering. Figure 3 also 
indicates that fertilization affects the general course of canopy chlorophyll; chlorophyll 
content increases after the application of fertilizer. The error bars indicate the variability of 
chlorophyll within a vegetation stand. As anticipated, the heterogeneity within the field 
generally is high during vegetative growth while during ripening the canopy reveals a more 
homogeneous chlorophyll distribution. 
In 2005, the canopy chlorophyll increases with a relatively soft increase until May, where a 

notable decrease can be observed. Late frost events led to a reduced metabolic activity 

resulting in decreased chlorophyll contents (Oppelt, 2010). After the frost events the wheat 

canopy exhibits a strong increase in canopy chlorophyll to 682 mg m-², which was promoted 

by high temperatures and a high amount of incoming radiation in June. Due to the wet 

conditions in July, the plants began to mould, which led to a considerable reduced yield in 

2004 (average of 7.01 t ha-1 in comparison to 8.3 t ha-1 in 2005 (Oppelt, 2010)). The decay of 

the plants is accompanied by a rapid decomposition of chlorophyll during anthesis. These 

results underline that a general assumption of the canopy chlorophyll can be deceptive for 

the assessment of vegetation photosynthesis. Variations in crop chronology due to different 

weather conditions as well as existing spatial heterogeneities may distort an expected 

universal course of the metabolic activity even at a single crop stand. 

3.5 Indices for the derivation of canopy chlorophyll 
A large variety of approaches has been developed for estimating chlorophyll content. Mod-
elling studies provided good evidence that reflectance is more sensitive to high pigment 
concentrations at wavelengths where pigment absorption is low. Contrary, spectral regions 
with high absorption are more sensitive to low pigment concentrations (Blackburn, 2006; 
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Jacquemoud & Baret, 1990). Empirical studies have confirmed this statement and demon-
strated that reflectance at wavelengths corresponding to the lower and upper flanks of the 
major chlorophyll absorption feature in the Red is most sensitive to the normal range pig-
ment concentrations in most leaves (Carter & Knapp, 2001) and canopies (Filella et al., 1995; 
Yoder & Pettrigrew-Crosby, 1995). In young and senescent leaves and canopies bands at the 
centre of absorption features are most sensitive to low pigment concentrations (Sari et al., 
2005). 
To deal with the difficulties in relating reflectance to individual bands due to variations in 
the controlling factors on canopy reflectance, many approaches use reflectance in multiple 
bands. Most of them have employed ratios of narrow bands in spectral regions that are sen-
sitive to pigments and those areas that are not sensitive. They were proposed as a means of 
solving the problems of overlapping absorptions of different pigments (Chappelle et al., 
1992) and the effects of leaf and canopy structure (Peñuelas et al., 1995). Many indices have 
been derived for chlorophyll quantification and are based on ratios of bands in the VIS and 
NIR (Filella et al., 1995; Sims & Gamon, 2002), in the Red (Vogelman et al., 1993), or in the 
NIR and red edge region (Gitelson & Merzlyak, 1997).  
As mentioned previously, canopy reflectance results from a complex interaction between 

pigment concentrations, canopy structure, background signal and illumination conditions 

(sun-sensor-target geometry). Moreover, vegetation indices that are insensitive to soil opti-

cal properties seem to be relatively insensitive to chlorophyll variations. Conversely, most 

indices sensitive to chlorophyll content variability are strongly affected by the differences in 

the canopy vegetation cover (Haboudane et al., 2002). Various indices have been developed 

to be both sensitive to a broad range of chlorophyll content and robust towards different 

types of noise. Four approaches, which represent different types of indices, are discussed in 

this paper, i.e. a hyperspectral derivate of the Normalized Vegetation Difference Index, the 

Optimized Soil Adjusted Vegetation Index, the Photochemical Reflectance Index and the 

Chlorophyll Absorption Integral.  

3.5.1 Normalized Difference Vegetation Index  
Rouse and colleagues (1974) published the probably best common well-known index, the 

Normalized Difference Vegetation Index (NDVI) (Equation 1). The NDVI belongs to the first 

generation of indices which were based on empirical methods designs for a specific sensor, 

i.e. Landsat MSS. 

 Re

Re

( )

( )
NIR d

NIR d

R R
NDVI

R R





 (1) 

This index is still used for studying the state of vegetation with various sensors in regional 

to global applications (Prince & Tucker, 1996; Hame et al., 1997). However, several studies 

note that its usefulness depends strongly on noise associated with view angle differences, 

soil background influences, clouds and cloud shadow, atmospheric influences and topo-

graphic effects (Carlson & Ripley, 1997; Huete et al., 1997; Kim et al., 2010). In addition, 

saturation of the vegetation index in high biomass conditions or pigment concentrations 

limits quantitative vegetation assessments (Kim et al., 2010; Oppelt & Mauser, 2004). Never-

theless, the NDVI is still one of the most common indices. A hyperspectral variant the NDVI 

was used in this study: 
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827 668

( )

( )

R R
hNDVI

R R





 (2) 

where R827 and R668 correspond to the centre wavelength of the respective AVIS bands.  
The hNDVI showed high correlations for wheat canopies with medium chlorophyll content, 
but it becomes insensitive to chlorophyll contents at canopies with low LAI and dense 
vegetation (Oppelt & Mauser, 2004). 

3.5.2 Optimized Soil Adjusted Vegetation Index OSAVI  
OSAVI is a derivative of the NDVI and, as indicated by the name, includes a soil adjustment 
factor. To compensate for the effects of background and soil reflectance, particularly for 
sparse vegetation cover Rondeaux et al. (1996) introduced the OSAVI: 

 800 668

800 668

( )

( 0.16)

R R
OSAVI

R R




 
 (3) 

where R8oo and R668 correspond to the centre wavelength of the respective AVIS bands.  
OSAVI was proposed to reduce the background reflectance contributions and to enhance 
sensitivity to leaf chlorophyll variability. Its determination requires no knowledge of soil 
properties resulting in an easy application in the context of operational observations. How-
ever, some studies note that OSAVI also becomes insensitive to high chlorophyll contents 
(Oppelt & Mauser, 2004; Wu et al., 2008). 

3.5.3 Photochemical Reflectance Index  
The Photochemical Reflectance Index (PRI) was developed by Gamon et al. (1992) to mi-
nimize the effects of xanthophylls signal overlapping the chlorophyll spectral features due 
to sun angle variation. As many other indices the PRI was based on measurements in the 
laboratory and was then successfully applied and tested on field, air and spaceborne ima-
ging spectrometers (e.g. Gamon & Qiu, 1999; Penuelas et al., 1997; Sims & Gamon, 2002; 
Stylinski et al., 2002; Thenot et al., 2002; Trotter et al., 2002; Weng et al., 2006). 
The PRI is calculated as follows (Gamon et al., 1997)  

 
 
 

531 570

531 531

R R
PRI

R R





 (4) 

where R corresponds to the reflectance at the wavelength considered. The 531nm waveband 
is sensitiv to pigment concentration while the 570nm waveband is used as a reference.  
The PRI provides an easy measurement of chlorophyll content or LUE (Gamon et al., 1992). 
Moreover, it can be used for a wide range of species (Gamon et al., 1997). One problematic 
feature is its high sensitivity to soil reflectance, which has to be taken into account in areas 
or times with low vegetation cover (Mänd et al., 2010).  

3.5.4 Chlorophyll Absorption Integral  
The Chlorophyll Absorption Integral (CAI) is an approach based on the measurement of the 
chlorophyll absorption feature depth obtained by fitting a continuum to vegetation 
reflectance. Kokaly & Clark (1999) first described this method to assess nitrogen, lignin and 
cellulose for leaves of different tree and crop species. They used linear segments to 

www.intechopen.com



 
Remote Sensing of Photosynthetic Parameters 

 

149 

approximate the continuum. Once the continuum is established, the continuum-removed 
spectra are calculated by dividing the original reflectance values by the corresponding 
values of the continuum line. From the continuum-removed reflectance R’ [%], the depth D 
[%] in the absorption feature is computed with a uniform interval of 0.1 nm: 

 1 'D R   (5) 

The small interval for calculating the continuum removal was used to overcome difficulties 
with varying band settings of different sensors which affect CAI values for the same target 
on the ground (Oppelt, 2008). To minimize the influence of extraneous factors such as at-
mosphere, soil or topography, the absorption depths are normalized (Dn in Equation 6) 
(Curran et al., 2001; Kokaly & Clark, 1999). This is calculated by dividing the absorption 
depth of each band by the absorption depth at the centre of the absorption Dc.  

 n
c

D
D

D
  (6) 

Kokaly & Clark (1999) demonstrated that the normalized index exhibits a low sensitivity to 

background effects due to atmosphere, soil and topography. These results were confirmed 

at the leaf level by Curran et al. (2001) as well as by Oppelt & Mauser (2004) for canopy 

chlorophyll. 

The start and end point of the continuum can be chosen according to the band setting of the 

instrument. The AVIS CAI extends from the Red (600 nm) to the NIR (740 nm), whereby the 

former includes the chlorophyll a absorptions and the latter is an area insensitive to 

chlorophyll (Gitelsen & Merzlyak, 1997). Another advantage of CAI is that it includes both 

the lower and upper flanks of the chlorophyll absorption in the Red as well as the central 

absorption. Thus it includes wavelengths sensitive to a wide range of chlorophyll contents 

(Oppelt, 2002, 2010). 

4. Chlorophyll assessment 

The results of the chlorophyll assessment are summarized in Figure 5. As mentioned pre-

viously, indices become saturated at high chlorophyll contents. While indices such as the 

hNDVI and OSAVI saturate at chlorophyll a contents at about 1.0 g m-2, the CAI is known to 

saturate at chlorophyll contents higher than 1.5 g m-² (Oppelt 2002). With increasing chloro-

phyll content its absorption feature at 680 nm flattens and narrows. OSAVI and hNDVI are 

directly affected by reflectance in the Red and tend to saturate by an increase in this spectral 

region. The high correlations between the CAI and chlorophyll can be ascribed to the fact 

that the CAI is based on an integrated measurement and therefore is less affected by an in-

crease of reflectance in single wavelengths. The CAI becomes insensitive when the narrow-

ing of the absorption feature leads to a shift of the red edge position towards the Blue 

(Oppelt, 2002). 

The effect of saturation indicates a non-linear relationship, thus an exponential relationship 
should be expected. However, the chlorophyll contents monitored are below the saturation 
levels and thus the results can be approximated assuming linear relationships. The regres-
sion equations indicate that they do not cross the ordinate at zero, but show an offset, which 
is caused by the range of chlorophyll contents measured. Hence, the valid range of the chlo-
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rophyll estimation using the equations given in Figure 5 strictly is limited for chlorophyll 
contents between 200 mg m-² and 800 mg m-². 
 

 

Fig. 5. Linear relationships between vegetation indices and measured canopy chlorophyll; 
the regression equations are given as well as the coefficient of determination (R²) and the 
root mean square error (rmse). 

 

 

Fig. 6. CAI derived distribution of total canopy chlorophyll as monitored with the AVIS 
sensor on May 25 2004 

However, the results presented in Figure 5 indicate that hNDVI and OSAVI already 
saturate at chlorophyll contents above 600 mg m-2, while PRI and CAI are not affected 
by saturation. PRI shows a significant negative correlation with the canopy chlorophyll 
while CAI is highly positively correlated. The coefficient of determination (R²) is 
relatively high for both CAI and PRI with CAI reveals best results with the lowest root 
mean square error. Moreover, PRI seems to be not affected by the low leaf area during 
the AVIS March data. The low saturation level of hNDVI and OSAVI apparently 
prevents higher coefficients of determination for the crop stands investigated. Figure 6 
presents the spatial distribution of canopy chlorophyll content using the regression 
equation of CAI given in Figure 5 exemplarily for one AVIS acquisition. The Figure 
shows the existing heterogeneity in the wheat stand at May 25 at the end of stem 
elongation. The dominant structural pattern is given by the tractor lanes. However, 
specific areas with similar chlorophyll contents also become visible. Zones of high 
chlorophyll in the western part as well as in the very east of the field are apparent. The 
northern and southern field margins are characterized by low chlorophyll contents. A 
fertilization window is visible in the south-eastern part of the field. This area is not 
fertilized and therefore is characterized by low chlorophyll contents. 
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5. Estimation of photosynthesis and primary productivity 

Canopy photosynthesis is defined to equal the integrated sum of photosynthesis by leaves 
in a canopy (Amthor et al., 2001). Jarvis (1993) defined three classes of canopy 
photosynthesis models; two of them are so-called “big-leave” models which define the 
canopy as a single layer of vegetation covering the soil. The third model class divides the 
canopy into multiple layers, which underlie different microclimates and simulate the impact 
of spatial gradients within the canopy (Baldocchi & Amthor, 2001).  
The terms Gross Primary Production (GPP) and Net Primary Production (NPP) are the most 
important parameters related to the photosynthetic activity from plant to canopy level. Most 
crop-growth as well as biome-related models therefore deal with these parameters. GPP is 
the total amount of carbon fixed by plants through photosynthesis. NPP is the net amount of 
carbon fixed by plants after the costs of respiration are included (McGuire et al., 1993). 

5.1 Big-leave gross primary productivity 
The simplest big-leaf model assesses canopy GPP based the assumption that photosynthetic 
assimilation or NPP is proportional to the amount of solar radiation intercepted by 
vegetation (Monteith, 1972). Thus, canopy photosynthesis can be calculated as a linear 
function of the photosynthetically active radiation absorbed by the canopy (APAR). The 
slope of the equation is LUE (Monteith & Moss, 1977; Ruimy et al., 1995). 

 *GPP LUE APAR  (7) 

APAR is the product of incoming PAR and the fraction absorbed by the canopy (fAPAR). 
The measures of APAR integrate the geographic and seasonal variability of day length and 
potential incident radiation with daily cloud cover and aerosol attenuation. In addition, 
APAR implicitly quantifies the amount of leave canopy that is displayed to absorb radiation 
(Running et al., 2004). This model approach is very simple and enables the estimation of 
GPP with a very limited number of parameters.  
Time and space variability of LUE and APAR can directly be derived using remote sensing 
and meteorological data (Hilker et al., 2008; McCallum et al., 2009). LUE is influenced by 
many factors and thus varies in space and time. It is known to vary among crops (Gosse et 
al.; 1986, Prince, 1991) and nutrient status (Balakrishnan et al. 2001; Oppelt, 2002; Penuelas & 
Filella, 1995); however, LUE often is assumed to be constant when growth is not limited by 
water or nutrient shortage or climate conditions (Ruimy et al., 1995). Some authors 
propagate the use of PRI as a proxy for LUE (Gamon et al., 1992; Nichol et al. 2000), but 
Gitelson et al. (2006) stated that PRI is most sensitive to LAI and therefore is difficult to 
apply on a canopy or even on global scales. Thus, the assessment of LUE differs between 
authors and application; advantages and disadvantages of the different approaches have to 
be considered when using vegetation indices as proxies for LUE. 
Monteith’s logic is fundamental on a suite of operational remote sensing products, e.g. the 
MODIS GPP, NPP and photosynthesis (PSN) products. Running et al. (2004) described the 
MODIS algorithms in detail; a simple model based on look-up tables for different biomes is 
combined with meteorological data. APAR is estimated using the NDVI through Equation 8 
(Myneni et al., 1999). 

 
APAR

fAPAR NDVI
PAR

  (8) 
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This expression is based on results of several studies which found that under specified cano-
py reflectance properties APAR can be estimated using the NDVI (Asrar et al., 1992; Sellers 
et al. 1987; Sellers et al., 1992). Myneni et al. (1999) demonstrated that fAPAR is proportional 
to NDVI if soil background is ideally black and therefore introduced a factor of proportion-
ality which accounts for soil contribution. The linear relationship has been discussed in li-
terature; Ruimy et al. (1995) demonstrated that linearity between APAR and NDVI is only 
valid during vegetative growth. Moreover, comparison with modelled APAR unveiled that 
the NDVI-related APAR is significantly lower than independently modelled APAR (Ruimy 
et al., 1999). A likely explanation is the saturation of the NDVI to high chlorophyll or fAPAR, 
which also can be observed in Figure 5. Therefore, one of the main problems of GPP assess-
ment using remote sensing data is caused by the uncertainty of a linear NDVI/fAPAR rela-
tionship (Gitelson et al., 2006). Besides the controversial discussion, NDVI still is funda-
mental to MODIS products. 
The GPP product is used to calculate net photosynthesis PSN, which is computed as  

 netPSN GPP R   (8) 

where R is an estimate of daily respiration of leaves and roots (Running et al., 2004). MODIS 
LAI is used to estimate the biomass for the purpose of estimating R (Myneni et al., 1997, 
1999). The PSN and GPP products have an 8-day temporal resolution while NPP is an an-
nual value. Figure 6 presents a series of PSNnet products where the test area is located. Each 
PSN image covers an area of 10° degrees in latitude and longitude and enables the moni-
toring of large scale photosynthesis and carbon uptake. 
However, with a spatial resolution of 1km the MODIS products are suitable rather for large 

and global scale issues. To gather primary productivity on a smaller scale, crop growth 

models can be applied. 

 

 

Fig. 6. Series of MODIS 8-day PSN (GSD = 1 km) composites from Mai to June 2004 (data 
source: US Geological Survey, Earth Observation and Science Center) 

5.2 Derivation of NPP using a Vegetation Growth Model Approach 
Multi-layer models are able to consider the impacts of nonlinear physiological and 

physical processes on canopy photosynthesis (Baldocchi et al., 2001; Wang & Jarvis, 1990). 

Yin and Struik (2009) provided an overview of photosynthesis models available for C3 and 

C4 crop modelling. The approach used for this study is the advanced biological sub-model 

of the process of radiation mass and energy transfer model PROMET (Mauser & Bach, 

2009).  
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The core model is based on eight components (meteorology; land surface energy and mass 
balance; vegetation; snow and ice; soil hydraulics and soil temperature; ground water; 
channel flow; man-made hydraulic structures (Figure 7) to simulate the water and energy 
fluxes for variable time steps. 
 

 

Fig. 7. PROMET core components (Mauser & Bach, 2009) 

5.2.1 The biological sub-model of PROMET 
The modular structure of PROMET facilitates improvements in particular sub-models. The 
biological sub-model calculates photosynthesis according to a biochemical approach intro-
duced by Farquhar, von Caemmerer and Berry (1980). NPP is modelled on the basis of the 
temperature-dependent rate of Ribulose-1.5-Biphosphate (RuBP) reproduction and the 
availability of Ribulose-1.5-Biphosphate-Carboxylase-Oxigenase (Rubisco), i.e. by simulat-
ing the Calvin cycle. The availability and transport of CO2 is regulated by the stomatal re-
sistance of the leaf described by Ball and colleagues (1987). The rate of leaf photosynthesis is 
modelled in dependence of APAR and the temperature dependent rate of RuBP regenera-
tion. All processes are modelled in two vegetation layers, i.e. a sunlit and a shade layer. 
PROMET calculates an optimum photosynthesis under given environmental conditions 
(Hank et al., 2007). The model is able to reproduce effects on plant development that are 
caused mainly by variations in radiation regime. Effects due to relief, exposition and differ-
ences in the soil type or texture can also be modelled well (Hank, 2008; Oppelt, 2010).  
The Farquhar and von Caemmerer approach does not require chlorophyll contents but leaf 
absorptance (abs), which is directly related to CAI (Oppelt, 2010). Abs is dimensionless and 
refers to the mean relative quantum yield in the range of PAR. The quantum yield is the CO2 
assimilation in the absence of photorespiration and represents the maximum efficiency with 
which light can be converted to chemical energy by photosynthesis (Farquhar & von 
Caemmerer, 1982). In the model, abs usually is used as a constant value, which now can be 
dynamised using the CAI-abs remote sensing product. Then, DM is modelled using the con-
stant value (absconst = 0.83, Oppelt (2010)) until a remotely sensed abs (absRS) map is available. 
Then on, the absRS is used to calculate DM.  
Lack of remote sensing data or large time gaps between two acquisition dates lead to abs 

values being inadequate for the specific growing period. These problems can be avoided if 

the absRS values are traced back to absconst after a certain period of time. Assuming average 

growing conditions, the nitrogen in the fertilizer is metabolized within 21 to 30 days 
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(Döhler, 2007). Thus the absRS is used for a time period of three weeks before absconst is set 

again, but is replaced again if an additional absRS map is available for a later day. 

To fit the grid size of the other input data of the model (i.e. the limiting resolution of the 

digital elevation model) the data were resampled to a resolution of 10 m using a nearest 

neighbour approach. The resulting root mean square errors (rmse) from the ground control 

points were less than 0.5 pixels along track and 0.6 pixels across track.  

To provide appropriate soil moisture conditions at the beginning of the measurement 

periods, the simulation run was started about four months prior to the sowing date of the 

crops (i.e. August 2003 and 2004 respectively).  

5.2.2 Model results and discussion 
NPP is defined as the rate at which vegetation fixes carbon from the atmosphere minus the 

plant respiration (McGuire et al., 1993); therefore NPP demonstrates its link to DM devel-

opment during plant growth (Gitelson et al., 2006; Wu et al., 2010). Box et al. (1989) de-

scribed the relationship between NPP and biomass as follows  

 NPP LF DM H     (9) 

where LF represents the biomass discarded periodically (e.g. litter or dead leaves), ΔDM is 

the increment of dry matter and H represents the dry matter lost to herbivores or harvest. 

For a precision farming managed crop canopy, the loss of biomass due to herbivores and 

decay of plant material are assumed to be negligible. Therefore, in this study aboveground 

dry biomass is used as proxy for NPP, but it has to be mentioned that, due to the lack of root 

biomass measures, it is restricted to above ground biomass and above ground NPP. 

Figure 8 presents the average field values of modelled and measured DM in 2004 and 

2005. In 2004, PROMET reproduces the field average plant development well, but tends to 

overestimate DM when used with the constant abs value. The general course of DM is 

based on a standardized development of canopy leaf area. The LAI measurements 

conducted during the growing season were used to adapt the standardized canopy leaf 

area. They are mainly responsible for the excellent results even when PROMET was run 

without remote sensing data. The modelling of optimum photosynthesis results in 

increased DM at the early stages of plant growth. The integration of CAIabs results in a 

decrease of the modelled average DM at the beginning of tillering (due to March 31 AVIS 

data) and a slower increase during anthesis and ripening (due to the May 25 and June 8 

data). However, only a slight increase in model performance could be observed when 

looking at the field average. 

The results for 2005 clearly demonstrate the limitation of crop modelling. Results shown 

in Figure 6 demonstrate that PROMET cannot correctly reproduce average DM when 

factors, which are not driven by radiation regime, influence plant growth and health. 

PROMET was able to trace the reduced development of leaf area, but could not reproduce 

the moldering and decay. Unfortunately, the AVIS acquisition in July was far too late to 

adjust plant development to a more realistic level. The modelled DM is on a lower level 

compared to 2004, which is due to the influence of the LAI based modelling of the canopy. 

However, the resulting model performance was poor with high deviations up to 0.46 kg m-² 

(Figure 9). 
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Fig. 8. Comparison of modelled and measured mean field values of DM with or without the 
integration of remote sensing (RS) data for the growing season in 2004 (left hand side) and 
2005 (right hand side) 

 

 

Fig. 9. Results of modelled and measured above-ground DM in 2004 when PROMET is used 
stand alone (left hand side) and with integration of AVIS data regulating the amount and 
spatial distribution of chlorophyll (right hand side) 

The potential of integrating remote sensing data becomes obvious when looking at the re-

sults for the field sampling points (Figure 8). Plant development at the different sampling 

points can be reproduced more realistically when absRS is used instead of absconst. The imple-

mentation of AVIS data results in a slightly higher coefficient of determination, but rmse 

was reduced by approximately 30%.  

The use of a dynamic abs enables a more realistic modelling of dry matter, i.e. DM produc-

tion is lowered. However, the results depend strongly – as could have been expected – on 

the time (or developmental stage of the plants) when remote sensing data are available. The 

time when a remotely sensed abs distribution can be integrated is crucial for two reasons: 

firstly, if spatially distributed abs is available at the beginning of the vegetation period, this 
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period can be modelled more realistically, because in the early growth stages the abs values 

turned out to be much lower than the constant value. With progressive plant development 

the chlorophyll content and therefore the absorptance increase, resulting in a low modelled 

DM.  

 

 

Fig. 9. Results of modelled and measured above-ground DM in 2005 when PROMET is used 
stand alone (left hand side) and with AVIS data acquired on 5 July (right hand side) 

The importance of the phenological stage at which absRS is introduced is obvious. The ad-

vantage of implementing additional remote sensing data is the adjustment of the canopy 

absorptance properties, which would generally result in a decrease of DM. Thus model re-

sults improve at most when remote sensing data during the early growing stages are avail-

able. The AVIS acquisition in 2005 was too late for a proper characterization of the stand, 

because nearly the whole plant development was modelled with absconst. 

6. Conclusions 

Remote sensing can provide information about parameters directly or indirectly connected 

to the photosynthetic activity of a plant or a vegetation canopy. Different types of vegetation 

indices were applied to estimate total chlorophyll of wheat canopies using airborne hyper-

spectral data. Validation with field measurements showed that OSAVI and hNDVI tend to 

saturate at chlorophyll contents above 600 mg m-² while PRI and CAI were not affected by 

saturation. PRI showed the highest degree of correlation (R² = 0.725), but CAI proved the 

most precise estimation (rmse = 81.1 mg m-²). 

Vegetation indices can be used as input parameter for calculating photosynthesis from small 
to global scale. MODIS PSN, GPP and NPP products are based on NDVI measurements and 
provide information with a spatial resolution of 1 km. Examples of MODIS PSN provide 
valuable information of photosynthesis at regional to large scales.  
To provide NPP on a field scale, the Farquhar - based biological sub-model of PROMET was 
used as vegetation growth model. PROMET integrates CAI derived leaf absorptance values 
as input parameter to calculate canopy photosynthesis. To validate model results, canopy 
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dry matter was used as a proxy for NPP. Under standard growing conditions, PROMET 
reproduced average field biomass development well, even without integration of remote 
sensing data (R² = 0.91). The model calculates optimum photosynthesis under given meteo-
rological conditions and therefore tends to overestimate DM. The integration of remote 
sensing data adapts varying chlorophyll condition occurring in the field to the model. The 
results show a general decrease of modelled average DM. However, the heterogeneities in 
the wheat canopies could be reproduced better when a CAI based absorptance was inte-
grated in PROMET; the resulting degree of correlation increased (R² = 0.93 compared to R² = 
0.85) while the prediction error decreased by 30%.  
The advantage of implementing additional remote sensing data lies in the adjustment of the 
canopy absorptance properties, e.g. on a deficit in nutrient supply, mechanical inflictions or 
plant diseases or moulding. Still, the acquisition time is a crucial task for the enhancement of 
crop growth modelling. If remote sensing data were not available directly after a mechanical 
inflict or the appearance of diseases, the model is not able to reproduce the changing plant 
metabolism (R² = 0.65).  
This paper demonstrates that the use of remote sensing data to adapt “real conditions” to 
models of photosynthesis is very promising, both at field and coarse scale. The success and 
progress of photosynthetic related MODIS products and the model results emphasize the 
need for space-borne instruments to enable an operational monitoring with regular acquisi-
tions on a regional and local scale. The advent of the EnMAP instrument in 2015 will hope-
fully close this gap. In addition, sun induced chlorophyll fluorescence becomes increasingly 
important in the monitoring of photosynthetic processes. Instruments that measure sun in-
duced fluorescence such as FLEX (candidate for the Earth Explorer mission of the European 
Space Agency) will contribute significantly to the remote sensing based research in the field 
of photosynthesis. 
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